K3 surfaces

lecture 4: Teichmüller spaces

Misha Verbitsky

IMPA, sala 236

September 12, 2022, 15:30

Geometric structures

DEFINITION: "Geometric structure" on a manifold M is a reduction of its structure group $GL(n,\mathbb{R})$ to a subgroup $G \subset GL(n,\mathbb{R})$. However, it is easier to define it by a collection of tensors $\Psi_1, ..., \Psi_n$ such that the stabilizer $St_{\langle \Psi_1,...,\Psi_n \rangle} \subset GL(T_xM)$ of $\Psi_1, ..., \Psi_n$ at each point $x \in M$ is conjugate to the same group $G \subset GL(n,\mathbb{R})$. Usually, in addition to this algebraic condition, people ask for some differential conditions to hold, such as the integrability for almost complex structures.

DEFINITION: Let *M* be a smooth manifold. An **almost complex structure** is an operator $I: TM \longrightarrow TM$ which satisfies $I^2 = -\operatorname{Id}_{TM}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $TM \otimes \mathbb{C} = T^{0,1}M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is **integrable** if $[T^{0,1}M, T^{0,1}M] \subset T^{0,1}M$.

DEFINITION: Symplectic form on a manifold is a non-degenerate differential 2-form ω satisfying $d\omega = 0$.

Today I would define the Techmüller space of geometric structures and describe it for some examples.

Fréchet spaces

DEFINITION: A seminorm on a vector space V is a function $\nu : V \longrightarrow \mathbb{R}^{\geq 0}$ satisfying

1.
$$\nu(\lambda x) = |\lambda|\nu(x)$$
 for each $\lambda \in \mathbb{R}$ and all $x \in V$

2. $\nu(x+y) \leq \nu(x) + \nu(y)$.

DEFINITION: We say that **topology on a vector space** V is **defined by a family of seminorms** $\{\nu_{\alpha}\}$ if the base of this topology is given by the finite intersections of the sets

$$B_{\nu_{\alpha},\varepsilon}(x) := \{ y \in V \mid \nu_{\alpha}(x-y) < \varepsilon \}$$

("open balls with respect to the seminorm"). It is complete if each sequence $x_i \in V$ which is Cauchy with respect to each of the seminorms converges.

CLAIM: A topology on *V* defined by a family of seminorms $\{\nu_{\alpha}\}$ is Hausdorff if and only if for each $v \in V$ there exists a seminorm $\nu \in \{\nu_{\alpha}\}$ such that $\nu(v) \neq 0$.

Fréchet spaces and translation-invariant metrics

DEFINITION: A **Fréchet space** is a Hausdorff second countable topological vector space V with the topology which can be defined by a countable family of seminorms, complete with respect to this family of seminorms.

DEFINITION: Equivalent definition: let *V* be a vector space equipped with a collection of norms (or seminorms) $|\cdot|_i$, i = 0, 1, 2, ... and a topology which is given by the metric $d(x, y) = \sum_{i=0}^{\infty} 2^{-i} \min(|x - y|_i, 1)$, assumed to be non-degenerate. The space *V* is called **a Fréchet space** if this metric is complete.

REMARK: Completeness is equivalent to convergence of any sequence $\{a_i\}$ which is fundamental with respect to all the (semi-)norms $|\cdot|_i$.

REMARK: A sequence converges in the Fréchet topology given by $d \Leftrightarrow$ it converges in any of the (semi-)norms $|\cdot|_i$.

EXERCISE: Let V be a vector space, equipped with a translation-invariant metric d. Assume that the open balls are convex, and V is complete and second countable with respect to d. **Prove that** V **is Fréchet, and all Fréchet spaces can be obtained this way.**

C^{∞} -topology

DEFINITION: Let M be a Riemannian manifold, and $\nabla^i : C^{\infty}(M) \longrightarrow \Lambda^1(M)^{\otimes i}$ the iterated connection. **Topology** C^k on the space $C_c^{\infty}(M)$ of functions with compact support is defined by the norm

$$|\varphi|_{C^k} := \sup_M \sum_{i=0}^k |\nabla^i \varphi|.$$

EXERCISE: Prove that the space $C_c^{\infty}M$ of functions with compact support is a Fréchet space with respect to C^{∞} -topology.

REMARK: This topology **is independent from the choice of the con-nection.** This is an exercise.

REMARK: A tensor on a manifold is a section of the tensor bundle $TM^{\otimes i} \otimes T^*M^{\otimes j}$. The same way one defines the C^{∞} -topology on the space of tensors with compact support on M.

