K3 surfaces

lecture 6: C-symplectic structures

Misha Verbitsky

IMPA, sala 236

October 24, 2022, 15:30

Complex manifolds (reminder)

DEFINITION: Let *M* be a smooth manifold. An **almost complex structure** is an operator $I: TM \longrightarrow TM$ which satisfies $I^2 = -\operatorname{Id}_{TM}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $TM = T^{0,1}M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is **integrable** if $\forall X, Y \in T^{1,0}M$, one has $[X,Y] \in T^{1,0}M$. In this case *I* is called a **complex structure operator**. A manifold with an integrable almost complex structure is called a **complex manifold**.

THEOREM: (Newlander-Nirenberg) This definition is equivalent to the usual one.

REMARK: The commutator defines a $\mathbb{C}^{\infty}M$ -linear map $N := \Lambda^2(T^{1,0}) \longrightarrow T^{0,1}M$, called **the Nijenhuis tensor** of *I*. **One can represent** *N* **as a section of** $\Lambda^{2,0}(M) \otimes T^{0,1}M$.

Exercise: Prove that $\mathbb{C}P^n$ is a complex manifold, in the sense of the above definition.

Holomorphic symplectic form (reminder)

DEFINITION: Holomorphic symplectic form on an almost complex manifold (M, I) is a non-degenerate differential 2-form $\omega \in \Lambda^2(M, \mathbb{C})$ satisfying $d\omega = 0$ and $\Omega(Ix, y) = \sqrt{-1} \Omega(x, y)$.

REMARK: This is the same as to say that $\Omega(X, \cdot) = 0$ for all $X \in T^{1,0}(M)$, and Ω is non-degenerate on $T^{0,1}(M)$.

DEFINITION: Let Ω be a differential form on M. The kernel, or the nullspace ker $(\Omega) \subset TM$ of Ω is the space of all vector fields $X \in TM$ such that the contraction $\Omega \lrcorner X$ vanishes.

M. Verbitsky

Holomorphic symplectic form and integrability (reminder)

Theorem 1: Let Ω be a *p*-form on a smooth manifold, and $B = \ker \Omega$. **Then** $[B, B] \subset B$, that is, **the distribution** *B* is integrable.

Proof. Step 1: Cartan's formula implies that $\operatorname{Lie}_X(\Omega) = d(i_X(\Omega)) + i_x(d\Omega) = 0$, hence $\operatorname{Lie}_X(\Omega) = 0$ for any $X \in B$.

Step 2: Let $X, X_1 \in B$, and $X_2, ..., X_p$ any vector fields. Cartan formula gives

$$\mathsf{Lie}_X(\Omega)(X_1, ..., X_p) = \mathsf{Lie}_X(\Omega(X_1, ..., X_p)) - \sum_{i=1}^p \Omega(X_1, ..., [X, X_i], ..., X_p).$$

All terms of this sum, except $\Omega([X, X_1], X_2, ..., X_p)$, vanish, because $X_1 \in B$ and $\text{Lie}_X(\Omega) = 0$. This gives $\Omega([X, X_1], X_2, ..., X_p) = 0$ for all $X_2, ..., X_p$. Therefore, $[X, X_1] \in B$.

COROLLARY: Let (M, I) be an almost complex manifold admitting a holomorphic symplectic form. Then I is integrable.

Proof: Indeed, ker $\Omega = T^{0,1}(M)$.

C-symplectic structures

DEFINITION: Let M be a smooth 4n-dimensional manifold. A complexvalued form Ω on M is called **almost C-symplectic** if $\Omega^{n+1} = 0$ and $\Omega^n \wedge \overline{\Omega}^n$ is a non-degenerate volume form and **C-symplectic** if it is also closed.

THEOREM: Let $\Omega \in \Lambda^2(M, \mathbb{C})$ be an almost C-symplectic form, and $T^{0,1}_{\Omega}(M)$ be equal to ker Ω , where

 $\ker \Omega := \{ v \in TM \otimes \mathbb{C} \mid \Omega \lrcorner v = 0 \}.$

Then $T_{\Omega}^{0,1}(M) \oplus \overline{T_{\Omega}^{0,1}(M)} = TM \otimes_{\mathbb{R}} \mathbb{C}$, hence the sub-bundle $T_{\Omega}^{0,1}(M)$ defines an almost complex structure I_{Ω} on M. If, in addition, Ω is closed, I_{Ω} is integrable, and Ω is holomorphically symplectic on (M, I_{Ω}) .

