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C-symplectic structures (reminder)

DEFINITION: Let M be a smooth 4n-dimensional manifold. A closed

complex-valued form Ω on M is called C-symplectic if Ωn+1 = 0 and Ωn∧Ωn

is a non-degenerate volume form.

THEOREM: Let Ω ∈ Λ2(M,C) be a C-symplectic form, and T
0,1
Ω (M) be

equal to ker Ω, where

ker Ω := {v ∈ TM ⊗ C | Ωyv = 0}.

Then T
0,1
Ω (M)⊕T0,1

Ω (M) = TM⊗RC, hence the sub-bundle T
0,1
Ω (M) defines

an almost complex structure IΩ on M. If, in addition, Ω is closed, IΩ is

integrable, and Ω is holomorphically symplectic on (M, IΩ).

Proof: Rank of Ω is 2n because Ωn+1 = 0 and Re Ω is non-degenerate. Then

ker Ω⊕ker Ω = TCM . The relation [T0,1
Ω (M), T0,1

Ω (M)] ⊂ T0,1
Ω (M) follows from

Theorem 1, Lecture 6.
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Holomorphically symplectic Teichmüller space (reminder)

DEFINITION: Let CSymp be the space of all C-symplectic forms on a

manifold M , equipped with the C∞-topology, and Diff0 the connected com-

ponent of the group of diffeomorphisms. The holomorphically symplectic

Teichmüller space CTeich is the quotient CSymp
Diff0

.

REMARK: Recall that the mapping class group of a manifold M is the

group Γ := Diff
Diff0

of connected components of Diff(M).

REMARK: The quotient CTeich /Γ is identified with the set of all holo-

morphically symplectic structures on M up to isomorphism.
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Period map for holomorphically symplectic manifolds (reminder)

DEFINITION: Let (M, I,Ω) be a holomorphically symplectic manifold, and

CSymp the space of all C-symplectic forms. The quotient CTeich := CSymp
Diff0

is called the holomorphically symplectic Teichmüller space, and the map

CTeich −→H2(M,C) taking (M, I,Ω) to the cohomology class [Ω] ∈ H2(M,C)

the holomorphically symplectic period map.

THEOREM: (Local Torelli theorem, due to Bogomolov)

Let (M, I,Ω) be a complex, Kähler, holomorphically symplectic surface with

H0,1(M) = 0, that is, a K3 surface. Consider the period map

Per : CTeich −→H2(M,C)

taking (M, I,Ω) to the cohomology class [Ω] ∈ H2(M,C). Then Per is a

local diffeomorpism of CTeich to the period space

Q :=
{
v ∈ H2(M,C) |

∫
M
v ∧ v = 0,

∫
M
v ∧ v > 0

}
.

Proof: Surjectivity: later today. Injectivity: lecture 7.
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ddc-lemma (reminder)

THEOREM: Let η be a form on a compact Kähler manifold, satisfying one
of the following conditions.
(1). η is an exact (p, q)-form. (2). η is d-exact, dc-closed.
(3). η is ∂-exact, ∂-closed.
Then η ∈ im ddc = im ∂∂.

Proof: Notice immediately that in all three cases η is closed and orthogonal
to the kernel of ∆, hence its cohomology class vanishes. Indeed, ker ∆ is
orthogonal to the image of ∂, ∂ and d. Since η is exact, it lies in the image of
∆. Operator G∆ := ∆−1 is defined on im ∆ = ker ∆⊥ and commutes with
d, dc.

In case (1), η is d-exact, and I(η) = (
√
−1 )p−qη is d-closed, hence η is d-

exact, dc-closed like in (2). Then η = dα, where α := G∆d
∗η. Since G∆ and

d∗ commute with dc, the form α is dc-closed; since it belongs to im ∆ = imG∆,
it is dc-exact, α = dcβ which gives η = ddcβ.

