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Laplacians on a complex

DEFINITION: A complex of vector spaces is a (generally, infinite) sequence
of vector spaces and linear maps

d d d d d d
. — C_; — O—H—l — ... — C; — Oz'—l—l — ...

satisfying d? = 0. If it starts and ends with a sequence of zeros, the complex
is called finite.

DEFINITION: The cohomology of the complex (Cx, d) is H*(Cy) = = a0 1)

DEFINITION: Assume that all vector spaces C); are equipped with a positive
definite metric. The Laplacian is a map C; — C; expressed as A, := dd* +
d*d, where d* denotes the metric adjoint.

REMARK: The Laplacian commutes with d, hence defines an endomor-
phism of the complex (Ck, d).
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Laplacian and cohomology
DEFINITION: A vector z € (C; is called harmonic if z € ker Ay.

REMARK: For any harmonic z, we have

0 = (z, Az) = (z,dd*z) + (z,d"dz) = (dz,dz) + (d*z,d*z) = |dz|® + |d*z|°.

In other words, all harmonic vectors are d-closed and d*-closed.
CLAIM: kerd = (imd*)+, imd = (kerd*)*, kerd* = (imd)+, imd* = (kerd)-.
Proof: z € kerd < (dz,y) =0 < (z,d*y) =0 < z € (imd*)+ and so on. =m

COROLLARY: Suppose that either all C; are finite-dimensional, or are
equipped with the topology such that the image of d is closed in kerd. Then

H*(Cy) = %% = kerdn (imd)L = kerd N ker d* = ker Ay.

In other words, every cohomology class is uniquely represented by a
harmonic vector.
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Laplacian on differential forms

DEFINITION: Let V be a vector space. A metric ¢ on V induces a
natural metric on each of its tensor spaces: g(z1 @ 2o ® ... ® :pk,x’l ®
5 ® ... ®xy) = g(xy,2))g(x2,25)...9(xg, ;). This gives a positive definite
scalar product on differential forms over a Riemannian manifold (M, g):
g(e, B) := [y 9(e, B) Voly

DEFINITION: Let M be a Riemannian manifold. The Laplacian on dif-
ferential forms is A := dd* + d*d.

THEOREM: (The main theorem of Hodge theory)

Let M be a compact Riemannian manifold. Then there is an orthonormal
basis in the Hilbert space L2(A*(M)) consisting of eigenvectors of A.
Moreover, each eigenspace is finitely-dimensional, and the set of eigen-
values is discrete. Moreover, the inverse map A—l, defined on im A\, is
continuous in L?-topology.

THEOREM: (“Elliptic regularity for A")
Let « € L2(AF(M)) be an eigenvector of A. Then « is a smooth k-form.

REMARK: The same is true about the Laplacian A5 := 00" 4 90 (on
any complex manifold).
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Fritz Alexander Ernst Noether
(October 7, 1884 - September 10, 1941)
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Emmy Noether und Fritz Noether, 1933
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De Rham cohomology

DEFINITION: The space H:(M) :=
mology of M.

is called the de Rham coho-

DEFINITION: A form « is called harmonic if A(a) = 0.

REMARK: Let o be a harmonic form. Then (Axz,z) = (dz,dz) + (d*x,d*z),
hence a € kerd N ker d*.

REMARK: The projection #'(M) — H*(M) from harmonic forms to
cohomology is injective. Indeed, a form « lies in the kernel of such projection
if « = dgB, but then (a,a) = (a,dB) = (d*a, 3) = 0.

THEOREM: For compact Riemannian manifold M, the natural map #*(M) — H*(M)
IS an iIsomorphism
(see the next page).

REMARK: Poincare duality immediately follows from this theorem.
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Hodge theory and the cohomology
THEOREM: The natural map #‘(M) — H*(M) is an isomorphism.

Proof. Step 1: Since d2 = 0 and (d*)2 = 0, one has [d, A] = dd*d—dd*d = O.
This means that A commutes with the de Rham differential.

Step 2: Consider the eigenspace decomposition A*(M)=&, N\ (M), where «
runs through all eigenvalues of A, and A% (M) is the corresponding eigenspace.
For each o, de Rham differential defines a complex

Ny % ALy % A2(m) L

Step 3: On AL(M), one has dd* + d*d = . When a # 0, and n closed, this
implies dd*(n) 4+ d*d(n) = dd*n = an, hence n = d¢, with &€ := a~1d*n. This
implies that the complexes (A} (M),d) don’t contribute to cohomology.

Step 4: We have proven that

H*(AN*M,d) = @H*(/\ (M), d) = H*(N(M),d) = #*(M).
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Supercommutator

DEFINITION: A supercommutator of pure 9~perators on a graded vector
space is defined by a formula {a,b} = ab — (—1)%ba.

DEFINITION: A graded associative algebra is called graded commutative
(or “supercommutative”) if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.

DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector
space g* equipped with a bilinear graded map {-,-} : g* x g* — g* which
is graded anticommutative: {a,b} = —(—1)?{b,a} and satisfies the super
Jacobi identity {c, {a,b}} = {{c,a},b} + (—1)%{a, {c, b}}

EXAMPLE: Consider the algebra End(A*) of operators on a graded vector
space, with supercommutator as above. Then End(A*),{-,-} is a graded
Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying {d,d} =
0, and L an even or odd element. Then {{L,d},d} = 0.

Proof: 0 ={L,{d,d}} = {{L,d},d} + (—1)"{d,{L,d}} = 2{{L,d},d}. m
3
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Supersymmetry in Kahler geometry

Let (M,I,g9) be a Kaehler manifold, w its Kaehler form. On A*(M), the
following operators are defined.

0. d, d* = xdx, A = dd* + d*d, because it is Riemannian.

1. L(a) :=wA«

2. N(a) ;= L x . It is easily seen that A = L*.

3. The Weil operator W’Ap,q(M) =+v—1(p—q)

THEOREM: These operators generate a Lie superalgebra a of dimen-
sion (5|4), acting on A*(M). Moreover, the Laplacian A is central in a, hence

a also acts on the cohomology of M.

REMARK: This is a convenient way to summarize the Kahler relations and
the Lefschetz’' sl(2)-action.
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Lefschetz triples

Let V be an even-dimensional real vector space equipped with a scalar prod-
uct, and w1, ...,v2, an orthonormal basis. Denote by ey, : AFV — ATV an
operator of multiplication, ey, (n) = v; An. Let iy, : APV — A¥=1V be an
adjoint operator, i,, = *ey,*.

CLAIM: The operators ey,;, i,;, Id are a basis of an odd Heisenberg Lie
superalgebra 5, with the only non-trivial supercommutator given by the
formula {ey;,iv, } = 9; ;1d.

Now, consider the tensor w = Y7 ;vp;_1 Avg;, and let L(a) = w A «a, and
N\ = L* be the corresponding Hodge operators.

CLAIM: (Lefschetz triples) From the commutator relations in §, one ob-
tains immediately that

2n 2n
H:=|[L,N\] = [Z evzi—levzwzivm—livzi] — Z ev;ly; — Z v, €u;,
i=1 i=1
IS a scalar operator acting as £ — n on k-forms.

COROLLARY: The triple L,A\, H satisfies the relations for the sl((2) Lie
algebra: [L,A] = H, [H, L] = 2L, [H,N\] = 2A.
10
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Hodge components of d (reminder)

CLAIM: Let (M,I) be an almost complex manifold, and d = ®&d“1~ be the
Hodge components of d, with d%® : AP9(M) —s APT24FT0(A[). Then there
are only 4 components, d = d% 1 + q40 +49%1 + 412, with d%-! and
d—12 Cc°-linear. Moreover, the operators d—12 and d%~! vanish when I
iIs (formally) integrable.

DEFINITION: The twisted differential is defined as d¢ := Idl 1.

CLAIM: Let (M,I) be a complex manifold. Then 0 := d_VgldC, 0 =
d+v-1d" are the Hodge components of d, § = d'-9, § = dO1.

Proof: The Hodge components of d are expressed as d1:0 = ‘H'Vz_l d” 40,1 —

d_°2_1dc- Indeed, I(d_°2_1dc)l_1 = \/—1d_V2_1dc, hence d+V2_1dc has Hodge
type (1,0); the same argument works for 0. m

CLAIM: On a complex manifold, one has d¢ = [/, d].

Proof: Clearly, [#,d1 0] = +/=14d%° and [, d%!] = —v/=1d%1. Then [W,d] =
vV—1d0 - /Z1Td0l =141 =

COROLLARY: {d,d°} = {d,{d,®w}} = 0 (Lemma 1).
11
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Plurilaplacian

THEOREM: Let M, I be a complex manifold. Then 1. 92 = 0.
2

2. 00 = 0.

3. dd = —d°d

4. dd¢ = 2+/—1 00.

Proof: The first is vanishing of (2,0)-part of d2, and the second is vanishing

of its (0,2)-part. Now, {d,d°} = —{d,{d,W}} = 0 (Lemma 1), this gives
dd¢ = —d¢d. Finally, 2¢/=100 = 3(d++/—1d®)(d—+/—1d°¢) = 4(dd®—d°d) = dd°.
|

DEFINITION: The operator dd€ is called the pluri-Laplacian.

EXERCISE: Prove that on a Riemannian surface (M,I,w), one has

dd°(f) = A(f)w.

12
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Kodaira identities

THEOREM: Let M be a Kaehler manifold. One has the following identities
( “Kahler idenitities”, “Kodaira idenities” ).

N,0] =v—190", [L,J]=—-/—-10% [NO]=-v—-10, |[L,0]=+v-10.
Equivalently,

A, d] = (d°), [L,d"] = —d°, A, d°] = —d¥, [L, (d°)*] = d.

