K3 surfaces

lecture 7: local Torelli theorem. Injectivity of the period map

Misha Verbitsky

IMPA, sala 236

October 24, 2022, 15:30

C-symplectic structures (reminder)

DEFINITION: Let M be a smooth 4n-dimensional manifold. A closed complex-valued form Ω on M is called **C-symplectic** if $\Omega^{n+1} = 0$ and $\Omega^n \wedge \overline{\Omega}^n$ is a non-degenerate volume form.

THEOREM: Let $\Omega \in \Lambda^2(M, \mathbb{C})$ be a C-symplectic form, and $T^{0,1}_{\Omega}(M)$ be equal to ker Ω , where

 $\ker \Omega := \{ v \in TM \otimes \mathbb{C} \mid \Omega \lrcorner v = 0 \}.$

Then $T_{\Omega}^{0,1}(M) \oplus \overline{T_{\Omega}^{0,1}(M)} = TM \otimes_{\mathbb{R}} \mathbb{C}$, hence the sub-bundle $T_{\Omega}^{0,1}(M)$ defines an almost complex structure I_{Ω} on M. If, in addition, Ω is closed, I_{Ω} is integrable, and Ω is holomorphically symplectic on (M, I_{Ω}) .

Proof: Rank of Ω is 2n because $\Omega^{n+1} = 0$ and Re Ω is non-degenerate. Then $\ker \Omega \oplus \overline{\ker \Omega} = T_{\mathbb{C}}M$. The relation $[T_{\Omega}^{0,1}(M), T_{\Omega}^{0,1}(M)] \subset T_{\Omega}^{0,1}(M)$ follows from Theorem 1, Lecture 6.

Holomorphically symplectic Teichmüller space (reminder)

DEFINITION: Let CSymp be the space of all C-symplectic forms on a manifold M, equipped with the C^{∞} -topology, and Diff₀ the connected component of the group of diffeomorphisms. The **holomorphically symplectic Teichmüller space** CTeich is the quotient $\frac{CSymp}{Diff_0}$.

REMARK: Recall that the mapping class group of a manifold M is the group $\Gamma := \frac{\text{Diff}}{\text{Diff}_0}$ of connected components of Diff(M).

REMARK: The quotient CTeich $/\Gamma$ is identified with the set of all holomorphically symplectic structures on M up to isomorphism.

Period map for holomorphically symplectic manifolds (reminder)

DEFINITION: Let (M, I, Ω) be a holomorphically symplectic manifold, and CSymp the space of all C-symplectic forms. The quotient CTeich := $\frac{\text{CSymp}}{\text{Diff}_0}$ is called **the holomorphically symplectic Teichmüller space**, and the map CTeich $\longrightarrow H^2(M, \mathbb{C})$ taking (M, I, Ω) to the cohomology class $[\Omega] \in H^2(M, \mathbb{C})$ **the holomorphically symplectic period map**.

THEOREM: (Local Torelli theorem, due to Bogomolov)

Let (M, I, Ω) be a complex, Kähler, holomorphically symplectic surface with $H^{0,1}(M) = 0$, that is, a K3 surface. Consider the period map

Per : CTeich $\longrightarrow H^2(M, \mathbb{C})$

taking (M, I, Ω) to the cohomology class $[\Omega] \in H^2(M, \mathbb{C})$. Then Per is a **local diffeomorpism** of CTeich to the **period space**

$$Q := \left\{ v \in H^2(M, \mathbb{C}) \mid \int_M v \wedge v = 0, \int_M v \wedge \overline{v} > 0 \right\}.$$

Proof: Later in this course.

A caution: CTeich is smooth, but non-Hausdorff. The non-Hausdorff points are well understood and correspond to the partition of the "positive cone" $\{v \in H_I^{1,1}(M,\mathbb{R}) \mid \int_M v \wedge v > 0\}$ onto "Kähler chambers" (to be explained later).

C-symplectic structures on surfaces

CLAIM: In real dimension 4, C-symplectic structure is determined by a pair $\omega_1 = \operatorname{Re}\Omega, \omega_2 = \operatorname{Im}\Omega$ of symplectic forms which satisfy $\omega_1^2 = \omega_2^2$ and $\omega_1 \wedge \omega_2 = 0$.

Proof: Let Ω be a C-symplectic form, $\omega_1 = \operatorname{Re}\Omega$ and $\omega_2 = \operatorname{Im}\Omega$. Then $\Omega \wedge \Omega = \omega_1^2 + \omega_2^2 + 2\sqrt{-1} \omega_1 \wedge \omega_2 = 0$, hence $\omega_1^2 = \omega_2^2$ and $\omega_1 \wedge \omega_2 = 0$. The form $\Omega \wedge \overline{\Omega} = \omega_1^2 + \omega_2^2$ is non-degenerate, hence $\omega_1^2 = \omega_2^2$ is non-degenerate.