In case (3), we have η = ∂α, where α := G∆∂
∗η. Since G∆ and ∂∗ commute

with ∂, the form α is ∂-closed; since it belongs to im ∆, it is ∂-exact, α = ∂β

which gives η = ∂∂β.
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Deformation of C-symplectic structures

Let Ω be a holomorphically symplectic form on a complex surface, and u ∈
Λ1,1 + Λ0,2. Then Ω + u is C-symplectic if and only if du = 0 and

(Ω + η)2 = η ∧ η − u0,2 ∧Ω = 0 (∗)

where η = u1,1. Denote by ΛΩ : Λp,q(M)−→ Λp,q−2(M) the operator of

convolution with the (2,0)-bivector dual to Ω; it is inverse to LΩ, where

LΩ(x) = x ∧Ω. The equation (*) is equivalent to ΛΩ(η ∧ η) = −u0,2.

Then du = 0 is equivalent to

∂η = 0, ∂(ΛΩ(η ∧ η)) = 0, ∂η = ∂(ΛΩ(η ∧ η)).

The second equation is automatic, because ΛΩ commutes with ∂, since

the bivector dual to Ω is holomorphic, and ∂η ∧ η = 0 because it is a 5-form.

We proved the following theorem.

THEOREM: Let Ω be a holomorphically symplectic form on a complex

surface, and u ∈ Λ1,1 + Λ0,2. Let η := u1,1. Then Ω + u is C-symplectic if

and only if ∂η = 0, u2,0 = ΛΩ(η ∧ η), and ∂η = ∂u2,0.
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Recursive solutions of Maurer-Cartan equation

REMARK: The equation ∂η = ∂(ΛΩ(η ∧ η)) (“symplectic Maurer-Cartan

equation”) is a form of Maurer-Cartan equation known in deformation the-

ory. We will solve it in the same way as the usual Maurer-Cartan:

recursively.

DEFINITION: Let ηi ∈ Λ1,1(M), i = 0,1, ... be (1,1)-forms on a holomor-

phic symplectic surface. We say that {ηi} is a recursive solution of the

symplectic Maurer-Cartan equation, if

(i) the series
∑
i ηit

i converges absolutely for |t| < ε

(ii) ηi are ∂-closed and ∂-exact for i > 0.

(iii) ∂ηn =
∑
i+j=n−1 ∂(ΛΩ(ηi ∧ ηj)) for all n.
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From recursive solutions to solutions

PROPOSITION: Let {ηi} be a recursive solution of the symplectic Maurer-

Cartan equation, and |t| < ε. Consider the cohomology class [η0] ∈ H1,1
∂ (M) =

H1,1(M) (here we identify the Dolbeault cohomology and the Hodge

cohomology of M). Let η :=
∑
i ηit

i. Then Ωη := Ω + η − ΛΩ(η ∧ η) is

C-symplectic, for t sufficiently small, and cohomologous to [Ω + η0 −
L−1

Ω (η0 ∧ η0)], where LΩ is the multiplication by Ω acting on cohomology.

Proof. Step 1: Since ΛΩ commutes with ∂, we have

∂ΛΩ(η ∧ η) = 2ΛΩ(∂η ∧ η) = 0,

because ∂η∧η is a (2,3)-form. Also, ∂η = 0, because all ηi are ∂-closed. Then

d(Ωη) = ∂η − ∂ΛΩ(η ∧ η) =
∑
n
tn

∂ηn − ∑
i+j=n−1

∂(ΛΩ(ηi ∧ ηj)

 = 0.

Step 2: Since Ω2
η = −Ω ∧ ΛΩ(η ∧ η) + η ∧ η and Ω ∧ (ΛΩ(η ∧ η)) = η ∧ η, we

have Ω2
η = 0. For η sufficiently small, Ωη ∧ Ωη is non-degenerate, because

Ω ∧Ω is non-degenerate. Therefore, Ωη is C-symplectic. It remains only

to express the cohomology class of Ωη through [η0] ∈ H1,1
∂ (M).
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From recursive solutions to solutions (2)

PROPOSITION: Let {ηi} be a recursive solution of the symplectic Maurer-

Cartan equation as above, and η :=
∑
i ηit

i. Then Ωη := Ω + η − ΛΩ(η ∧ η)

is C-symplectic, for t sufficiently small, and cohomologous to [Ω + η0−
L−1

Ω (η0 ∧ η0)], where LΩ is the multiplication by Ω acting on cohomology.

