K3 surfaces

lecture 9: local Torelli theorem. Surjectivity of the period map.

Misha Verbitsky

IMPA, sala 236
November 21, 2022, 15:30

C-symplectic structures (reminder)

DEFINITION: Let M be a smooth $4 n$-dimensional manifold. A closed complex-valued form Ω on M is called C-symplectic if $\Omega^{n+1}=0$ and $\Omega^{n} \wedge \bar{\Omega}^{n}$ is a non-degenerate volume form.

THEOREM: Let $\Omega \in \Lambda^{2}(M, \mathbb{C})$ be a C-symplectic form, and $T_{\Omega}^{0,1}(M)$ be equal to ker Ω, where

$$
\operatorname{ker} \Omega:=\{v \in T M \otimes \mathbb{C} \mid \Omega\lrcorner v=0\} .
$$

Then $T_{\Omega}^{0,1}(M) \oplus \overline{T_{\Omega}^{0,1}(M)}=T M \otimes_{\mathbb{R}} \mathbb{C}$, hence the sub-bundle $T_{\Omega}^{0,1}(M)$ defines an almost complex structure I_{Ω} on M. If, in addition, Ω is closed, I_{Ω} is integrable, and Ω is holomorphically symplectic on (M, I_{Ω}).

Proof: Rank of Ω is $2 n$ because $\Omega^{n+1}=0$ and $\operatorname{Re} \Omega$ is non-degenerate. Then $\operatorname{ker} \Omega \oplus \overline{\operatorname{ker} \Omega}=T_{\mathbb{C}} M$. The relation $\left[T_{\Omega}^{0,1}(M), T_{\Omega}^{0,1}(M)\right] \subset T_{\Omega}^{0,1}(M)$ follows from Theorem 1, Lecture 6.

Holomorphically symplectic Teichmüller space (reminder)

DEFINITION: Let CSymp be the space of all C-symplectic forms on a manifold M, equipped with the C^{∞}-topology, and Diffo the connected component of the group of diffeomorphisms. The holomorphically symplectic Teichmüller space CTeich is the quotient $\frac{\text { CSymp }}{\text { Diffo }}$.

REMARK: Recall that the mapping class group of a manifold M is the group $\Gamma:=\frac{\text { Diff }}{\text { Diff }}$ of connected components of $\operatorname{Diff}(M)$.

REMARK: The quotient C Teich $/ \Gamma$ is identified with the set of all holomorphically symplectic structures on M up to isomorphism.

Period map for holomorphically symplectic manifolds (reminder)

DEFINITION: Let (M, I, Ω) be a holomorphically symplectic manifold, and CSymp the space of all C-symplectic forms. The quotient CTeich $:=\frac{\text { CSymp }}{\text { Diffo }}$ is called the holomorphically symplectic Teichmüller space, and the map CTeich $\longrightarrow H^{2}(M, \mathbb{C})$ taking (M, I, Ω) to the cohomology class $[\Omega] \in H^{2}(M, \mathbb{C})$ the holomorphically symplectic period map.

THEOREM: (Local Torelli theorem, due to Bogomolov)
Let (M, I, Ω) be a complex, Kähler, holomorphically symplectic surface with $H^{0,1}(M)=0$, that is, a K3 surface. Consider the period map

$$
\text { Per: CTeich } \longrightarrow H^{2}(M, \mathbb{C})
$$

taking (M, I, Ω) to the cohomology class $[\Omega] \in H^{2}(M, \mathbb{C})$. Then Per is a local diffeomorpism of CTeich to the period space

$$
Q:=\left\{v \in H^{2}(M, \mathbb{C}) \quad \mid \quad \int_{M} v \wedge v=0, \int_{M} v \wedge \bar{v}>0\right\} .
$$

Proof: Surjectivity: later today. Injectivity: lecture 7.
$d d^{c}$-lemma (reminder)
THEOREM: Let η be a form on a compact Kähler manifold, satisfying one of the following conditions.
(1). η is an exact (p, q)-form. (2). η is d-exact, d^{c}-closed.
(3). η is ∂-exact, $\bar{\partial}$-closed.