EXERCISE: Prove that the space of tensors with compact support is a **Fréchet space**, with the C^{∞} -topology defined as above.

5

C^0 -topology on the group of diffeomorphisms

DEFINITION: Let *M* be a compact Riemannian manifold. The *C*⁰-topology on the space of diffeomorphisms is defined by the metric $d(\tau_1, \tau_2) := \sup_{x \in M} d(\tau_1(x), \tau_2(x)).$

EXERCISE: Prove that this topology is independent from the choice of Riemannian structure.

EXERCISE: Prove that the group of homeomorphisms is complete with respect to *d*.

REMARK: This topology is not enough for many purposes, for example, the map $\tau \longrightarrow D_x \tau$ is not continuous in C^0 -topology, because it depends on the derivative of the diffeomorphism.

C^{∞} -topology on the group of diffeomorphisms

We define C^{∞} -topology on diffeomorphisms; it is strictly stronger (has more open sets) than the C^{0} -topology. We define it in such a way that the group structure on Diff(M) is compatible with the C^{∞} -topology. Then it would suffice to define topology on a sufficiently small C^{0} -neighbourhood of $\mathrm{Id} \in \mathrm{Diff}(M)$.

DEFINITION: Choose two atlases $\{U_i\}$ and $\{V_i\}$ on M, with the closure of each U_i compact in V_i . Then there exists a C^0 -neighbourhood \mathcal{U} of Id \in Diff(M) such that for all $\tau \in \mathcal{U}$ we have $\tau(U_i) \subset V_i$. We define the C^{∞} -topology on \mathcal{U} and expand it to Diff(M) using the group structure. For each $\tau \in \mathcal{U}$, we can interpret τ as a map from U_i to V_i , that is, as a collection of smooth functions. The C^{∞} -topology on \mathcal{U} is defined by uniform convergence of these functions with all their derivatives, that is, by C^{∞} -topology on $\prod_i C^{\infty}(U_i, V_i)$.

THEOREM: The C^{∞} -topology on diffeomorphisms is independent from the choices we made. The diffeomorphism group with respect to this topology is a Fréchet-Lie group.

Proof: Left as an exercise.

Teichmüller space of geometric structures

Let C be the set of all geometric structures of a given type, say, complex, or symplectic. We put C^{∞} -topology (the topology of uniform convergence with all derivatives) on C. Let $\text{Diff}_0(M)$ be the connected component of its diffeomorphism group Diff(M) (the group of isotopies).

DEFINITION: The quotient $C/Diff_0$ is called **Teichmüller space** of geometric strictures of this type.

DEFINITION: The group $\Gamma := \text{Diff}(M) / \text{Diff}_0(M)$ is called **the mapping** class group of M. It acts on Teich by homeomorphisms.

DEFINITION: The orbit space $C/Diff = Teich/\Gamma$ is called **the moduli** space of geometric structure of this type.

Today I will describe Teich in some interesting cases.

Teichmüller space for symplectic structures

DEFINITION: Let $\Gamma(\Lambda^2 M)$ be the space of all 2-forms on a manifold M, and Symp $\subset \Gamma(\Lambda^2 M)$ the space of all symplectic 2-forms. We equip $\Gamma(\Lambda^2 M)$ with C^{∞} -topology of uniform convergence on compacts with all derivatives. Then $\Gamma(\Lambda^2 M)$ is a Frechet vector space, and Symp a Frechet manifold.

DEFINITION: Consider the group of diffeomorphisms, denoted Diff or Diff(M), as a Frechet Lie group, and denote its connected component ("group of isotopies") by Diff₀. The quotient group $\Gamma := \text{Diff} / \text{Diff}_0$ is called **the mapping** class group of M.

DEFINITION: Teichmüller space of symplectic structures on M is defined as a quotient Teich_s := Symp / Diff₀. The quotient Teich_s / Γ = Symp / Diff, is called **the moduli space of symplectic structures**.

REMARK: In many cases Γ acts on Teich_s with dense orbits, hence the moduli space is not always well defined.

DEFINITION: Two symplectic structures are called **isotopic** if they lie in the same orbit of $Diff_0$.

Moser's theorem

DEFINITION: Define the period map Per: Teich_s $\longrightarrow H^2(M, \mathbb{R})$ mapping a symplectic structure to its cohomology class.

