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Laplacians on a complex

DEFINITION: A complex of vector spaces is a (generally, infinite) sequence

of vector spaces and linear maps

...
d−→ C−i

d−→ C−i+1
d−→ ...

d−→ Ci
d−→ Ci+1

d−→ ...

satisfying d2 = 0. If it starts and ends with a sequence of zeros, the complex

is called finite.

DEFINITION: The cohomology of the complex (C∗, d) is Hi(C∗) :=
ker d

∣∣∣Ci
d(Ci−1).

DEFINITION: Assume that all vector spaces Ci are equipped with a positive

definite metric. The Laplacian is a map Ci −→ Ci expressed as ∆d := dd∗+

d∗d, where d∗ denotes the metric adjoint.

REMARK: The Laplacian commutes with d, hence defines an endomor-

phism of the complex (C∗, d).
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Laplacian and cohomology

DEFINITION: A vector x ∈ Ci is called harmonic if x ∈ ker ∆d.

REMARK: For any harmonic x, we have

0 = (x,∆x) = (x, dd∗x) + (x, d∗dx) = (dx, dx) + (d∗x, d∗x) = |dx|2 + |d∗x|2.

In other words, all harmonic vectors are d-closed and d∗-closed.

CLAIM: ker d = (im d∗)⊥, im d = (ker d∗)⊥, ker d∗ = (im d)⊥, im d∗ = (ker d)⊥.

Proof: x ∈ ker d ⇔ (dx, y) = 0 ⇔ (x, d∗y) = 0 ⇔ x ∈ (im d∗)⊥ and so on.

COROLLARY: Suppose that either all Ci are finite-dimensional, or are

equipped with the topology such that the image of d is closed in ker d. Then

H∗(C∗) = ker d
im d = ker d ∩ (im d)⊥ = ker d ∩ ker d∗ = ker ∆d.

In other words, every cohomology class is uniquely represented by a

harmonic vector.
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Laplacian on differential forms

DEFINITION: Let V be a vector space. A metric g on V induces a
natural metric on each of its tensor spaces: g(x1 ⊗ x2 ⊗ ... ⊗ xk, x

′
1 ⊗

x′2 ⊗ ... ⊗ x
′
k) = g(x1, x

′
1)g(x2, x

′
2)...g(xk, x

′
k). This gives a positive definite

scalar product on differential forms over a Riemannian manifold (M, g):
g(α, β) :=

∫
M g(α, β) VolM

DEFINITION: Let M be a Riemannian manifold. The Laplacian on dif-
ferential forms is ∆ := dd∗+ d∗d.

THEOREM: (The main theorem of Hodge theory)
Let M be a compact Riemannian manifold. Then there is an orthonormal
basis in the Hilbert space L2(Λ∗(M)) consisting of eigenvectors of ∆.
Moreover, each eigenspace is finitely-dimensional, and the set of eigen-
values is discrete. Moreover, the inverse map ∆−1, defined on im ∆, is
continuous in L2-topology.

THEOREM: (“Elliptic regularity for ∆”)
Let α ∈ L2(Λk(M)) be an eigenvector of ∆. Then α is a smooth k-form.

REMARK: The same is true about the Laplacian ∆∂ := ∂∂
∗

+ ∂
∗
∂ (on

any complex manifold).
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Fritz Alexander Ernst Noether

(October 7, 1884 - September 10, 1941)

Emmy Noether und Fritz Noether, 1933
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De Rham cohomology

DEFINITION: The space Hi(M) :=
ker d

∣∣
ΛiM

d(Λi−1M)
is called the de Rham coho-

mology of M .

DEFINITION: A form α is called harmonic if ∆(α) = 0.

REMARK: Let α be a harmonic form. Then (∆x, x) = (dx, dx) + (d∗x, d∗x),

hence α ∈ ker d ∩ ker d∗.

REMARK: The projection Hi(M)−→Hi(M) from harmonic forms to

cohomology is injective. Indeed, a form α lies in the kernel of such projection

if α = dβ, but then (α, α) = (α, dβ) = (d∗α, β) = 0.

THEOREM: For compact Riemannian manifold M , the natural map Hi(M)−→Hi(M)

is an isomorphism

(see the next page).

REMARK: Poincare duality immediately follows from this theorem.