Then $\eta \in \operatorname{im} d d^{c}=\operatorname{im} \partial \bar{\partial}$.

Proof: Notice immediately that in all three cases η is closed and orthogonal to the kernel of Δ, hence its cohomology class vanishes. Indeed, ker Δ is orthogonal to the image of $\partial, \bar{\partial}$ and d. Since η is exact, it lies in the image of Δ. Operator $G_{\Delta}:=\Delta^{-1}$ is defined on $\operatorname{im} \Delta=\operatorname{ker} \Delta^{\perp}$ and commutes with d, d^{c}.

In case (1), η is d-exact, and $I(\eta)=(\sqrt{-1})^{p-q} \eta$ is d-closed, hence η is d exact, d^{c}-closed like in (2). Then $\eta=d \alpha$, where $\alpha:=G_{\Delta} d^{*} \eta$. Since G_{Δ} and d^{*} commute with d^{c}, the form α is d^{c}-closed; since it belongs to $\operatorname{im} \Delta=\operatorname{im} G_{\Delta}$, it is d^{c}-exact, $\alpha=d^{c} \beta$ which gives $\eta=d d^{c} \beta$.

In case (3), we have $\eta=\partial \alpha$, where $\alpha:=G_{\Delta} \partial^{*} \eta$. Since G_{\triangle} and ∂^{*} commute with $\bar{\partial}$, the form α is $\bar{\partial}$-closed; since it belongs to im Δ, it is $\bar{\partial}$-exact, $\alpha=\bar{\partial} \beta$ which gives $\eta=\partial \bar{\partial} \beta$.

Deformation of C-symplectic structures

Let Ω be a holomorphically symplectic form on a complex surface, and $u \in$ $\Lambda^{1,1}+\Lambda^{0,2}$. Then $\Omega+u$ is C-symplectic if and only if $d u=0$ and

$$
(\Omega+\eta)^{2}=\eta \wedge \eta-u^{0,2} \wedge \Omega=0 \quad(*)
$$

where $\eta=u^{1,1}$. Denote by $\Lambda_{\Omega}: \quad \wedge^{p, q}(M) \longrightarrow \wedge^{p, q-2}(M)$ the operator of convolution with the $(2,0)$-bivector dual to Ω; it is inverse to L_{Ω}, where $L_{\Omega}(x)=x \wedge \Omega$. The equation $(*)$ is equivalent to $\wedge_{\Omega}(\eta \wedge \eta)=-u^{0,2}$.

Then $d u=0$ is equivalent to

$$
\partial \eta=0, \quad \bar{\partial}\left(\wedge_{\Omega}(\eta \wedge \eta)\right)=0, \quad \bar{\partial} \eta=\partial\left(\wedge_{\Omega}(\eta \wedge \eta)\right)
$$

The second equation is automatic, because Λ_{Ω} commutes with $\bar{\partial}$, since the bivector dual to Ω is holomorphic, and $\bar{\partial} \eta \wedge \eta=0$ because it is a 5-form. We proved the following theorem.

THEOREM: Let Ω be a holomorphically symplectic form on a complex surface, and $u \in \Lambda^{1,1}+\Lambda^{0,2}$. Let $\eta:=u^{1,1}$. Then $\Omega+u$ is C-symplectic if and only if $\partial \eta=0, u^{2,0}=\wedge_{\Omega}(\eta \wedge \eta)$, and $\bar{\partial} \eta=\partial u^{2,0}$.

Recursive solutions of Maurer-Cartan equation

REMARK: The equation $\bar{\partial} \eta=\partial\left(\wedge_{\Omega}(\eta \wedge \eta)\right.$) ("symplectic Maurer-Cartan equation") is a form of Maurer-Cartan equation known in deformation theory. We will solve it in the same way as the usual Maurer-Cartan: recursively.

