K3 surfaces

lecture 8: dd²-lemma.

Misha Verbitsky

IMPA, sala 236

November 7, 2022, 15:30

dd^c -lemma

THEOREM: Let η be a form on a compact Kähler manifold, satisfying one of the following conditions. (1). η is an exact (p,q)-form. (2). η is *d*-exact, d^c -closed. (3). η is ∂ -exact, $\overline{\partial}$ -closed.

Then $\eta \in \operatorname{im} dd^c = \operatorname{im} \partial\overline{\partial}$.

Proof: Notice immediately that in all three cases η is closed and orthogonal to the kernel of Δ , hence its cohomology class vanishes. Indeed, ker Δ is orthogonal to the image of $\partial, \overline{\partial}$ and d. Since η is exact, it lies in the image of Δ . Operator $G_{\Delta} := \Delta^{-1}$ is defined on im $\Delta = \ker \Delta^{\perp}$ and commutes with d, d^c .

In case (1), η is *d*-exact, and $I(\eta) = (\sqrt{-1})^{p-q}\eta$ is *d*-closed, hence η is *d*-exact, d^c -closed like in (2). Then $\eta = d\alpha$, where $\alpha := G_{\Delta}d^*\eta$. Since G_{Δ} and d^* commute with d^c , the form α is d^c -closed; since it belongs to im $\Delta = \operatorname{im} G_{\Delta}$, it is d^c -exact, $\alpha = d^c\beta$ which gives $\eta = dd^c\beta$.

In case (3), we have $\eta = \partial \alpha$, where $\alpha := G_{\Delta} \partial^* \eta$. Since G_{Δ} and ∂^* commute with $\overline{\partial}$, the form α is $\overline{\partial}$ -closed; since it belongs to im Δ , it is $\overline{\partial}$ -exact, $\alpha = \overline{\partial}\beta$ which gives $\eta = \partial \overline{\partial} \beta$.

Massey products

As an application of dd^c -lemma, I would prove a theorem about topology of compact Kähler manifolds.

Let $a, b, c \in \Lambda^*(M)$ be closed forms on a manifold M with cohomology classes [a], [b], [c] satisfying [a][b] = [b][c] = 0, and $\alpha, \gamma \in \Lambda^*(M)$ forms which satisfy $d(\alpha) = a \wedge b$, $d(\gamma) = b \wedge c$. Denote by $L_{[a]}, L_{[c]} : H^*(M) \longrightarrow H^*(M)$ the operation of multiplication by the cohomology classes [a], [c].

Then $\alpha \wedge c - a \wedge \gamma$ is a closed form, and its cohomology class is well-defined modulo im $L_{[a]} + \operatorname{im} L_{[c]}$.

DEFINITION: Cohomology class $\alpha \wedge c - a \wedge \gamma$ is called **Massey product of** a, b, c.

PROPOSITION: On a Kähler manifold, Massey products vanish.

Proof: Let a, b, c be harmonic forms of pure Hodge type, that is, of type (p,q) for some p,q. Then ab and bc are exact pure forms, hence $ab, bc \in \operatorname{im} dd^c$ by dd^c -lemma. This implies that $\alpha := d^*G_{\Delta}(ab)$ and $\gamma := d^*G_{\Delta}(bc)$ are d^c -exact. Therefore $\mu := \alpha \wedge c - a \wedge \gamma$ is a d^c -exact, d-closed form. Applying dd^c -lemma again, we obtain that μ is dd^c -exact, hence its cohomology class vanish.

Heisenberg group

REMARK: In the class, we constructed this space explicitly as a cell complex, without using the Lie algebra, and computed the Massey product in its cohomology. Here are the notes taken from a lecture given elsewhere, which explain the same construction in a different, more algebraic way.

DEFINITION: The **Heisenberg group** G group of strictly upper triangular matrices (3x3),

$$\begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}$$

The integer Heisenberg group $G_{\mathbb{Z}}$ is the same group with integer entries. The Heisenberg nilmanifold is $G/G_{\mathbb{Z}}$. The Heisenberg nilmanifold is fibered over the torus T^2 with the fiber S^1 (it is a non-trivial principal S^1 -bundle). This fibration corresponds to the exact sequence

$$\{e\} \longrightarrow \mathbb{Z} \longrightarrow G_{\mathbb{Z}} \longrightarrow \mathbb{Z}^2 \longrightarrow \{e\}$$

where $\ensuremath{\mathbb{Z}}$ is the center.

Massey products in Heisenberg nilmanifold

CLAIM: Masey products on $G/G_{\mathbb{Z}}$ are non-zero.

Proof. Step 1: *G* acts on $\Lambda^*(G)$ from the right. It is not hard to see that the all cohomology classes on $G/G_{\mathbb{Z}}$ can be represented by right *G*-invariant forms, and, moreover, the cohomology of $G/G_{\mathbb{Z}}$ is equal to the cohomology of the complex of right-*G*-invariant forms on *G*.

Step 2: This is the same complex as **the Chevalley-Eilenberg complex** for the Lie algebra \mathfrak{g} of $G: 0 \longrightarrow \Lambda^1(\mathfrak{g}^*) \xrightarrow{d} \Lambda^2(\mathfrak{g}^*) \xrightarrow{d} \dots$ with the differential in the first term $d: \mathfrak{g}^* \longrightarrow \Lambda^2(\mathfrak{g}^*)$ dual to the commutator. We extend this differential to $\Lambda^*(\mathfrak{g}^*)$ by the Leibniz rule. The corresponding cohomology is called **the Lie algebra cohomology** and denoted by $H^*(\mathfrak{g})$.

Step 3: Let a, b, t be the basis in \mathfrak{g} , with the only non-trivial commutator [a, b] = t, and α , β , τ the dual basis in \mathfrak{g}^* , with the only non-trivial differential $d\tau = \alpha \wedge \beta$. This gives a basis $\alpha \wedge \beta$, $\alpha \wedge \tau$, $\beta \wedge \tau$ in $\Lambda^2(\mathfrak{g}^*)$, with $d|_{\Lambda^2 \mathfrak{g}^*} = 0$, giving rk $H^1(G/G_{\mathbb{Z}}) = 2$ and rk $H^2(G/G_{\mathbb{Z}}) = 2$.

Step 4: Let $M(\alpha, \beta, \alpha)$ denote the Massey product of α, β, α . Since $\alpha \wedge \beta = d\tau$, $M(\alpha, \beta, \alpha) = \tau \wedge \alpha - \alpha \wedge \tau = 2\tau \wedge \alpha$. The image of L_{α} : $H^{1}(\mathfrak{g}) \longrightarrow H^{2}(\mathfrak{g})$ is generated by $\alpha \wedge \beta$, hence $M(\alpha, \beta, \alpha)$ is non-zero modulo im L_{α} .