Conversely, if $\omega_1^2 = \omega_2^2$ and $\omega_1 \wedge \omega_2 = 0$, we have $\Omega \wedge \Omega = 0$, and $\Omega \wedge \overline{\Omega} = \omega_1^2 + \omega_2^2$ is non-degenerate if ω_i is non-degenerate.

REMARK: For K3 surface, the local Torelli theorem is equivalent to the following statement: the period map Per : CTeich $\longrightarrow H^2(M, \mathbb{C})$ which takes ω_1, ω_2 to their cohomology classes which satisfy $[\omega_1]^2 = [\omega_2]^2$ and $[\omega_1] \wedge [\omega_2] = 0$ is locally a diffeomorphism.

Compare this with Moser theorem.

K3 surfaces, lecture 7

M. Verbitsky

Moser theorem (reminder)

DEFINITION: Let $\operatorname{Teich}_s := \operatorname{Symp} / \operatorname{Diff}_0$ be the Teichmüller space of symplectic structures on M. Define **the period map** Per : $\operatorname{Teich}_s \longrightarrow H^2(M, \mathbb{R})$ mapping a symplectic structure to its cohomology class.

THEOREM: (Moser, 1965)

The **Teichmüler space** Teich_s is a manifold (possibly, non-Hausdorff), and the period map Per : Teich_s $\longrightarrow H^2(M, \mathbb{R})$ is locally a diffeomorphism.

The proof is based on another theorem of Moser.

THEOREM: (Moser isotopy lemma)

Let ω_t , $t \in S$ be a smooth family of symplectic structures, parametrized by a connected manifold S. Assume that the cohomology class $[\omega_t] \in H^2(M)$ is constant in t. Then all ω_t are isotopic.

Proof of Moser theorem: The period map P: Symp $\longrightarrow H^2(M, \mathbb{R})$ is a smooth submersion. By Moser isotopy lemma, the conneced components of the fibers of P are orbits of $\text{Diff}_0(M)$. Therefore, Per is locally a diffeomorphism.

Moser isotopy lemma

THEOREM: (Moser's isotopy lemma)

Let M be a compact symplectic manifold, and ω_t , $t \in [0, 1]$ a smooth deformation of a symplectic form. Assume that the cohomology class $[\omega_t] \in H^2(M)$ is constant in t. Then there exists a diffeomorphism flow $\Psi_t \in \text{Diff}(M)$ mapping ω_t to ω_0 , for all t.

Proof. Step 1: Since all ω_t are cohomologous, the form $\frac{d\omega_t}{dt}$ is exact. Then $\frac{d\omega_t}{dt} = d\eta_t$, where $\eta_t \in \Lambda^1(M)$. Using Hodge theory, this form can be chosen smoothly in t.

Step 2: Let v_t be the tangent vector field to Ψ_t , with $v_t := \Psi_t^{-1} \frac{d\Psi_t}{dt}$. Assume that $\Psi_0 = \text{Id}$. The equation $\Psi_t^* \omega_t = \omega_0$ (for all $t \in [0, 1]$) is equivalent to $\frac{d}{dt} \Psi_t^* \omega_t = 0$, equivalently, $\frac{d\Psi_t}{dt} \omega_t = -\Psi_t \frac{d\omega_t}{dt}$, which is the same as

$$\operatorname{Lie}_{v_t} \omega_t = -\frac{d\omega_t}{dt}. \quad (*)$$

By Cartan's formula, $\operatorname{Lie}_{v_t} \omega_t = d(i_{v_t}(\omega_t))$. Then (*) is equivalent to $d(i_{v_t}\omega_t) = -d\eta_t$.

Step 3: Since ω_t is non-degenerate, there exists a unique $v_t \in TM$ such that $i_{v_t}\omega_t = -\eta_t$. Integrating the time-dependent vector field v_t to a flow of diffeomorphisms, we obtain Ψ_t satisfying $\Psi_t^*\omega_t = \omega_0$.

C-symplectic Moser lemma

THEOREM: (C-symplectic Moser lemma)

Let (M, I_t, Ω_t) , $t \in [0, 1]$ be a family of C-symplectic forms on a compact manifold. Assume that the cohomology class $[\Omega_t] \in H^2(M, \mathbb{C})$ is constant, and $H^{0,1}(M, I_t) = 0$, where $H^{0,1}(M, I_t) = H^1(M, \mathcal{O}_{(M, I_t)})$ is cohomology of the sheaf of holomorphic functions. Then **there exists a smooth family of diffeomorphisms** $V_t \in \text{Diff}_0(M)$, such that $V_t^* \Omega_0 = \Omega_t$.

Proof. Step 1: If we find a vector field X_t such that $\text{Lie}_{X_t} \Omega_t = \frac{d}{dt} \Omega_t$, we have (like in the proof of Moser's lemma)

$$V_{t_1}^* \Omega_0 = \int_0^{t_1} \operatorname{Lie}_{X_t} \Omega_t dt = \int_0^{t_1} \frac{d\Omega_t}{dt} dt = \Omega_{t_1}$$

where V_t is a diffeomorphism flow such that $\frac{dV_t}{dt} = X_t$. It remains to find the family $X_t \in T_{\mathbb{R}}M$.