Proof: Rank of Ω is 2n because $\Omega^{n+1} = 0$ and Re Ω is non-degenerate. Then $\ker \Omega \oplus \overline{\ker \Omega} = T_{\mathbb{C}}M$. The relation $[T_{\Omega}^{0,1}(M), T_{\Omega}^{0,1}(M)] \subset T_{\Omega}^{0,1}(M)$ follows from Theorem 1.

Holomorphically symplectic Teichmüller space

DEFINITION: Let CSymp be the space of all C-symplectic forms on a manifold M, equipped with the C^{∞} -topology, and Diff₀ the connected component of the group of diffeomorphisms. The **holomorphically symplectic Teichmüller space** CTeich is the quotient $\frac{CSymp}{Diff_0}$.

REMARK: Recall that the mapping class group of a manifold M is the group $\Gamma := \frac{\text{Diff}}{\text{Diff}_0}$ of connected components of Diff(M).

REMARK: The quotient CTeich $/\Gamma$ is identified with the set of all holomorphically symplectic structures on M up to isomorphism.

Period map for holomorphically symplectic manifolds (reminder)

DEFINITION: Let (M, I, Ω) be a holomorphically symplectic manifold, and CSymp the space of all C-symplectic forms. The quotient CTeich := $\frac{CSymp}{Diff_0}$ is called **the holomorphically symplectic Teichmüller space**, and the map CTeich $\longrightarrow H^2(M, \mathbb{C})$ taking (M, I, Ω) to the cohomology class $[\Omega] \in H^2(M, \mathbb{C})$ **the holomorphically symplectic period map**.

THEOREM: (Local Torelli theorem, due to Bogomolov)

Let (M, I, Ω) be a complex holomorphically symplectic surface with $H^{0,1}(M) = 0$, that is, a K3 surface. Consider the period map Per : CTeich $\longrightarrow H^2(M, \mathbb{C})$ taking (M, I, Ω) to the cohomology class $[\Omega] \in H^2(M, \mathbb{C})$. Then Per is a local diffeomorphism of CTeich to the period space $Q := \{v \in H^2(M, \mathbb{C}) \mid \int_M v \land v = 0, \int_M v \land \overline{v} > 0\}.$

Proof: Later in this course.

A caution: CTeich is smooth, but non-Hausdorff. The non-Hausdorff points are well understood and correspond to the partition of the "positive cone" $\{v \in H_I^{1,1}(M,\mathbb{R}) \mid \int_M v \wedge v > 0\}$ onto "Kähler chambers" (to be explained later).

C-symplectic structures on surfaces

CLAIM: In real dimension 4, a C-symplectic structure is determined by a pair $\omega_1 = \operatorname{Re}\Omega, \omega_2 = \operatorname{Im}\Omega$ of symplectic forms which satisfy $\omega_1^2 = \omega_2^2$ and $\omega_1 \wedge \omega_2 = 0$.

Proof: Let Ω be a C-symplectic form, $\omega_1 = \operatorname{Re}\Omega$ and $\omega_2 = \operatorname{Im}\Omega$. Then $\Omega \wedge \Omega = \omega_1^2 + \omega_2^2 + 2\sqrt{-1} \omega_1 \wedge \omega_2 = 0$, hence $\omega_1^2 = \omega_2^2$ and $\omega_1 \wedge \omega_2 = 0$. The form $\Omega \wedge \overline{\Omega} = \omega_1^2 + \omega_2^2$ is non-degenerate, hence $\omega_1^2 = \omega_2^2$ is non-degenerate.

Conversely, if $\omega_1^2 = \omega_2^2$ and $\omega_1 \wedge \omega_2 = 0$, we have $\Omega \wedge \Omega = 0$, and $\Omega \wedge \overline{\Omega} = \omega_1^2 + \omega_2^2$ is non-degenerate if ω_i is non-degenerate.

REMARK: For K3 surface, the local Torelli theorem would imply that the period map Per : CTeich $\longrightarrow H^2(M, \mathbb{C})$ which takes ω_1, ω_2 to their cohomology classes which satisfy $[\omega_1]^2 = [\omega_2]^2$ and $[\omega_1] \wedge [\omega_2] = 0$ is locally a diffeomorphism.

Compare this with Moser theorem (Lecture 4)

8