6



K3 surfaces, lecture 5 M. Verbitsky

Hodge theory and the cohomology

THEOREM: The natural map Hi(M)−→Hi(M) is an isomorphism.

Proof. Step 1: Since d2 = 0 and (d∗)2 = 0, one has [d,∆] = dd∗d−dd∗d = 0.

This means that ∆ commutes with the de Rham differential.

Step 2: Consider the eigenspace decomposition Λ∗(M)=̃
⊕
αΛ∗α(M), where α

runs through all eigenvalues of ∆, and Λ∗α(M) is the corresponding eigenspace.

For each α, de Rham differential defines a complex

Λ0
α(M)

d−→ Λ1
α(M)

d−→ Λ2
α(M)

d−→ ...

Step 3: On Λ∗α(M), one has dd∗+ d∗d = α. When α 6= 0, and η closed, this

implies dd∗(η) + d∗d(η) = dd∗η = αη, hence η = dξ, with ξ := α−1d∗η. This

implies that the complexes (Λ∗α(M), d) don’t contribute to cohomology.

Step 4: We have proven that

H∗(Λ∗M,d) =
⊕
α
H∗(Λ∗α(M), d) = H∗(Λ∗0(M), d) = H∗(M).
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Supercommutator

DEFINITION: A supercommutator of pure operators on a graded vector
space is defined by a formula {a, b} = ab− (−1)ã̃bba.

DEFINITION: A graded associative algebra is called graded commutative
(or “supercommutative”) if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.

DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector
space g∗ equipped with a bilinear graded map {·, ·} : g∗ × g∗ −→ g∗ which
is graded anticommutative: {a, b} = −(−1)ã̃b{b, a} and satisfies the super
Jacobi identity {c, {a, b}} = {{c, a}, b}+ (−1)ãc̃{a, {c, b}}

EXAMPLE: Consider the algebra End(A∗) of operators on a graded vector
space, with supercommutator as above. Then End(A∗), {·, ·} is a graded
Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying {d, d} =
0, and L an even or odd element. Then {{L, d}, d} = 0.

Proof: 0 = {L, {d, d}} = {{L, d}, d}+ (−1)L̃{d, {L, d}} = 2{{L, d}, d}.
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Supersymmetry in Kähler geometry

Let (M, I, g) be a Kaehler manifold, ω its Kaehler form. On Λ∗(M), the

following operators are defined.

0. d, d∗ = ∗d∗, ∆ = dd∗+ d∗d, because it is Riemannian.

1. L(α) := ω ∧ α

2. Λ(α) := ∗L ∗ α. It is easily seen that Λ = L∗.

3. The Weil operator W
∣∣∣Λp,q(M) =

√
−1 (p− q)

THEOREM: These operators generate a Lie superalgebra a of dimen-

sion (5|4), acting on Λ∗(M). Moreover, the Laplacian ∆ is central in a, hence

a also acts on the cohomology of M.

REMARK: This is a convenient way to summarize the Kähler relations and

the Lefschetz’ sl(2)-action.
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Lefschetz triples

Let V be an even-dimensional real vector space equipped with a scalar prod-
uct, and v1, ..., v2n an orthonormal basis. Denote by evi : ΛkV −→ Λk+1V an
operator of multiplication, evi(η) = vi ∧ η. Let ivi : ΛkV −→ Λk−1V be an
adjoint operator, ivi = ∗evi∗.

CLAIM: The operators evi, ivi, Id are a basis of an odd Heisenberg Lie
superalgebra H, with the only non-trivial supercommutator given by the
formula {evi, ivj} = δi,j Id.

Now, consider the tensor ω =
∑n
i=1 v2i−1 ∧ v2i, and let L(α) = ω ∧ α, and

Λ := L∗ be the corresponding Hodge operators.

CLAIM: (Lefschetz triples) From the commutator relations in H, one ob-
tains immediately that

H := [L,Λ] =
[∑

ev2i−1ev2i,
∑

iv2i−1iv2i

]
=

2n∑
i=1

eviivi −
2n∑
i=1

ivievi,

is a scalar operator acting as k − n on k-forms.

COROLLARY: The triple L,Λ, H satisfies the relations for the sl(2) Lie
algebra: [L,Λ] = H, [H,L] = 2L, [H,Λ] = 2Λ.