DEFINITION: Let $\eta_{i} \in \wedge^{1,1}(M), i=0,1, \ldots$ be (1,1)-forms on a holomorphic symplectic surface. We say that $\left\{\eta_{i}\right\}$ is a recursive solution of the symplectic Maurer-Cartan equation, if
(i) the series $\sum_{i} \eta_{i} t^{i}$ converges absolutely for $|t|<\varepsilon$
(ii) η_{i} are ∂-closed and ∂-exact for $i>0$.
(iii) $\bar{\partial} \eta_{n}=\sum_{i+j=n-1} \partial\left(\wedge_{\Omega}\left(\eta_{i} \wedge \eta_{j}\right)\right)$ for all n.

From recursive solutions to solutions

PROPOSITION: Let $\left\{\eta_{i}\right\}$ be a recursive solution of the symplectic MaurerCartan equation, and $|t|<\varepsilon$. Consider the cohomology class $\left[\eta_{0}\right] \in H_{\partial}^{1,1}(M)=$ $H^{1,1}(M)$ (here we identify the Dolbeault cohomology and the Hodge cohomology of M). Let $\eta:=\sum_{i} \eta_{i} t^{i}$. Then $\Omega_{\eta}:=\Omega+\eta-\wedge_{\Omega}(\eta \wedge \eta)$ is \mathbb{C}-symplectic, for t sufficiently small, and cohomologous to $\left[\Omega+\eta_{0}-\right.$ $L_{\Omega}^{-1}\left(\eta_{0} \wedge \eta_{0}\right)$], where L_{Ω} is the multiplication by Ω acting on cohomology.

Proof. Step 1: Since \wedge_{Ω} commutes with $\bar{\partial}$, we have

$$
\bar{\partial} \wedge_{\Omega}(\eta \wedge \eta)=2 \wedge_{\Omega}(\bar{\partial} \eta \wedge \eta)=0
$$

because $\bar{\partial} \eta \wedge \eta$ is a (2,3)-form. Also, $\partial \eta=0$, because all η_{i} are ∂-closed. Then

$$
d\left(\Omega_{\eta}\right)=\bar{\partial} \eta-\partial \wedge_{\Omega}(\eta \wedge \eta)=\sum_{n} t^{n}\left(\bar{\partial} \eta_{n}-\sum_{i+j=n-1} \partial\left(\wedge_{\Omega}\left(\eta_{i} \wedge \eta_{j}\right)\right)=0\right.
$$

Step 2: Since $\Omega_{\eta}^{2}=-\Omega \wedge \wedge_{\Omega}(\eta \wedge \eta)+\eta \wedge \eta$ and $\Omega \wedge\left(\wedge_{\Omega}(\eta \wedge \eta)\right)=\eta \wedge \eta$, we have $\Omega_{\eta}^{2}=0$. For η sufficiently small, $\Omega_{\eta} \wedge \bar{\Omega}_{\eta}$ is non-degenerate, because $\Omega \wedge \bar{\Omega}$ is non-degenerate. Therefore, Ω_{η} is C-symplectic. It remains only to express the cohomology class of Ω_{η} through $\left[\eta_{0}\right] \in H_{\partial}^{1,1}(M)$.

From recursive solutions to solutions (2)
PROPOSITION: Let $\left\{\eta_{i}\right\}$ be a recursive solution of the symplectic MaurerCartan equation as above, and $\eta:=\sum_{i} \eta_{i} t^{i}$. Then $\Omega_{\eta}:=\Omega+\eta-\wedge_{\Omega}(\eta \wedge \eta)$ is \mathbb{C}-symplectic, for t sufficiently small, and cohomologous to $\left[\Omega+\eta_{0}-\right.$ $\left.L_{\Omega}^{-1}\left(\eta_{0} \wedge \eta_{0}\right)\right]$, where L_{Ω} is the multiplication by Ω acting on cohomology.

