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Geometric structures

DEFINITION: “Geometric structure” on a manifold M is a reduction of
its structure group GL(n,R) to a subgroup G ⊂ GL(n,R). However, it is
easier to define it by a collection of tensors Ψ1, ...,Ψn such that the stabilizer
St〈Ψ1,...,Ψn〉 ⊂ GL(TxM) of Ψ1, ...,Ψn at each point x ∈M is conjugate to the
same group G ⊂ GL(n,R). Usually, in addition to this algebraic condition,
people ask for some differential conditions to hold, such as the integrability
for almost complex structures.

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM −→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1 . The corresponding eigenvalue

decomposition is denoted TM ⊗ C = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if [T0,1M,T0,1M ] ⊂
T0,1M .

DEFINITION: Symplectic form on a manifold is a non-degenerate differ-
ential 2-form ω satisfying dω = 0.

Today I would define the Techmüller space of geometric structures and
describe it for some examples.
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Fréchet spaces

DEFINITION: A seminorm on a vector space V is a function ν : V −→ R>0

satisfying

1. ν(λx) = |λ|ν(x) for each λ ∈ R and all x ∈ V

2. ν(x+ y) 6 ν(x) + ν(y).

DEFINITION: We say that topology on a vector space V is defined by

a family of seminorms {να} if the base of this topology is given by the finite

intersections of the sets

Bνα,ε(x) := {y ∈ V | να(x− y) < ε}

(”open balls with respect to the seminorm”). It is complete if each sequence

xi ∈ V which is Cauchy with respect to each of the seminorms converges.

CLAIM: A topology on V defined by a family of seminorms {να} is Hausdorff

if and only if for each v ∈ V there exists a seminorm ν ∈ {να} such that

ν(v) 6= 0.
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Fréchet spaces and translation-invariant metrics

DEFINITION: A Fréchet space is a Hausdorff second countable topological

vector space V with the topology which can be defined by a countable family

of seminorms, complete with respect to this family of seminorms.

DEFINITION: Equivalent definition: let V be a vector space equipped with

a collection of norms (or seminorms) | · |i, i = 0,1,2, ... and a topology which

is given by the metric d(x, y) =
∑∞
i=0 2−imin(|x− y|i,1), assumed to be non-

degenerate. The space V is called a Fréchet space if this metric is complete.

REMARK: Completeness is equivalent to convergence of any sequence

{ai} which is fundamental with respect to all the (semi-)norms | · |i.

REMARK: A sequence converges in the Fréchet topology given by d

⇔ it converges in any of the (semi-)norms | · |i.

EXERCISE: Let V be a vector space, equipped with a translation-invariant

metric d. Assume that the open balls are convex, and V is complete and

second countable with respect to d. Prove that V is Fréchet, and all

Fréchet spaces can be obtained this way.
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C∞-topology

DEFINITION: Let M be a Riemannian manifold, and ∇i : C∞(M)−→ Λ1(M)⊗i

the iterated connection. Topology Ck on the space C∞c (M) of functions with

compact support is defined by the norm

|ϕ|Ck := sup
M

k∑
i=0

|∇iϕ|.

EXERCISE: Prove that the space C∞c M of functions with compact support

is a Fréchet space with respect to C∞-topology.

REMARK: This topology is independent from the choice of the con-

nection. This is an exercise.

REMARK: A tensor on a manifold is a section of the tensor bundle TM⊗i⊗
T ∗M⊗j. The same way one defines the C∞-topology on the space of

tensors with compact support on M.

EXERCISE: Prove that the space of tensors with compact support is a

Fréchet space, with the C∞-topology defined as above.
5



K3 surfaces, lecture 4 M. Verbitsky

C0-topology on the group of diffeomorphisms

DEFINITION: Let M be a compact Riemannian manifold. The C0-topology

on the space of diffeomorphisms is defined by the metric

d(τ1, τ2) := supx∈M d(τ1(x), τ2(x)).

EXERCISE: Prove that this topology is independent from the choice of

Riemannian structure.

EXERCISE: Prove that the group of homeomorphisms is complete with

respect to d.

REMARK: This topology is not enough for many purposes, for example, the

map τ −→Dxτ is not continuous in C0-topology, because it depends on

the derivative of the diffeomorphism.
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C∞-topology on the group of diffeomorphisms

We define C∞-topology on diffeomorphisms; it is strictly stronger (has more
open sets) than the C0-topology. We define it in such a way that the group
structure on Diff(M) is compatible with the C∞-topology. Then it would
suffice to define topology on a sufficiently small C0-neighbourhood of
Id ∈ Diff(M).

