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Geometric structures

DEFINITION: “Geometric structure” on a manifold M is a reduction of
its structure group GL(n,R) to a subgroup G C GL(n,R). However, it is
easier to define it by a collection of tensors W4, ..., WV, such that the stabilizer
Stiw,,. . w,) CGL(TxM) of Wy,..., Wy at each point z € M is conjugate to the
same group G C GL(n,R). Usually, in addition to this algebraic condition,
people ask for some differential conditions to hold, such as the integrability
for almost complex structures.

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM —s TM which satisfies 12 = —Idp;,.

The eigenvalues of this operator are =v/—1. The corresponding eigenvalue
decomposition is denoted TM @ C = 7% M @ T1.O(M).

DEFINITION: An almost complex structure is integrable if [T901M, 701 M
70101,

DEFINITION: Symplectic form on a manifold is a non-degenerate differ-
ential 2-form w satisfying dw = 0.

Today I would define the Techmuller space of geometric structures and

describe it for some examples.
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Fréchet spaces

DEFINITION: A seminorm on a vector space V is a functionv: V _ v R=0
satisfying

1. v(Az) = |A|lv(x) for each AXe Rand all x € V

2. v(z+y) <viz) +v(y).

DEFINITION: We say that topology on a vector space V is defined by
a family of seminorms {v,} if the base of this topology is given by the finite
intersections of the sets

Bupe(z) ' ={y €V | valz—y) <e}

(" open balls with respect to the seminorm’ ). It is complete if each sequence
x; € V which is Cauchy with respect to each of the seminorms converges.

CLAIM: A topology on V defined by a family of seminorms {v} is Hausdorff
if and only if for each v € V there exists a seminorm v € {v,} such that

v(v) #0. =
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Fréchet spaces and translation-invariant metrics

DEFINITION: A Fréchet space is a Hausdorff second countable topological
vector space V with the topology which can be defined by a countable family
of seminorms, complete with respect to this family of seminorms.

DEFINITION: Equivalent definition: let V be a vector space equipped with
a collection of norms (or seminorms) |-|;, ¢t =0,1,2,... and a topology which
is given by the metric d(z,y) = >332, 27 min(|z — y|;, 1), assumed to be non-
degenerate. The space V is called a Fréchet space if this metric is complete.

REMARK: Completeness is equivalent to convergence of any sequence
{a;} which is fundamental with respect to all the (semi-)norms |- |;.

REMARK: A sequence converges in the Fréechet topology given by d
& it converges in any of the (semi-)norms |- |;.

EXERCISE: Let V be a vector space, equipped with a translation-invariant
metric d. Assume that the open balls are convex, and V is complete and
second countable with respect to d. Prove that V is Fréchet, and all

Fréchet spaces can be obtained this way.
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C°°-topology

DEFINITION: Let M be a Riemannian manifold, and V*: C®(M) — AL(M)®"
the iterated connection. Topology C* on the space CSe(M) of functions with
compact support is defined by the norm

k

olor :=sup > [Vl
M =g

EXERCISE: Prove that the space C°M of functions with compact support
IS a Fréchet space with respect to C°°-topology.

REMARK: This topology is independent from the choice of the con-
nection. This is an exercise.

REMARK: A tensor on a manifold is a section of the tensor bundle TM®!x
T*M®I. The same way one defines the C°-topology on the space of
tensors with compact support on M.

EXERCISE: Prove that the space of tensors with compact support is a

Fréchet space, with the C°°-topology defined as above.
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CY-topology on the group of diffeomorphisms

DEFINITION: Let M be a compact Riemannian manifold. The C°-topology
on the space of diffeomorphisms is defined by the metric

d(T1,72) 1= sup,cp d(r1(z), 72(2)).

EXERCISE: Prove that this topology is independent from the choice of
Riemannian structure.

EXERCISE: Prove that the group of homeomorphisms is complete with
respect to d.

REMARK: This topology is not enough for many purposes, for example, the
map »— D,7 iS not continuous in Co—topology, because it depends on
the derivative of the diffeomorphism.
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C°°-topology on the group of diffeomorphisms

We define C*°-topology on diffeomorphisms; it is strictly stronger (has more
open sets) than the CY-topology. We define it in such a way that the group
structure on Diff(M) is compatible with the C°-topology. Then it would
suffice to define topology on a sufficiently small Co-neighbourhood of
Id € Diff(M).