Step 2: The contraction map $T_{\mathbb{R}}M \longrightarrow \Lambda^{1,0}(M)$ taking x to $i_x\Omega$ is surjective (an exercise in linear algebra).

Step 3: Since $\frac{d}{dt}\Omega_t$ is exact, one has $\frac{d}{dt}\Omega_t = d\alpha_t$. If α_t has Hodge type (1,0), we could obtain it as $\Omega_t \lrcorner X_t$ (Step 2), which gives $\frac{d}{dt}\Omega_t = d\alpha_t = d(\Omega_t \lrcorner X_t) = \text{Lie}_{X_t}\Omega_t$. It remains to find $\alpha_t \in \Lambda^{1,0}(M, I_t)$ such that $\frac{d}{dt}\Omega_t = d\alpha_t$.

C-symplectic Moser's lemma (2)

It remains to find $X_t \in T_{\mathbb{R}}M$ such that $\operatorname{Lie}_{X_t}\Omega_t = \frac{d}{dt}\Omega_t$.

Step 2: The contraction map $\Lambda^{2,0}M \otimes_{\mathbb{R}} T_{\mathbb{R}}M \longrightarrow \Lambda^{1,0}(M)$ is surjective.

Step 3: Since $\frac{d}{dt}\Omega_t$ is exact, one has $\frac{d}{dt}\Omega_t = d\alpha_t$. If α_t has Hodge type (1,0), we could obtain it as $\Omega_t \lrcorner X_t$ (Step 2), which gives $\frac{d}{dt}\Omega_t = d\alpha_t = d(\Omega_t \lrcorner X_t) = \text{Lie}_{X_t}\Omega_t$. It remains to find $\alpha_t \in \Lambda^{1,0}(M, I_t)$ such that $\frac{d}{dt}\Omega_t = d\alpha_t$.

Step 4: Let $\Omega'_t := \frac{d}{dt}\Omega_t$ and $\dim_{\mathbb{C}} M = 2n$. Differentiating $\Omega_t^{n+1} = 0$ in t, we obtain $\Omega'_t \wedge \Omega_t^n = 0$. Since $\Phi := \Omega_t^n$ is a holomorphic volume form, the multiplication map $\Lambda^{0,2}(M) \xrightarrow{\Lambda \Phi} \Lambda^{2n,2}(M)$ is an isomorphism of vector bundles. Then $\Omega'_t \wedge \Omega_t^n = 0$ implies that $\Omega'_t \in \Lambda^{1,1}(M, I_{\Omega_t}) + \Lambda^{2,0}(M, I_{\Omega_t})$.

Step 5: Using Step 3 and Step 4, we obtain that holomorphic Moser's lemma **is implied by the following statement.**

LEMMA: Let *M* be a complex manifold which satisfies $H^{0,1}(M) = 0$, and $\eta \in \Lambda^{1,1}(M) + \Lambda^{2,0}(M)$ an exact form. Then $\eta = d\alpha$, for some $\alpha \in \Lambda^{1,0}(M)$.

Holomorphically symplectic Moser's lemma (3)

LEMMA: Let *M* be a complex manifold which satisfies $H^{0,1}(M) = 0$, and $\eta \in \Lambda^{1,1}(M) + \Lambda^{2,0}(M)$ an exact form. Then $\eta = d\alpha$, for some $\alpha \in \Lambda^{1,0}(M)$.

Proof. Step 1: Let $\eta = d\beta$, where $\beta = \beta^{1,0} + \beta^{0,1}$. Since $\eta \in \Lambda^{1,1}(M) + \Lambda^{2,0}(M)$, we have $\overline{\partial}(\beta^{0,1}) = 0$. The first cohomology of the complex $(\Lambda^{0,*}(M),\overline{\partial})$ vanish, because $H^{0,1}(M) = 0$, hence $\beta^{0,1} = \overline{\partial}\psi$, for some $\psi \in C^{\infty}M$.

Step 2: This gives $\eta = d(\beta - d\psi)$, hence $\alpha := \beta - d\psi = \beta^{1,0} + \beta^{0,1} - \partial\psi - \beta^{0,1}$ is a (1,0)-form which satisfies $\eta = d\alpha$.

COROLLARY: Let CSymp be the space of all C-symplectic structures with C^{∞} -topology. Denote by Teich_C the corresponding Teichmüller space, Teich_C := $\frac{\text{CSymp}}{\text{Diff}_0(M)}$. Define **the period map** Per : Teich_C $\longrightarrow H^2(M, \mathbb{C})$ mapping Ω to its cohomology class. Then Per is locally a homeomorphism to its image.

Proof: All fibers of Per are 0-dimensional. ■