Proof. Step 1: The first set of identities implies the second set. Indeed,
by adding up appropriate identities in the top set of their complex conjugate,
we obtain ones in the bottom set; for example, adding [A,8] = v/—1 8" and
N, 0] = —/—10%,, we obtain [A,d] = (d°)*. Each of top identities is related to
the other three by complex conjugation or by Hermitian conjugation, hence
they are all equivalent. Each of the bottom identities implies the rest by
Hermitian conjugation and conjugating with I. Finally, [A,8] = /=19  can
be obtained as a sum of [A,d] = (d°)* and [A,d] = —d* with appropriate
coefficients. We obtained that all Kodaira identities are implied by just
one, say, [L,d*] = —d°.

13
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Kodaira identities (2)

Proof. Step 1: We reduced the Kodaira identities to just one, [L,d*] =
—dF.

Step 2: Let ¢ : A'M @ A'M — AT1(M) be the multiplication, and 7 :
NM @ ANLM —s A=1(M) the map that takes a A 6 and puts it to *(xa A 8).
In other words, J takes a tensor a ® 0, with a € A'M and 0 & /\1M, uses the
metric g to produce a vector field X from 0, and maps a to asX (convution
of a and X).

Step 3: Let V be the Levi-Civita connection. Then da = ¢(V(«)), because V
is torsion-free. Since d* = xdx, one has d*(a) = J(V(a)). Let z1,y1,...,Tn,yn €
AL M be an orthonormal basis such that w = Y z; Ay;. Then J3(V(a)) =
> it (Vo) + iy, (Vy,a). Taking a commutator with L = Y ey.ey, and using
the commutator relations between e, and 7, found earlier, we obtain

[L,d"] = Z Valexey; ia;] + Vy;lexey;, iy;] = Z Vyex; — Va,ey;.
i i
(the operator V,, commutes with L, because w is parallel). However,

Z vyiexi o vmieyi = —1 (Z vébiexi _I_ vyieyi) = —d°
) )

which gives [L,d*] = —d°. =
14
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Laplacians and supercommutators

THEOREM: Let
Agi={d,d*}, Dge:={dd"}, Dy:={0,0"},A5:={0,0}.

Then Ay = Age = 2A5 = 2A5. In particular, A,; preserves the Hodge
decomposition.

Proof: By Kodaira relations, {d,d‘} = 0. Graded Jacobi identity gives

{d7 d*} — _{d7 {/\7 dc}} — {{/\7 d}7 dc} — {dc7 dc*}'

Same calculation with 9,9 gives Ag = A5. Also, {0,0"} = v/=1{0,{A,8}} = 0,
(Lemma 1), and the same argument implies that all anticommutators 9,9",
etc. all vanish except {9,0*} and {9,0"}. This gives Ay =Dy + Ay =

REMARK: We have proved that operators L, A.d,{ generate a Lie su-
peralgebra of dimension (5|4) (5 even, 4 odd), with RA central.

15
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The Lefschetz si(2)-action

COROLLARY: The operators L,\, H form a basis of a Lie algebra isomor-
phic to si(2), with relations

(LAl = H, [H,L]=2L, [H,A]=-2A.

DEFINITION: L, A, H is called the Lefschetz sl(2)-triple.
REMARK: Finite-dimensional representations of si(2) are semisimple.

REMARK: A simple finite-dimensional representation V of si(2) is generated
by v € V which satisfies A(v) = 0, H(v) = pv (“lowest weight vector”),
where p € Z29. Then v, L(v), L?(v), ..., LP(v) form a basis of V, := V. This
representation is determined uniquely by p.

REMARK: In this basis, H acts diagonally: H(L!(v)) = (2i — p)L*(v).

REMARK: One has Vp, = SymP V;, where V7 is a 2-dimensional tautological
representation. It is called a weight p representation of si(2).

COROLLARY: For a finite-dimensional representation V' of sl(2), denote by
V(@ the eigenspaces of H, with H V) = 1. Then L' induces an isomorphism

v Ly v@) for any i > 0.
16
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Lefschetz action on cohomology.
From the supersymmetry theorem, the following result follows.

COROLLARY: The si(2)-action (L,A\, H) and the action of Weil operator
commute with Laplacian, hence preserve the harmonic forms on a Kahler
manifold.

COROLLARY: Any cohomology class can be represented as a sum of
closed (p,q)-forms, giving a decomposition H'(M) = @4 ,=; H?I(M), with
HP:4(M) = HIP(M).

COROLLARY: odd cohomology of a compact Kahler manifold are
even-dimensional.

COROLLARY: Let M be a compact, Kahler manifold of complex dimensio_n

n, and i +p4 g =n. Then L* defines the Lefschetz isomorphism HP:4 L,
Hp+2’i,q-|-2i(M)

17
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The Hodge diamond:

Hmn
Hn,n—l Hn—l,n
Hn,n—Q Hn—l,n—l Hn—2,n
Hn,n—3(M) Hn—l,n—Q(M) Hn—2,n—1 (M) Hn—3,n(M)
H3,O(M) H2,1(M) Hl,Q(M) HO’3(M)
H2,0 Hl,l HO,2
Hl,O HO,l
H0,0
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