DEFINITION: Choose two atlases {U;} and {V;} on M, with the closure
of each U, compact in V;. Then there exists a C%-neighbourhood U
of Id € Diff(M) such that for all - € U we have 7(U;) C V;. We define
the C*°-topology on U and expand it to Diff(M) using the group structure.
For each 7 € U, we can interpret  as a map from U; to V;, that is, as
a collection of smooth functions. The C°-topology on U is defined by
uniform convergence of these functions with all their derivatives, that
is, by C*°-topology on [[; C*°(U;,V;).

THEOREM: The C°-topology on diffeomorphisms is independent from
the choices we made. The diffeomorphism group with respect to this

topology is a Fréchet-Lie group.

Proof: Left as an exercise.



K3 surfaces, lecture 4 M. Verbitsky

Teichmuller space of geometric structures

Let C be the set of all geometric structures of a given type, say, complex,
or symplectic. We put C°-topology (the topology of uniform convergence
with all derivatives) on C. Let Diffg(M) be the connected component of its
diffeomorphism group Diff(M) (the group of isotopies).

DEFINITION: The quotient ¢/ Diffg is called Teichmuller space of geo-
metric strictures of this type.

DEFINITION: The group I := Diff(M)/ Diffg(M) is called the mapping
class group of M. It acts on Teich by homeomorphisms.

DEFINITION: The orbit space C/Diff = Teich /I" is called the moduli
space of geometric structure of this type.

Today I will describe Teich in some interesting cases.
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Teichmuller space for symplectic structures

DEFINITION: Let M(A2M) be the space of all 2-forms on a manifold M,
and Symp C I’(/\QM) the space of all symplectic 2-forms. We equip I’(/\QM)
with C°°-topology of uniform convergence on compacts with all derivatives.
Then I‘(/\QM) is a Frechet vector space, and Symp a Frechet manifold.

DEFINITION: Consider the group of diffeomorphisms, denoted Diff or Diff (M),
as a Frechet Lie group, and denote its connected component (“group of iso-
topies’” ) by Diffg. The quotient group I := Diff / Diffg is called the mapping
class group of M.

DEFINITION: Teichmuller space of symplectic structures on M is de-
fined as a quotient Teichs := Symp / Diffg. The quotient Teichs /T = Symp / Diff,
is called the moduli space of symplectic structures.

REMARK: In many cases I acts on Teichgs with dense orbits, hence the
moduli space is not always well defined.

DEFINITION: Two symplectic structures are called isotopic if they lie in

the same orbit of Diffy.
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Moser’s theorem

DEFINITION: Define the period map Per : Teichs — H2(M,R) mapping
a symplectic structure to its cohomology class.

THEOREM: (Moser, 1965)
The Teichmuler space Teichg is a manifold (possibly, non-Hausdorff), and
the period map Per : Teichs — H2(M,R) is locally a diffeomorphism.

The proof is based on another theorem of Moser.

Theorem 1: (Moser)

Let wy, t € S be a smooth family of symplectic structures, parametrized by
a connected manifold S. Assume that the cohomology class [w] € H2(M) is
constant in t. Then all w; are isotopic.

Proof of Moser theorem: The period map P : Symp — H?(M,R) is a
smooth submersion. By Theorem 1, the conneced components of the fibers
of P are orbits of Diffg(M). Therefore, Per is locally a diffeomorphism. =
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Svymplectic structures on a compact torus

DEFINITION: A symplectic structure w on a torus is called standard if there
exists a flat torsion-free connection preserving w.

REMARK: Moser's theorem immediately implies that the set Teichg oOf
standard symplectic structures is open in the Teichmuller space. Indeed,
the period map from Teichg to H2(M) is also locally a diffeomorphism.

REMARK: It is not known if any non-standard symplectic structures
exist (even in dimension =4).

THEOREM: Let /\gd(Hl(T)) C H?(T) be the space of symplectic forms
on H1(T), where T is an even-dimensional torus. Consider the period map
Per : Teichgy — A2 ,(H1(T)) C H?(T), where Teichg is the Teichmiiller space
of standard symplectic structures on 7'. Then Per is a diffeomorphism on
each connected component of Teichg;.

Proof:. Left as an exercise.
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The kernel of a differential form

DEFINITION: Let €2 be a differential form on M. The kernel, or the null-
space ker(2) C TM of Q is the space of all vector fields X € T'M such that
the contraction iy (€2) vanishes.

Proposition 1: Let €2 be a closed form on a manifold, and B C TM its
null-space. Then [B, B] C B.

Proof. Step 1: Let X, X; € ker(£2), and Xo, ..., Xp any vector fields. Cartan’s
formula implies that Liex(2) = d(ix(2)) + ix(d2) = 0, hence Liex(£2) = 0.