Step 1-2: Ω_{η} is C-symplectic.
Step 3: The (1,2)-form $d\left(\wedge_{\Omega}(\eta \wedge \eta)\right)=\partial\left(\wedge_{\Omega}(\eta \wedge \eta)=\bar{\partial} \eta\right.$ is ∂-exact and $\bar{\partial}$-exact, hence it is $\partial \bar{\partial}$-exact. Therefore, there exists a (0,1)-form α such that $\partial\left(\wedge_{\Omega}(\eta \wedge \eta)\right)=\partial \bar{\partial} \alpha$. Then, the $(0,2)$-form $\beta:=\wedge_{\Omega}(\eta \wedge \eta)-\bar{\partial} \alpha$ is closed. We obtain that all Hodge components of $\Omega_{\eta}-d \alpha$ are closed: indeed, $d\left(\Omega_{\eta}-d \alpha\right)=0$ and the form $\left(\Omega_{\eta}-d \alpha\right)^{0,2}=\beta$ is $\bar{\partial}$ and ∂-closed. Therefore, the cohomology class $\left[\Omega_{\eta}\right]$ is equal to the sum of the Dolbeault classes of Ω, $\eta^{1,1}$ and β (this form is antiholomorphic). The de Rham cohomology class of $\eta-\partial \alpha$ is equal to its Dolbeault class [η_{0}], and the de Rham cohomology class $[\beta]=$ const $\cdot[\bar{\Omega}]$ of β is uniquely determined from

$$
0=\left[\Omega_{\eta}\right]^{2}=\left([\Omega]+\left[\eta_{0}\right]+[\beta]\right)^{2}=\left[\eta_{0}\right]^{2}+2[\Omega] \wedge[\beta] .
$$

From recursive solutions to deformations

PROPOSITION: Let $\left\{\eta_{i}\right\}$ be a recursive solution of the symplectic MaurerCartan equation, and $|t|<\varepsilon$. Consider the cohomology class $\left[\eta_{0}\right] \in H_{\partial}^{1,1}(M)=$ $H^{1,1}(M)$ (here we identify the Dolbeault cohomology and the Hodge cohomology of M). Let $\eta:=\sum_{i} \eta_{i} t^{i}$. Then $\Omega_{\eta}:=\Omega+\eta-\Lambda_{\Omega}(\eta \wedge \eta)$ is \mathbb{C}-symplectic, for t sufficiently small, and cohomologous to $\left[\Omega+\eta_{0}-\right.$ $\left.L_{\Omega}^{-1}\left(\eta_{0} \wedge \eta_{0}\right)\right]$, where L_{Ω} is the multiplication by Ω acting on cohomology.

Therefore, the local surjectivity of the period map is implied by the following

THEOREM: Let (M, Ω) be a compact holomorphic symplectic surface, and $\eta_{0} \in \Lambda^{1,1}(M)$ a closed (1,1)-form. Then there exists a recursive solution $\left\{\eta_{i}\right\} \subset \wedge^{1,1}(M)$ of the symplectic Maurer-Cartan equation.

Proof: Later today.

Holomorphically symplectic Schouten bracket

DEFINITION: Let $a, b \in \wedge^{*, 1}$ be ($*, 1$)-forms on a holomorphically symplectic manifold (M, Ω), and

$$
\{a, b\}:=\delta(a \wedge b)-\delta(a) \wedge b-(-1)^{\tilde{a}-1} a \wedge \delta(b)
$$

where $\delta=\left[\partial, \wedge_{\Omega}\right]$. We call $\{\cdot, \cdot\}$ the holomorphically symplectic Schouten bracket.

REMARK: For $(1,1)$-forms, $\{a, b\}:=\partial\left(\wedge_{\Omega}(a \wedge b)-\wedge_{\Omega}(\partial(a \wedge b))\right.$.
REMARK: Clearly, the Schouten bracket is graded commutative:

$$
\{a, b\}-(-1)^{\tilde{a} \tilde{b}}\{b, a\}=0 .
$$

THEOREM 1: The holomorphically symplectic Schouten bracket satisfies the odd graded Jacobi identity

$$
\{a,\{b, c\}\}=\{\{a, b\}, c\}+(-1)^{(\tilde{a}-1)(\tilde{b}-1)}\{b,\{a, c\}\} .
$$

Proof: Lecture 9 (next Monday).