Step 1-2: Ωη is C-symplectic.

Step 3: The (1,2)-form d(ΛΩ(η ∧ η)) = ∂(ΛΩ(η ∧ η) = ∂η is ∂-exact and

∂-exact, hence it is ∂∂-exact. Therefore, there exists a (0,1)-form α such

that ∂(ΛΩ(η ∧ η)) = ∂∂α. Then, the (0,2)-form β := ΛΩ(η ∧ η) − ∂α is

closed. We obtain that all Hodge components of Ωη − dα are closed: indeed,

d(Ωη − dα) = 0 and the form (Ωη − dα)0,2 = β is ∂ and ∂-closed. Therefore,

the cohomology class [Ωη] is equal to the sum of the Dolbeault classes of Ω,

η1,1 and β (this form is antiholomorphic). The de Rham cohomology class

of η − ∂α is equal to its Dolbeault class [η0], and the de Rham cohomology

class [β] = const · [Ω] of β is uniquely determined from

0 = [Ωη]2 = ([Ω] + [η0] + [β])2 = [η0]2 + 2[Ω] ∧ [β].
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From recursive solutions to deformations

PROPOSITION: Let {ηi} be a recursive solution of the symplectic Maurer-

Cartan equation, and |t| < ε. Consider the cohomology class [η0] ∈ H1,1
∂ (M) =

H1,1(M) (here we identify the Dolbeault cohomology and the Hodge

cohomology of M). Let η :=
∑
i ηit

i. Then Ωη := Ω + η − ΛΩ(η ∧ η) is

C-symplectic, for t sufficiently small, and cohomologous to [Ω + η0 −
L−1

Ω (η0 ∧ η0)], where LΩ is the multiplication by Ω acting on cohomology.

Therefore, the local surjectivity of the period map is implied by the following

THEOREM: Let (M,Ω) be a compact holomorphic symplectic surface, and

η0 ∈ Λ1,1(M) a closed (1,1)-form. Then there exists a recursive solution

{ηi} ⊂ Λ1,1(M) of the symplectic Maurer-Cartan equation.

Proof: Later today.
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Holomorphically symplectic Schouten bracket

DEFINITION: Let a, b ∈ Λ∗,1 be (∗,1)-forms on a holomorphically symplectic

manifold (M,Ω), and

{a, b} := δ(a ∧ b)− δ(a) ∧ b− (−1)ã−1a ∧ δ(b),

where δ = [∂,ΛΩ]. We call {·, ·} the holomorphically symplectic Schouten

bracket.

REMARK: For (1,1)-forms, {a, b} := ∂(ΛΩ(a ∧ b)− ΛΩ(∂(a ∧ b)).

REMARK: Clearly, the Schouten bracket is graded commutative:

{a, b} − (−1)ã̃b{b, a} = 0.

THEOREM 1: The holomorphically symplectic Schouten bracket satisfies

the odd graded Jacobi identity

{a, {b, c}} = {{a, b}, c}+ (−1)(ã−1)(̃b−1){b, {a, c}}.

Proof: Lecture 9 (next Monday).
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The third commutator

Whenever a bracket {·, ·} is supercommutative and satisfies the graded Jacobi

identity, the third commutator of a vector with itself vanishes.

COROLLARY: For any v ∈ Λ∗,1, one has {v, {v, v}} = 0.

Proof: If v is odd, {v, v} = 0 because the Schouten bracket is graded com-

mutative. If v is even, the odd graded Jacobi identity gives

{v, {v, v}} = {{v, v}, v} − {v, {v, v}},

hence 2{v, {v, v}} = {{v, v}, v} = −{v, {v, v}}, implying 3{v, {v, v}} = 0.
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Solving the symplectic Maurer-Cartan equation

THEOREM: Let (M,Ω) be a compact holomorphic symplectic surface, and

η0 ∈ Λ1,1(M) a closed (1,1)-form. Then there exists a recursive solution

{ηi} ⊂ Λ1,1(M) of the symplectic Maurer-Cartan equation

∂ηn =
∑

i+j=n−1

{ηi, ηj}.