Step 2: Liex(Q2)(X1,...,Xp) = Liex(Q2(X1, ..., Xp))—>F_1 (X1, ..., [X, X;], ... Xp).
All terms of this sum, except Q([X, X1], Xo,...,Xp), vanish, because X; €
ker(€2). Since Liex(€2) = 0, we have Q([X, X1], X5, ..., Xp) = 0 for all Xo, ..., Xp.
Therefore, [X,X1] € ker(2). =
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Holomorphic symplectic form

DEFINITION: Holomorphic symplectic form on an almost complex man-
ifold (M, ) is a non-degenerate closed differential 2-form 2 € A2(M, C) satis-
fying d2 =0 and QUz,y) = V-1 Q(x,y).

REMARK: Consider the Hodge decomposition TcM = T19M @ 701 M (de-
composition according to eigenvalues of I). Since Q(IX,Y) = +V/-1Q(X,Y)
and I(Z) = —/—=1 Z for any Z € T%1(M), we have ker(Q) > T%1(M). Since
kerQ2 NIprM = 0, real dimension of its kernel is at most dimp M, giving
dimg ker Q = dim M. Therefore, ker(Q) = T79111.

COROLLARY: Let (M, I) be an almost complex manifold admitting a holo-
morphic symplectic form. Then I is integrable (Proposition 1.)

COROLLARY: Let 2 be a holomorphically symplectic form on a complex
manifold (M,I). Then I is determined by 2 uniquely.
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C-symplectic structures

DEFINITION: Let M be a smooth 4n-dimensional manifold. A closed
complex-valued form € on M is called C-symplectic if Q"1 =0 and Q"AQ"
IS @ hon-degenerate volume form.

THEOREM: Let Q € A2(M,C) be a C-symplectic form, and Tg’l(M) be
equal to ker €2, where

kerQ :={veTM®C | Quv=0}.

Then Tg’l(M)@Tg’l(M) = TM ®rC, hence the sub-bundle Tg’l(M) defines
an almost complex structure I on M. If, in addition, €2 is closed, Ig is
integrable, and 2 is holomorphically symplectic on (M, o).

Proof: Rank of Q is 2n because Q71T = 0 and Q* A Q" is non-degenerate.
T herefore, rkTg’l(M) = 2n. For any v € Tg’l(M) ﬂTg’l(M), the real part
Rewv of v belongs to ker 2. This would imply that Rev € Im(Q2* A ™), which
is impossible, because Q" AQ" is non-degenerate. Then Tg’l(M)@Tg’l(M) =
T'M Qpr C, defining an almost complex structure Iq. Its integrabiliuty imme-
diately follows from Proposition 1. =
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Period map for holomorphically symplectic manifolds

DEFINITION: Let (M,1,92) be a holomorphically symplectic manifold, and
CSymp the space of all C-symplectic forms. The quotient CTeich := CS?{{;D
is called the holomorphically symplectic Teichmuller space, and the map
CTeich — H2(M, C) taking (M, I, Q) to the cohomology class [Q2] € H2(M,C)

the holomorphically symplectic period map.

We want to prove that the period map is locally an embedding. This is
immediately implied by the following version of Moser’s lemma.

THEOREM: Let (M, 1;,€2:), t € [0,1] be a family of C-symplectic forms on
a compact manifold. Assume that the cohomology class [$2] € H2(M,C) is
constant, and H%1(M,I;) = 0, where H%Y(M, I;) = H'(M, Oy, 1,)) is coho-
mology of the sheaf of holomorphic functions. Then there exists a smooth
family of diffeomorphisms V; € Diffo(M ), such that V;*Qqy = ;.

Proof: Later in this course.
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Local Torelli theorem

REMARK: In real dimension 4, C-symplectic form is a pair wi,w> Oof sym-
plectic forms which satisfy w? = w3 and w; Awy = 0.

THEOREM: Let (M,1,Q2) be a complex holomorphically symplectic sur-
face with HO91(M) = 0, that is, a K3 surface. Consider the period map
Per : CTeich — H?(M,C) taking (M,I,) to the cohomology class [Q2] €
H?(M,C). Then Per is a local diffeomorpism of CTeich to the period
space Q := {ve H>(M,C) | [yvAv=0,[y;vAT>0}.

Proof: Later in this course.

A caution: CTeich is smooth, but non-Hausdorff. The non-Hausdorff points
are well understood and correspond to the partition of the “positive cone”
{v € H}’I(M,IR{) | JyyvAv > 0} onto “Kahler chambers” (to be explained
later).
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