K3 surfaces

lecture 8: $d d^{2}$-lemma.

Misha Verbitsky

IMPA, sala 236
November 7, 2022, 15:30
$d d^{c}$-Iemma

THEOREM: Let η be a form on a compact Kähler manifold, satisfying one of the following conditions.
(1). η is an exact (p, q)-form. (2). η is d-exact, d^{c}-closed.
(3). η is ∂-exact, $\bar{\partial}$-closed.

Then $\eta \in \operatorname{im} d d^{c}=\operatorname{im} \partial \bar{\partial}$.

Proof: Notice immediately that in all three cases η is closed and orthogonal to the kernel of Δ, hence its cohomology class vanishes. Indeed, ker Δ is orthogonal to the image of $\partial, \bar{\partial}$ and d. Since η is exact, it lies in the image of Δ. Operator $G_{\Delta}:=\Delta^{-1}$ is defined on $\operatorname{im} \Delta=\operatorname{ker} \Delta^{\perp}$ and commutes with d, d^{c}.

In case (1), η is d-exact, and $I(\eta)=(\sqrt{-1})^{p-q} \eta$ is d-closed, hence η is d exact, d^{c}-closed like in (2). Then $\eta=d \alpha$, where $\alpha:=G_{\Delta} d^{*} \eta$. Since G_{Δ} and d^{*} commute with d^{c}, the form α is d^{c}-closed; since it belongs to im $\Delta=\operatorname{im} G_{\Delta}$, it is d^{c}-exact, $\alpha=d^{c} \beta$ which gives $\eta=d d^{c} \beta$.

In case (3), we have $\eta=\partial \alpha$, where $\alpha:=G_{\Delta} \partial^{*} \eta$. Since G_{Δ} and ∂^{*} commute with $\bar{\partial}$, the form α is $\bar{\partial}$-closed; since it belongs to $\operatorname{im} \Delta$, it is $\bar{\partial}$-exact, $\alpha=\bar{\partial} \beta$ which gives $\eta=\partial \bar{\partial} \beta$.

Massey products

As an application of $d d^{c}$-lemma, I would prove a theorem about topology of compact Kähler manifolds.

Let $a, b, c \in \wedge^{*}(M)$ be closed forms on a manifold M with cohomology classes $[a],[b],[c]$ satisfying $[a][b]=[b][c]=0$, and $\alpha, \gamma \in \wedge^{*}(M)$ forms which satisfy $d(\alpha)=a \wedge b, d(\gamma)=b \wedge c$. Denote by $L_{[a]}, L_{[c]}: H^{*}(M) \longrightarrow H^{*}(M)$ the operation of multiplication by the cohomology classes $[a],[c]$.

Then $\alpha \wedge c-a \wedge \gamma$ is a closed form, and its cohomology class is well-defined modulo $\operatorname{im} L_{[a]}+\operatorname{im} L_{[c]}$.

DEFINITION: Cohomology class $\alpha \wedge c-a \wedge \gamma$ is called Massey product of a, b, c.

PROPOSITION: On a Kähler manifold, Massey products vanish.

Proof: Let a, b, c be harmonic forms of pure Hodge type, that is, of type (p, q) for some p, q. Then $a b$ and $b c$ are exact pure forms, hence $a b, b c \in \operatorname{im} d d^{c}$ by $d d^{c}$-lemma. This implies that $\alpha:=d^{*} G_{\Delta}(a b)$ and $\gamma:=d^{*} G_{\Delta}(b c)$ are d^{c}-exact. Therefore $\mu:=\alpha \wedge c-a \wedge \gamma$ is a d^{c}-exact, d-closed form. Applying $d d^{c}$-lemma again, we obtain that μ is $d d^{c}$-exact, hence its cohomology class vanish.

Heisenberg group

REMARK: In the class, we constructed this space explicitly as a cell complex, without using the Lie algebra, and computed the Massey product in its cohomology. Here are the notes taken from a lecture given elsewhere, which explain the same construction in a different, more algebraic way.

DEFINITION: The Heisenberg group G group of strictly upper triangular matrices (3×3),

$$
\left(\begin{array}{lll}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{array}\right)
$$

The integer Heisenberg group $G_{\mathbb{Z}}$ is the same group with integer entries. The Heisenberg nilmanifold is $G / G_{\mathbb{Z}}$. The Heisenberg nilmanifold is fibered over the torus T^{2} with the fiber S^{1} (it is a non-trivial principal S^{1}-bundle). This fibration corresponds to the exact sequence

$$
\{e\} \longrightarrow \mathbb{Z} \longrightarrow G_{\mathbb{Z}} \longrightarrow \mathbb{Z}^{2} \longrightarrow\{e\}
$$

where \mathbb{Z} is the center.

Massey products in Heisenberg nilmanifold

CLAIM: Masey products on $G / G_{\mathbb{Z}}$ are non-zero.
Proof. Step 1: G acts on $\Lambda^{*}(G)$ from the right. It is not hard to see that the all cohomology classes on $G / G_{\mathbb{Z}}$ can be represented by right G-invariant forms, and, moreover, the cohomology of $G / G_{\mathbb{Z}}$ is equal to the cohomology of the complex of right- G-invariant forms on G.

Step 2: This is the same complex as the Chevalley-Eilenberg complex for the Lie algebra \mathfrak{g} of $G: 0 \longrightarrow \Lambda^{1}\left(\mathfrak{g}^{*}\right) \xrightarrow{d} \Lambda^{2}\left(\mathfrak{g}^{*}\right) \xrightarrow{d} \ldots$ with the differential in the first term $d: \mathfrak{g}^{*} \longrightarrow \Lambda^{2}\left(\mathfrak{g}^{*}\right)$ dual to the commutator. We extend this differential to $\Lambda^{*}\left(\mathfrak{g}^{*}\right)$ by the Leibniz rule. The corresponding cohomology is called the Lie algebra cohomology and denoted by $H^{*}(\mathfrak{g})$.

Step 3: Let a, b, t be the basis in \mathfrak{g}, with the only non-trivial commutator $[a, b]=t$, and α, β, τ the dual basis in \mathfrak{g}^{*}, with the only non-trivial differential $d \tau=\alpha \wedge \beta$. This gives a basis $\alpha \wedge \beta, \alpha \wedge \tau, \beta \wedge \tau$ in $\wedge^{2}\left(\mathfrak{g}^{*}\right)$, with $\left.d\right|_{\wedge^{2} \mathfrak{g}^{*}}=0$, giving rk $H^{1}\left(G / G_{\mathbb{Z}}\right)=2$ and $\operatorname{rk} H^{2}\left(G / G_{\mathbb{Z}}\right)=2$.

Step 4: Let $M(\alpha, \beta, \alpha)$ denote the Massey product of α, β, α. Since $\alpha \wedge \beta=d \tau$, $M(\alpha, \beta, \alpha)=\tau \wedge \alpha-\alpha \wedge \tau=2 \tau \wedge \alpha$. The image of $L_{\alpha}: H^{1}(\mathfrak{g}) \longrightarrow H^{2}(\mathfrak{g})$ is generated by $\alpha \wedge \beta$, hence $M(\alpha, \beta, \alpha)$ is non-zero modulo im L_{α}.

