K3 surfaces

lecture 9: local Torelli theorem. Surjectivity of the period map.

Misha Verbitsky

IMPA, sala 236

November 21, 2022, 15:30

C-symplectic structures (reminder)

DEFINITION: Let M be a smooth 4n-dimensional manifold. A closed complex-valued form Ω on M is called **C-symplectic** if $\Omega^{n+1} = 0$ and $\Omega^n \wedge \overline{\Omega}^n$ is a non-degenerate volume form.

THEOREM: Let $\Omega \in \Lambda^2(M,\mathbb{C})$ be a C-symplectic form, and $T^{0,1}_{\Omega}(M)$ be equal to $\ker \Omega$, where

$$\ker \Omega := \{ v \in TM \otimes \mathbb{C} \mid \Omega \lrcorner v = 0 \}.$$

Then $T_{\Omega}^{0,1}(M) \oplus \overline{T_{\Omega}^{0,1}(M)} = TM \otimes_{\mathbb{R}} \mathbb{C}$, hence the sub-bundle $T_{\Omega}^{0,1}(M)$ defines an almost complex structure I_{Ω} on M. If, in addition, Ω is closed, I_{Ω} is integrable, and Ω is holomorphically symplectic on (M, I_{Ω}) .

Proof: Rank of Ω is 2n because $\Omega^{n+1}=0$ and $\operatorname{Re}\Omega$ is non-degenerate. Then $\ker \Omega \oplus \overline{\ker \Omega} = T_{\mathbb{C}}M$. The relation $[T_{\Omega}^{0,1}(M), T_{\Omega}^{0,1}(M)] \subset T_{\Omega}^{0,1}(M)$ follows from Theorem 1, Lecture 6. \blacksquare

Holomorphically symplectic Teichmüller space (reminder)

DEFINITION: Let CSymp be the space of all C-symplectic forms on a manifold M, equipped with the C^{∞} -topology, and Diff_0 the connected component of the group of diffeomorphisms. The **holomorphically symplectic** Teichmüller space CTeich is the quotient $\frac{\mathrm{CSymp}}{\mathrm{Diff}_0}$.

REMARK: Recall that the mapping class group of a manifold M is the group $\Gamma := \frac{\text{Diff}}{\text{Diff}_0}$ of connected components of Diff(M).

REMARK: The quotient CTeich / Γ is identified with the set of all holomorphically symplectic structures on M up to isomorphism.

Period map for holomorphically symplectic manifolds (reminder)

DEFINITION: Let (M, I, Ω) be a holomorphically symplectic manifold, and CSymp the space of all C-symplectic forms. The quotient CTeich := $\frac{\text{CSymp}}{\text{Diff}_0}$ is called **the holomorphically symplectic Teichmüller space**, and the map CTeich $\longrightarrow H^2(M, \mathbb{C})$ taking (M, I, Ω) to the cohomology class $[\Omega] \in H^2(M, \mathbb{C})$ **the holomorphically symplectic period map**.

THEOREM: (Local Torelli theorem, due to Bogomolov)

Let (M, I, Ω) be a complex, Kähler, holomorphically symplectic surface with $H^{0,1}(M)=0$, that is, a K3 surface. Consider the period map

Per: CTeich
$$\longrightarrow H^2(M,\mathbb{C})$$

taking (M, I, Ω) to the cohomology class $[\Omega] \in H^2(M, \mathbb{C})$. Then Per is a local diffeomorpism of CTeich to the period space

$$Q := \left\{ v \in H^2(M, \mathbb{C}) \mid \int_M v \wedge v = 0, \int_M v \wedge \overline{v} > 0 \right\}.$$

Proof: Surjectivity: later today. Injectivity: lecture 7. ■

dd^c -lemma (reminder)

THEOREM: Let η be a form on a compact Kähler manifold, satisfying one of the following conditions.

- (1). η is an exact (p,q)-form. (2). η is d-exact, d^c -closed.
- (3). η is ∂ -exact, $\overline{\partial}$ -closed.

Then $\eta \in \operatorname{im} dd^c = \operatorname{im} \partial \overline{\partial}$.

Proof: Notice immediately that in all three cases η is closed and orthogonal to the kernel of Δ , hence its cohomology class vanishes. Indeed, $\ker \Delta$ is orthogonal to the image of ∂ , $\overline{\partial}$ and d. Since η is exact, it lies in the image of Δ . Operator $G_{\Delta} := \Delta^{-1}$ is defined on $\operatorname{im} \Delta = \ker \Delta^{\perp}$ and commutes with d, d^c .

In case (1), η is d-exact, and $I(\eta) = (\sqrt{-1})^{p-q}\eta$ is d-closed, hence η is d-exact, d^c -closed like in (2). Then $\eta = d\alpha$, where $\alpha := G_{\Delta}d^*\eta$. Since G_{Δ} and d^* commute with d^c , the form α is d^c -closed; since it belongs to im $\Delta = \operatorname{im} G_{\Delta}$, it is d^c -exact, $\alpha = d^c\beta$ which gives $\eta = dd^c\beta$.