Proof. Step 1: Suppose that η0, ..., ηn−1 ∈ Λ1,1(M) are already found, and

satisfy ηk =
∑
i+j=k−1{ηi, ηj}, ∂ηi = 0 for all k = 0, ..., n− 1. For any ∂-closed

a, b ∈ Λ∗,1(M), we have

∂{a, b} = ∂{a, b} = ∂∂(ΛΩ(a ∧ b) = −∂(ΛΩ(∂a ∧ b) + (−1)ã∂(ΛΩ(a ∧ ∂b),

because ∂ commutes with ΛΩ and anticommutes with ∂. Taking a = ηk, b = ηl,

k, l < n we obtain

∂{ηk, ηl} =

 ∑
i+j=k−1

{ηi, ηj}, ηl

+

ηk, ∑
i+j=l−1

{ηi, ηj}

 .
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Solving the symplectic Maurer-Cartan equation (2)

THEOREM: Let (M,Ω) be a compact holomorphic symplectic surface, and
η0 ∈ Λ1,1(M) a closed (1,1)-form. Then there exists a recursive solu-
tion {ηi ∈ Λ1,1(M)} of the symplectic Maurer-Cartan equation ∂ηn =∑
i+j=n−1{ηi, ηj}.

Proof. Step 1: ∂{ηk, ηl} =
{ ∑

i+j=k-1

{ηi, ηj}, ηl
}

+
{
ηk,

∑
i+j=l-1

{ηi, ηj}
}
.

Step 2: Let θn :=
∑n−1
i=0 t

iηi. Then Theorem 1 implies that

∂{θn, θn} =
n-1∑

m=0

∑
k+l=m

tk+l∂{ηk, ηl} =
n-1∑

m=0

∑
p+q+r=m-1

tp+q+r

(
{{ηp, ηq}, ηr}+

+ {ηp, {ηq, ηr}}
)

= {θn, {θn, θn}}+ {{θn, θn}, θn} = 0.

This gives ∂
(∑

i+j=n−1{ηi, ηj}
)

= 0.

Step 3: Since
∑

i+j=n−1
{ηi, ηj} =

∑
i+j=n−1

∂ΛΩ(ηi∧ ηj) is ∂-closed and ∂-exact,

this form is ∂∂-exact: ∂∂β =
∑
i+j=n−1{ηi, ηj}. Take ηn := ∂β; this form is

∂-exact and satisfies the equation ∂ηn =
∑
i+j=n−1{ηi, ηj}. It remains to

make sure that the power series
∑∞
i=0 t

iηi converges for t sufficiently
small.
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Solving the symplectic Maurer-Cartan equation (3)

Step 4: We will use the operator G∆∂
∗

to invert ∂; this was justified earlier

using the Hodge theory. This allows us to take ηn = G∆∂
∗
(
∑
i+j=n−1{ηi, ηj}).

It remains to check the convergence of the power series
∑∞
i=0 t

iηi, for

|η0| sufficiently small. We supply the space Λ∗(M) with a Hilbert norm L2
r

associated with the integral of sum of first r derivatives. Since ∆ is elliptic, its

inverse G∆ is diagonal with bounded eigenvalues. Using the same arguments,

it is possible to show that the operator G∆∂
∗
∂ has bounded operator norm.

Step 5: Applying the Cauchy-Schwarz inequality to deduce |a ∧ b| < A|a||b|,
we obtain

|ηn| =

∣∣∣∣∣∣G∆∂
∗
 ∑
i+j=n−1

{ηi, ηj}

∣∣∣∣∣∣ 6 AC
∑

i+j=n−1

|ηi||ηj|

where C is the operator norm of G∆∂
∗
∂. Iterating this estimate, we obtain

|ηn| 6 CnSn|η0|n, where Sn is the n-th Catalan number (the number of ways

of putting n brackets into a sum of n + 1 terms). Catalan numbers can be

expressed as Sn = 2n!
n!(n+1)! 6 2n, which gives |ηn| 6 Cn2n|η0|n. Then the

series
∑
ti|ηi| converges absolutely for some t > 0.
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