THEOREM: (Moser, 1965)

The **Teichmüler space** Teich_s is a manifold (possibly, non-Hausdorff), and the period map Per : Teich_s $\longrightarrow H^2(M, \mathbb{R})$ is locally a diffeomorphism.

The proof is based on another theorem of Moser.

Theorem 1: (Moser)

Let ω_t , $t \in S$ be a smooth family of symplectic structures, parametrized by a connected manifold S. Assume that the cohomology class $[\omega_t] \in H^2(M)$ is constant in t. Then all ω_t are isotopic.

Proof of Moser theorem: The period map P: Symp $\longrightarrow H^2(M, \mathbb{R})$ is a smooth submersion. By Theorem 1, the conneced components of the fibers of P are orbits of $\text{Diff}_0(M)$. Therefore, Per is locally a diffeomorphism.

Symplectic structures on a compact torus

DEFINITION: A symplectic structure ω on a torus is called **standard** if there exists a flat torsion-free connection preserving ω .

REMARK: Moser's theorem immediately implies that the set $Teich_{st}$ of standard symplectic structures is open in the Teichmüller space. Indeed, the period map from $Teich_{st}$ to $H^2(M)$ is also locally a diffeomorphism.

REMARK: It is not known if any non-standard symplectic structures exist (even in dimension =4).

THEOREM: Let $\Lambda_{nd}^2(H_1(T)) \subset H^2(T)$ be the space of symplectic forms on $H_1(T)$, where T is an even-dimensional torus. Consider the period map Per : Teich_{st} $\longrightarrow \Lambda_{nd}^2(H_1(T)) \subset H^2(T)$, where Teich_{st} is the Teichmüller space of standard symplectic structures on T. Then Per is a diffeomorphism on each connected component of Teich_{st}.

Proof: Left as an exercise.

The kernel of a differential form

DEFINITION: Let Ω be a differential form on M. The kernel, or the nullspace ker $(\Omega) \subset TM$ of Ω is the space of all vector fields $X \in TM$ such that the contraction $i_X(\Omega)$ vanishes.

Proposition 1: Let Ω be a closed form on a manifold, and $B \subset TM$ its null-space. Then $[B, B] \subset B$.

Proof. Step 1: Let $X, X_1 \in \text{ker}(\Omega)$, and $X_2, ..., X_p$ any vector fields. Cartan's formula implies that $\text{Lie}_X(\Omega) = d(i_X(\Omega)) + i_X(d\Omega) = 0$, hence $\text{Lie}_X(\Omega) = 0$.

Step 2: $\operatorname{Lie}_X(\Omega)(X_1, ..., X_p) = \operatorname{Lie}_X(\Omega(X_1, ..., X_p)) - \sum_{i=1}^p \Omega(X_1, ..., [X, X_i], ... X_p)$. All terms of this sum, except $\Omega([X, X_1], X_2, ..., X_p)$, vanish, because $X_1 \in \operatorname{ker}(\Omega)$. Since $\operatorname{Lie}_X(\Omega) = 0$, we have $\Omega([X, X_1], X_2, ..., X_p) = 0$ for all $X_2, ..., X_p$. Therefore, $[X, X_1] \in \operatorname{ker}(\Omega)$.

Holomorphic symplectic form

DEFINITION: Holomorphic symplectic form on an almost complex manifold (M, I) is a non-degenerate closed differential 2-form $\Omega \in \Lambda^2(M, \mathbb{C})$ satisfying $d\Omega = 0$ and $\Omega(Ix, y) = \sqrt{-1} \Omega(x, y)$.

REMARK: Consider the Hodge decomposition $T_{\mathbb{C}}M = T^{1,0}M \oplus T^{0,1}M$ (decomposition according to eigenvalues of *I*). Since $\Omega(IX,Y) = \sqrt{-1} \Omega(X,Y)$ and $I(Z) = -\sqrt{-1} Z$ for any $Z \in T^{0,1}(M)$, we have $\ker(\Omega) \supset T^{0,1}(M)$. Since $\ker \Omega \cap T_{\mathbb{R}}M = 0$, real dimension of its kernel is at most $\dim_{\mathbb{R}}M$, giving $\dim_{\mathbb{R}} \ker \Omega = \dim M$. **Therefore,** $\ker(\Omega) = T^{0,1}M$.

COROLLARY: Let (M, I) be an almost complex manifold admitting a holomorphic symplectic form. Then I is integrable (Proposition 1.)

COROLLARY: Let Ω be a holomorphically symplectic form on a complex manifold (M, I). Then I is determined by Ω uniquely.