DEFINITION: Choose two atlases {Ui} and {Vi} on M , with the closure
of each Ui compact in Vi. Then there exists a C0-neighbourhood U

of Id ∈ Diff(M) such that for all τ ∈ U we have τ(Ui) ⊂ Vi. We define
the C∞-topology on U and expand it to Diff(M) using the group structure.
For each τ ∈ U, we can interpret τ as a map from Ui to Vi, that is, as
a collection of smooth functions. The C∞-topology on U is defined by
uniform convergence of these functions with all their derivatives, that
is, by C∞-topology on

∏
iC
∞(Ui, Vi).

THEOREM: The C∞-topology on diffeomorphisms is independent from
the choices we made. The diffeomorphism group with respect to this
topology is a Fréchet-Lie group.

Proof: Left as an exercise.
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Teichmüller space of geometric structures

Let C be the set of all geometric structures of a given type, say, complex,

or symplectic. We put C∞-topology (the topology of uniform convergence

with all derivatives) on C. Let Diff0(M) be the connected component of its

diffeomorphism group Diff(M) (the group of isotopies).

DEFINITION: The quotient C/Diff0 is called Teichmüller space of geo-

metric strictures of this type.

DEFINITION: The group Γ := Diff(M)/Diff0(M) is called the mapping

class group of M . It acts on Teich by homeomorphisms.

DEFINITION: The orbit space C/Diff = Teich /Γ is called the moduli

space of geometric structure of this type.

Today I will describe Teich in some interesting cases.
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Teichmüller space for symplectic structures

DEFINITION: Let Γ(Λ2M) be the space of all 2-forms on a manifold M ,

and Symp ⊂ Γ(Λ2M) the space of all symplectic 2-forms. We equip Γ(Λ2M)

with C∞-topology of uniform convergence on compacts with all derivatives.

Then Γ(Λ2M) is a Frechet vector space, and Symp a Frechet manifold.

DEFINITION: Consider the group of diffeomorphisms, denoted Diff or Diff(M),

as a Frechet Lie group, and denote its connected component (“group of iso-

topies”) by Diff0. The quotient group Γ := Diff /Diff0 is called the mapping

class group of M .

DEFINITION: Teichmüller space of symplectic structures on M is de-

fined as a quotient Teichs := Symp /Diff0. The quotient Teichs /Γ = Symp /Diff,

is called the moduli space of symplectic structures.

REMARK: In many cases Γ acts on Teichs with dense orbits, hence the

moduli space is not always well defined.

DEFINITION: Two symplectic structures are called isotopic if they lie in

the same orbit of Diff0.
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Moser’s theorem

DEFINITION: Define the period map Per : Teichs −→H2(M,R) mapping

a symplectic structure to its cohomology class.

THEOREM: (Moser, 1965)

The Teichmüler space Teichs is a manifold (possibly, non-Hausdorff), and

the period map Per : Teichs −→H2(M,R) is locally a diffeomorphism.

The proof is based on another theorem of Moser.

Theorem 1: (Moser)

Let ωt, t ∈ S be a smooth family of symplectic structures, parametrized by

a connected manifold S. Assume that the cohomology class [ωt] ∈ H2(M) is

constant in t. Then all ωt are isotopic.

Proof of Moser theorem: The period map P : Symp −→H2(M,R) is a

smooth submersion. By Theorem 1, the conneced components of the fibers

of P are orbits of Diff0(M). Therefore, Per is locally a diffeomorphism.
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Symplectic structures on a compact torus

DEFINITION: A symplectic structure ω on a torus is called standard if there

exists a flat torsion-free connection preserving ω.

REMARK: Moser’s theorem immediately implies that the set Teichst of

standard symplectic structures is open in the Teichmüller space. Indeed,

the period map from Teichst to H2(M) is also locally a diffeomorphism.

REMARK: It is not known if any non-standard symplectic structures

exist (even in dimension =4).

THEOREM: Let Λ2
nd(H1(T )) ⊂ H2(T ) be the space of symplectic forms

on H1(T ), where T is an even-dimensional torus. Consider the period map

Per : Teichst −→ Λ2
nd(H1(T )) ⊂ H2(T ), where Teichst is the Teichmüller space

of standard symplectic structures on T . Then Per is a diffeomorphism on

each connected component of Teichst.

Proof: Left as an exercise.

11



K3 surfaces, lecture 4 M. Verbitsky

The kernel of a differential form

DEFINITION: Let Ω be a differential form on M . The kernel, or the null-

space ker(Ω) ⊂ TM of Ω is the space of all vector fields X ∈ TM such that

the contraction iX(Ω) vanishes.

Proposition 1: Let Ω be a closed form on a manifold, and B ⊂ TM its

null-space. Then [B,B] ⊂ B.

Proof. Step 1: Let X,X1 ∈ ker(Ω), and X2, ..., Xp any vector fields. Cartan’s

formula implies that LieX(Ω) = d(iX(Ω)) + iX(dΩ) = 0, hence LieX(Ω) = 0.

Step 2: LieX(Ω)(X1, ..., Xp) = LieX(Ω(X1, ..., Xp))−
∑p
i=1 Ω(X1, ..., [X,Xi], ...Xp).