10



K3 surfaces, lecture 5 M. Verbitsky

Hodge components of d (reminder)

CLAIM: Let (M, I) be an almost complex manifold, and d = ⊕di,1−i be the
Hodge components of d, with da,b : Λp,q(M)−→ Λp+a,q+b(M). Then there
are only 4 components, d = d2,−1 + d1,0,+d0,1 + d−1,2, with d2,−1 and
d−1,2 C∞-linear. Moreover, the operators d−1,2 and d2,−1 vanish when I
is (formally) integrable.

DEFINITION: The twisted differential is defined as dc := IdI−1.

CLAIM: Let (M, I) be a complex manifold. Then ∂ := d−
√
−1 dc

2 , ∂ :=
d+
√
−1 dc

2 are the Hodge components of d, ∂ = d1,0, ∂ = d0,1.

Proof: The Hodge components of d are expressed as d1,0 = d+
√
−1 dc

2 , d0,1 =
d−
√
−1 dc

2 . Indeed, I(d−
√
−1 dc

2 )I−1 =
√
−1 d−

√
−1 dc

2 , hence d+
√
−1 dc

2 has Hodge
type (1,0); the same argument works for ∂.

CLAIM: On a complex manifold, one has dc = [W, d].

Proof: Clearly, [W, d1,0] =
√
−1d1,0 and [W, d0,1] = −

√
−1d0,1. Then [W, d] =√

−1 d1,0 −
√
−1 d0,1 = IdI−1.

COROLLARY: {d, dc} = {d, {d,W}} = 0 (Lemma 1).
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Plurilaplacian

THEOREM: Let M, I be a complex manifold. Then 1. ∂2 = 0.

2. ∂
2

= 0.

3. ddc = −dcd
4. ddc = 2

√
−1 ∂∂.

Proof: The first is vanishing of (2,0)-part of d2, and the second is vanishing

of its (0,2)-part. Now, {d, dc} = −{d, {d,W}} = 0 (Lemma 1), this gives

ddc = −dcd. Finally, 2
√
−1∂∂ = 1

2(d+
√
−1dc)(d−

√
−1dc) = 1

2(ddc−dcd) = ddc.

DEFINITION: The operator ddc is called the pluri-Laplacian.

EXERCISE: Prove that on a Riemannian surface (M, I, ω), one has

ddc(f) = ∆(f)ω.
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Kodaira identities

THEOREM: Let M be a Kaehler manifold. One has the following identities

(“Kähler idenitities”, “Kodaira idenities”).

[Λ, ∂] =
√
−1 ∂

∗
, [L, ∂] = −

√
−1 ∂∗, [Λ, ∂

∗
] = −

√
−1 ∂, [L, ∂∗] =

√
−1 ∂.

Equivalently,

[Λ, d] = (dc)∗, [L, d∗] = −dc, [Λ, dc] = −d∗, [L, (dc)∗] = d.

Proof. Step 1: The first set of identities implies the second set. Indeed,

by adding up appropriate identities in the top set of their complex conjugate,

we obtain ones in the bottom set; for example, adding [Λ, ∂] =
√
−1 ∂

∗
and

[Λ, ∂] = −
√
−1∂∗,, we obtain [Λ, d] = (dc)∗. Each of top identities is related to

the other three by complex conjugation or by Hermitian conjugation, hence

they are all equivalent. Each of the bottom identities implies the rest by

Hermitian conjugation and conjugating with I. Finally, [Λ, ∂] =
√
−1 ∂

∗
can

be obtained as a sum of [Λ, d] = (dc)∗ and [Λ, dc] = −d∗ with appropriate

coefficients. We obtained that all Kodaira identities are implied by just

one, say, [L, d∗] = −dc.
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Kodaira identities (2)

Proof. Step 1: We reduced the Kodaira identities to just one, [L, d∗] =
−dc.

Step 2: Let E : ΛiM ⊗ Λ1M −→ Λi+1(M) be the multiplication, and I :
ΛiM ⊗ Λ1M −→ Λi−1(M) the map that takes α ∧ θ and puts it to ∗(∗α ∧ θ).
In other words, I takes a tensor α ⊗ θ, with α ∈ ΛiM and θ ∈ Λ1M , uses the
metric g to produce a vector field X from θ, and maps α to αyX (convution
of α and X).