M. Verbitsky

C-symplectic structures

DEFINITION: Let M be a smooth 4n-dimensional manifold. A closed complex-valued form Ω on M is called **C-symplectic** if $\Omega^{n+1} = 0$ and $\Omega^n \wedge \overline{\Omega}^n$ is a non-degenerate volume form.

THEOREM: Let $\Omega \in \Lambda^2(M, \mathbb{C})$ be a C-symplectic form, and $T^{0,1}_{\Omega}(M)$ be equal to ker Ω , where

 $\ker \Omega := \{ v \in TM \otimes \mathbb{C} \mid \Omega \lrcorner v = 0 \}.$

Then $T_{\Omega}^{0,1}(M) \oplus \overline{T_{\Omega}^{0,1}(M)} = TM \otimes_{\mathbb{R}} \mathbb{C}$, hence the sub-bundle $T_{\Omega}^{0,1}(M)$ defines an almost complex structure I_{Ω} on M. If, in addition, Ω is closed, I_{Ω} is integrable, and Ω is holomorphically symplectic on (M, I_{Ω}) .

Proof: Rank of Ω is 2n because $\Omega^{n+1} = 0$ and $\Omega^n \wedge \overline{\Omega}^n$ is non-degenerate. Therefore, $\operatorname{rk} T_{\Omega}^{0,1}(M) = 2n$. For any $v \in T_{\Omega}^{0,1}(M) \cap \overline{T_{\Omega}^{0,1}(M)}$, the real part Re v of v belongs to ker Ω . This would imply that $\operatorname{Re} v \in \operatorname{Im}(\Omega^n \wedge \overline{\Omega}^n)$, which is impossible, because $\Omega^n \wedge \overline{\Omega}^n$ is non-degenerate. Then $T_{\Omega}^{0,1}(M) \oplus \overline{T_{\Omega}^{0,1}(M)} = TM \otimes_{\mathbb{R}} \mathbb{C}$, defining an almost complex structure I_{Ω} . Its integrability immediately follows from Proposition 1.

Period map for holomorphically symplectic manifolds

DEFINITION: Let (M, I, Ω) be a holomorphically symplectic manifold, and CSymp the space of all C-symplectic forms. The quotient CTeich := $\frac{CSymp}{Diff_0}$ is called **the holomorphically symplectic Teichmüller space**, and the map CTeich $\longrightarrow H^2(M, \mathbb{C})$ taking (M, I, Ω) to the cohomology class $[\Omega] \in H^2(M, \mathbb{C})$ **the holomorphically symplectic period map**.

We want to prove that **the period map is locally an embedding.** This is immediately implied by the following version of Moser's lemma.

THEOREM: Let (M, I_t, Ω_t) , $t \in [0, 1]$ be a family of C-symplectic forms on a compact manifold. Assume that the cohomology class $[\Omega_t] \in H^2(M, \mathbb{C})$ is constant, and $H^{0,1}(M, I_t) = 0$, where $H^{0,1}(M, I_t) = H^1(M, \Theta_{(M, I_t)})$ is cohomology of the sheaf of holomorphic functions. Then **there exists a smooth family of diffeomorphisms** $V_t \in \text{Diff}_0(M)$, such that $V_t^*\Omega_0 = \Omega_t$.

Proof: Later in this course.

Local Torelli theorem

REMARK: In real dimension 4, C-symplectic form is a pair ω_1, ω_2 of symplectic forms which satisfy $\omega_1^2 = \omega_2^2$ and $\omega_1 \wedge \omega_2 = 0$.

THEOREM: Let (M, I, Ω) be a complex holomorphically symplectic surface with $H^{0,1}(M) = 0$, that is, a K3 surface. Consider the period map Per : CTeich $\longrightarrow H^2(M, \mathbb{C})$ taking (M, I, Ω) to the cohomology class $[\Omega] \in H^2(M, \mathbb{C})$. Then Per is a local diffeomorphism of CTeich to the period space $Q := \{v \in H^2(M, \mathbb{C}) \mid \int_M v \wedge v = 0, \int_M v \wedge \overline{v} > 0\}.$

Proof: Later in this course.

A caution: CTeich is smooth, but non-Hausdorff. The non-Hausdorff points are well understood and correspond to the partition of the "positive cone" $\{v \in H_I^{1,1}(M,\mathbb{R}) \mid \int_M v \wedge v > 0\}$ onto "Kähler chambers" (to be explained later).