All terms of this sum, except Ω([X,X1], X2, ..., Xp), vanish, because X1 ∈
ker(Ω). Since LieX(Ω) = 0, we have Ω([X,X1], X2, ..., Xp) = 0 for all X2, ..., Xp.

Therefore, [X,X1] ∈ ker(Ω).
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Holomorphic symplectic form

DEFINITION: Holomorphic symplectic form on an almost complex man-

ifold (M, I) is a non-degenerate closed differential 2-form Ω ∈ Λ2(M,C) satis-

fying dΩ = 0 and Ω(Ix, y) =
√
−1 Ω(x, y).

REMARK: Consider the Hodge decomposition TCM = T1,0M ⊕ T0,1M (de-

composition according to eigenvalues of I). Since Ω(IX, Y ) =
√
−1 Ω(X,Y )

and I(Z) = −
√
−1 Z for any Z ∈ T0,1(M), we have ker(Ω) ⊃ T0,1(M). Since

ker Ω ∩ TRM = 0, real dimension of its kernel is at most dimRM , giving

dimR ker Ω = dimM . Therefore, ker(Ω) = T0,1M.

COROLLARY: Let (M, I) be an almost complex manifold admitting a holo-

morphic symplectic form. Then I is integrable (Proposition 1.)

COROLLARY: Let Ω be a holomorphically symplectic form on a complex

manifold (M, I). Then I is determined by Ω uniquely.
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C-symplectic structures

DEFINITION: Let M be a smooth 4n-dimensional manifold. A closed

complex-valued form Ω on M is called C-symplectic if Ωn+1 = 0 and Ωn∧Ωn

is a non-degenerate volume form.

THEOREM: Let Ω ∈ Λ2(M,C) be a C-symplectic form, and T
0,1
Ω (M) be

equal to ker Ω, where

ker Ω := {v ∈ TM ⊗ C | Ωyv = 0}.

Then T
0,1
Ω (M)⊕T0,1

Ω (M) = TM⊗RC, hence the sub-bundle T
0,1
Ω (M) defines

an almost complex structure IΩ on M. If, in addition, Ω is closed, IΩ is

integrable, and Ω is holomorphically symplectic on (M, IΩ).

Proof: Rank of Ω is 2n because Ωn+1 = 0 and Ωn ∧Ωn is non-degenerate.

Therefore, rkT0,1
Ω (M) = 2n. For any v ∈ T

0,1
Ω (M) ∩ T0,1

Ω (M), the real part

Re v of v belongs to ker Ω. This would imply that Re v ∈ Im(Ωn ∧Ωn), which

is impossible, because Ωn∧Ωn is non-degenerate. Then T
0,1
Ω (M)⊕T0,1

Ω (M) =

TM ⊗R C, defining an almost complex structure IΩ. Its integrabiliuty imme-

diately follows from Proposition 1.
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Period map for holomorphically symplectic manifolds

DEFINITION: Let (M, I,Ω) be a holomorphically symplectic manifold, and

CSymp the space of all C-symplectic forms. The quotient CTeich := CSymp
Diff0

is called the holomorphically symplectic Teichmüller space, and the map

CTeich −→H2(M,C) taking (M, I,Ω) to the cohomology class [Ω] ∈ H2(M,C)

the holomorphically symplectic period map.

We want to prove that the period map is locally an embedding. This is

immediately implied by the following version of Moser’s lemma.

THEOREM: Let (M, It,Ωt), t ∈ [0,1] be a family of C-symplectic forms on

a compact manifold. Assume that the cohomology class [Ωt] ∈ H2(M,C) is

constant, and H0,1(M, It) = 0, where H0,1(M, It) = H1(M,O(M,It)) is coho-

mology of the sheaf of holomorphic functions. Then there exists a smooth

family of diffeomorphisms Vt ∈ Diff0(M), such that V ∗t Ω0 = Ωt.

Proof: Later in this course.
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Local Torelli theorem

REMARK: In real dimension 4, C-symplectic form is a pair ω1, ω2 of sym-

plectic forms which satisfy ω2
1 = ω2

2 and ω1 ∧ ω2 = 0.

THEOREM: Let (M, I,Ω) be a complex holomorphically symplectic sur-

face with H0,1(M) = 0, that is, a K3 surface. Consider the period map

Per : CTeich −→H2(M,C) taking (M, I,Ω) to the cohomology class [Ω] ∈
H2(M,C). Then Per is a local diffeomorpism of CTeich to the period

space Q := {v ∈ H2(M,C) |
∫
M v ∧ v = 0,

∫
M v ∧ v > 0}.

Proof: Later in this course.

A caution: CTeich is smooth, but non-Hausdorff. The non-Hausdorff points

are well understood and correspond to the partition of the “positive cone”

{v ∈ H1,1
I (M,R) |

∫
M v ∧ v > 0} onto “Kähler chambers” (to be explained

later).
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