The third commutator

Whenever a bracket $\{\cdot, \cdot\}$ is supercommutative and satisfies the graded Jacobi identity, the third commutator of a vector with itself vanishes.

COROLLARY: For any $v \in \Lambda^{*, 1}$, one has $\{v,\{v, v\}\}=0$.

Proof: If v is odd, $\{v, v\}=0$ because the Schouten bracket is graded commutative. If v is even, the odd graded Jacobi identity gives

$$
\{v,\{v, v\}\}=\{\{v, v\}, v\}-\{v,\{v, v\}\},
$$

hence $2\{v,\{v, v\}\}=\{\{v, v\}, v\}=-\{v,\{v, v\}\}$, implying $3\{v,\{v, v\}\}=0$.

Solving the symplectic Maurer-Cartan equation

THEOREM: Let (M, Ω) be a compact holomorphic symplectic surface, and $\eta_{0} \in \Lambda^{1,1}(M)$ a closed $(1,1)$-form. Then there exists a recursive solution $\left\{\eta_{i}\right\} \subset \Lambda^{1,1}(M)$ of the symplectic Maurer-Cartan equation

$$
\bar{\partial} \eta_{n}=\sum_{i+j=n-1}\left\{\eta_{i}, \eta_{j}\right\}
$$

Proof. Step 1: Suppose that $\eta_{0}, \ldots, \eta_{n-1} \in \wedge^{1,1}(M)$ are already found, and satisfy $\bar{\eta}_{k}=\sum_{i+j=k-1}\left\{\eta_{i}, \eta_{j}\right\}, \partial \eta_{i}=0$ for all $k=0, \ldots, n-1$. For any ∂-closed $a, b \in \wedge^{*, 1}(M)$, we have

$$
\bar{\partial}\{a, b\}=\bar{\partial}\{a, b\}=\bar{\partial} \partial\left(\wedge_{\Omega}(a \wedge b)=-\partial\left(\wedge_{\Omega}(\bar{\partial} a \wedge b)+(-1)^{\tilde{a}} \partial\left(\wedge_{\Omega}(a \wedge \bar{\partial} b)\right.\right.\right.
$$

because $\bar{\partial}$ commutes with Λ_{Ω} and anticommutes with ∂. Taking $a=\eta_{k}, b=\eta_{l}$, $k, l<n$ we obtain

$$
\bar{\partial}\left\{\eta_{k}, \eta_{l}\right\}=\left\{\sum_{i+j=k-1}\left\{\eta_{i}, \eta_{j}\right\}, \eta_{l}\right\}+\left\{\eta_{k}, \sum_{i+j=l-1}\left\{\eta_{i}, \eta_{j}\right\}\right\}
$$

Solving the symplectic Maurer-Cartan equation (2)

THEOREM: Let (M, Ω) be a compact holomorphic symplectic surface, and $\eta_{0} \in \Lambda^{1,1}(M)$ a closed (1,1)-form. Then there exists a recursive solution $\left\{\eta_{i} \in \wedge^{1,1}(M)\right\}$ of the symplectic Maurer-Cartan equation $\bar{\partial} \eta_{n}=$ $\sum_{i+j=n-1}\left\{\eta_{i}, \eta_{j}\right\}$.

Proof. Step 1: $\bar{\partial}\left\{\eta_{k}, \eta_{l}\right\}=\left\{\sum_{i+j=k-1}\left\{\eta_{i}, \eta_{j}\right\}, \eta_{l}\right\}+\left\{\eta_{k}, \sum_{i+j=1-1}\left\{\eta_{i}, \eta_{j}\right\}\right\}$.
Step 2: Let $\theta_{n}:=\sum_{i=0}^{n-1} t^{i} \eta_{i}$. Then Theorem 1 implies that