Step 3: Let ∇ be the Levi-Civita connection. Then dα = E(∇(α)), because ∇
is torsion-free. Since d∗ = ∗d∗, one has d∗(α) = I(∇(α)). Let x1, y1, ..., xn, yn ∈
Λ1
mM be an orthonormal basis such that ω =

∑
xi ∧ yi. Then I(∇(α)) =∑

i ixi(∇xiα) + iyi(∇yiα). Taking a commutator with L =
∑
exieyi and using

the commutator relations between ev and iw found earlier, we obtain

[L, d∗] =
∑
i

∇xi[exieyi, ixi] +∇yi[exieyi, iyi] =
∑
i

∇yiexi −∇xieyi.

(the operator ∇w commutes with L, because ω is parallel). However,

∑
i

∇yiexi −∇xieyi = −I

∑
i

∇xiexi +∇yieyi

 = −dc

which gives [L, d∗] = −dc.
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Laplacians and supercommutators

THEOREM: Let

∆d := {d, d∗}, ∆dc := {dc, dc∗}, ∆∂ := {∂, ∂∗},∆∂ := {∂, ∂∗}.

Then ∆d = ∆dc = 2∆∂ = 2∆∂. In particular, ∆d preserves the Hodge

decomposition.

Proof: By Kodaira relations, {d, dc} = 0. Graded Jacobi identity gives

{d, d∗} = −{d, {Λ, dc}} = {{Λ, d}, dc} = {dc, dc∗}.

Same calculation with ∂, ∂ gives ∆∂ = ∆∂. Also, {∂, ∂∗} =
√
−1{∂, {Λ, ∂}} = 0,

(Lemma 1), and the same argument implies that all anticommutators ∂, ∂
∗
,

etc. all vanish except {∂, ∂∗} and {∂, ∂∗}. This gives ∆d = ∆∂ + ∆∂.

REMARK: We have proved that operators L,Λ, d,W generate a Lie su-

peralgebra of dimension (5|4) (5 even, 4 odd), with R∆ central.
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The Lefschetz sl(2)-action

COROLLARY: The operators L,Λ, H form a basis of a Lie algebra isomor-
phic to sl(2), with relations

[L,Λ] = H, [H,L] = 2L, [H,Λ] = −2Λ.

DEFINITION: L,Λ, H is called the Lefschetz sl(2)-triple.

REMARK: Finite-dimensional representations of sl(2) are semisimple.

REMARK: A simple finite-dimensional representation V of sl(2) is generated
by v ∈ V which satisfies Λ(v) = 0, H(v) = pv (“lowest weight vector”),
where p ∈ Z>0. Then v, L(v), L2(v), ..., Lp(v) form a basis of Vp := V . This
representation is determined uniquely by p.

REMARK: In this basis, H acts diagonally: H(Li(v)) = (2i− p)Li(v).

REMARK: One has Vp = Symp V1, where V1 is a 2-dimensional tautological
representation. It is called a weight p representation of sl(2).

COROLLARY: For a finite-dimensional representation V of sl(2), denote by
V (i) the eigenspaces of H, with H

∣∣∣V (i) = i. Then Li induces an isomorphism

V (−i) Li−→ V (i) for any i > 0.
16



K3 surfaces, lecture 5 M. Verbitsky

Lefschetz action on cohomology.

From the supersymmetry theorem, the following result follows.

COROLLARY: The sl(2)-action 〈L,Λ, H〉 and the action of Weil operator

commute with Laplacian, hence preserve the harmonic forms on a Kähler

manifold.

COROLLARY: Any cohomology class can be represented as a sum of

closed (p, q)-forms, giving a decomposition Hi(M) =
⊕
p+q=iH

p,q(M), with

Hp,q(M) = Hq,p(M).

COROLLARY: odd cohomology of a compact Kähler manifold are

even-dimensional.

COROLLARY: Let M be a compact, Kähler manifold of complex dimension

n, and i+ p+ q = n. Then Li defines the Lefschetz isomorphism Hp,q Li−→
Hp+2i,q+2i(M)
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The Hodge diamond:

Hn,n

Hn,n−1 Hn−1,n

Hn,n−2 Hn−1,n−1 Hn−2,n

Hn,n−3(M) Hn−1,n−2(M) Hn−2,n−1(M) Hn−3,n(M)

... ... ... ...

H3,0(M) H2,1(M) H1,2(M) H0,3(M)

H2,0 H1,1 H0,2

H1,0 H0,1

H0,0
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