$$
\begin{aligned}
& \bar{\partial}\left\{\theta_{n}, \theta_{n}\right\}=\sum_{\mathrm{m}=0}^{\mathrm{n}-1} \sum_{\mathrm{k}+1=\mathrm{m}} t^{k+l} \bar{\partial}\left\{\eta_{k}, \eta_{l}\right\}=\sum_{\mathrm{m}=0}^{\mathrm{n}-1} \sum_{\mathrm{p}+\mathrm{a+r=m-1}} t^{p+q+r}\left(\left\{\left\{\eta_{p}, \eta_{q}\right\}, \eta_{r}\right\}+\right. \\
& \\
& \left.\quad+\left\{\eta_{p},\left\{\eta_{q}, \eta_{r}\right\}\right\}\right)=\left\{\theta_{n},\left\{\theta_{n}, \theta_{n}\right\}\right\}+\left\{\left\{\theta_{n}, \theta_{n}\right\}, \theta_{n}\right\}=0 .
\end{aligned}
$$

This gives $\bar{\partial}\left(\sum_{i+j=n-1}\left\{\eta_{i}, \eta_{j}\right\}\right)=0$.
Step 3: Since $\sum_{i+j=n-1}\left\{\eta_{i}, \eta_{j}\right\}=\sum_{i+j=n-1} \partial \wedge_{\Omega}\left(\eta_{i} \wedge \eta_{j}\right)$ is ∂-closed and ∂-exact, this form is $\bar{\partial} \partial$-exact: $\bar{\partial} \partial \beta=\sum_{i+j=n-1}\left\{\eta_{i}, \eta_{j}\right\}$. Take $\eta_{n}:=\partial \beta$; this form is ∂-exact and satisfies the equation $\bar{\partial} \eta_{n}=\sum_{i+j=n-1}\left\{\eta_{i}, \eta_{j}\right\}$. It remains to make sure that the power series $\sum_{i=0}^{\infty} t^{i} \eta_{i}$ converges for t sufficiently small.

Solving the symplectic Maurer-Cartan equation (3)

Step 4: We will use the operator $G_{\Delta} \bar{\partial}^{*}$ to invert $\bar{\partial}$; this was justified earlier using the Hodge theory. This allows us to take $\eta_{n}=G_{\Delta} \bar{\partial}^{*}\left(\sum_{i+j=n-1}\left\{\eta_{i}, \eta_{j}\right\}\right)$. It remains to check the convergence of the power series $\sum_{i=0}^{\infty} t^{i} \eta_{i}$, for $\left|\eta_{0}\right|$ sufficiently small. We supply the space $\Lambda^{*}(M)$ with a Hilbert norm L_{r}^{2} associated with the integral of sum of first r derivatives. Since Δ is elliptic, its inverse G_{Δ} is diagonal with bounded eigenvalues. Using the same arguments, it is possible to show that the operator $G_{\triangle} \bar{\partial}^{*} \partial$ has bounded operator norm.

Step 5: Applying the Cauchy-Schwarz inequality to deduce $|a \wedge b|<A|a||b|$, we obtain

$$
\left|\eta_{n}\right|=\left|G_{\Delta} \bar{\partial}^{*}\left(\sum_{i+j=n-1}\left\{\eta_{i}, \eta_{j}\right\}\right)\right| \leqslant A C \sum_{i+j=n-1}\left|\eta_{i}\right|\left|\eta_{j}\right|
$$

where C is the operator norm of $G_{\Delta} \bar{\partial}^{*} \partial$. Iterating this estimate, we obtain $\left|\eta_{n}\right| \leqslant C^{n} S_{n}\left|\eta_{0}\right|^{n}$, where S_{n} is the n-th Catalan number (the number of ways of putting n brackets into a sum of $n+1$ terms). Catalan numbers can be expressed as $S_{n}=\frac{2 n!}{n!(n+1)!} \leqslant 2^{n}$, which gives $\left|\eta_{n}\right| \leqslant C^{n} 2^{n}\left|\eta_{0}\right|^{n}$. Then the series $\sum t^{i}\left|\eta_{i}\right|$ converges absolutely for some $t>0$.