In case (3), we have $\eta = \partial \alpha$, where $\alpha := G_{\Delta} \partial^* \eta$. Since G_{Δ} and ∂^* commute with $\overline{\partial}$, the form α is $\overline{\partial}$ -closed; since it belongs to im Δ , it is $\overline{\partial}$ -exact, $\alpha = \overline{\partial} \beta$ which gives $\eta = \partial \overline{\partial} \beta$.

Deformation of C-symplectic structures

Let Ω be a holomorphically symplectic form on a complex surface, and $u \in \Lambda^{1,1} + \Lambda^{0,2}$. Then $\Omega + u$ is C-symplectic if and only if du = 0 and

$$(\Omega + \eta)^2 = \eta \wedge \eta - u^{0,2} \wedge \Omega = 0 \quad (*)$$

where $\eta = u^{1,1}$. Denote by Λ_{Ω} : $\Lambda^{p,q}(M) \longrightarrow \Lambda^{p,q-2}(M)$ the operator of convolution with the (2,0)-bivector dual to Ω ; it is inverse to L_{Ω} , where $L_{\Omega}(x) = x \wedge \Omega$. The equation (*) is equivalent to $\Lambda_{\Omega}(\eta \wedge \eta) = -u^{0,2}$.

Then du = 0 is equivalent to

$$\partial \eta = 0, \quad \overline{\partial}(\Lambda_{\Omega}(\eta \wedge \eta)) = 0, \quad \overline{\partial}\eta = \partial(\Lambda_{\Omega}(\eta \wedge \eta)).$$

The second equation is automatic, because Λ_{Ω} commutes with $\overline{\partial}$, since the bivector dual to Ω is holomorphic, and $\overline{\partial}\eta \wedge \eta = 0$ because it is a 5-form. We proved the following theorem.

THEOREM: Let Ω be a holomorphically symplectic form on a complex surface, and $u \in \Lambda^{1,1} + \Lambda^{0,2}$. Let $\eta := u^{1,1}$. Then $\Omega + u$ is C-symplectic if and only if $\partial \eta = 0$, $u^{2,0} = \Lambda_{\Omega}(\eta \wedge \eta)$, and $\overline{\partial} \eta = \partial u^{2,0}$.

Recursive solutions of Maurer-Cartan equation

REMARK: The equation $\overline{\partial}\eta = \partial(\Lambda_{\Omega}(\eta \wedge \eta))$ ("symplectic Maurer-Cartan equation") is a form of Maurer-Cartan equation known in deformation theory. We will solve it in the same way as the usual Maurer-Cartan: recursively.

DEFINITION: Let $\eta_i \in \Lambda^{1,1}(M)$, i = 0, 1, ... be (1,1)-forms on a holomorphic symplectic surface. We say that $\{\eta_i\}$ is a recursive solution of the symplectic Maurer-Cartan equation, if

- (i) the series $\sum_i \eta_i t^i$ converges absolutely for $|t| < \varepsilon$
- (ii) η_i are ∂ -closed and ∂ -exact for i > 0.
- (iii) $\overline{\partial}\eta_n = \sum_{i+j=n-1} \partial(\Lambda_{\Omega}(\eta_i \wedge \eta_j))$ for all n.

From recursive solutions to solutions

PROPOSITION: Let $\{\eta_i\}$ be a recursive solution of the symplectic Maurer-Cartan equation, and $|t| < \varepsilon$. Consider the cohomology class $[\eta_0] \in H^{1,1}_{\partial}(M) = H^{1,1}(M)$ (here we identify the Dolbeault cohomology and the Hodge cohomology of M). Let $\eta := \sum_i \eta_i t^i$. Then $\Omega_{\eta} := \Omega + \eta - \Lambda_{\Omega}(\eta \wedge \eta)$ is \mathbb{C} -symplectic, for t sufficiently small, and cohomologous to $[\Omega + \eta_0 - L^{-1}_{\Omega}(\eta_0 \wedge \eta_0)]$, where L_{Ω} is the multiplication by Ω acting on cohomology.

Proof. Step 1: Since Λ_{Ω} commutes with $\overline{\partial}$, we have

$$\overline{\partial} \Lambda_{\Omega}(\eta \wedge \eta) = 2\Lambda_{\Omega}(\overline{\partial} \eta \wedge \eta) = 0,$$

because $\overline{\partial}\eta\wedge\eta$ is a (2,3)-form. Also, $\partial\eta=0$, because all η_i are ∂ -closed. Then

$$d(\Omega_{\eta}) = \overline{\partial}\eta - \partial\Lambda_{\Omega}(\eta \wedge \eta) = \sum_{n} t^{n} \left(\overline{\partial}\eta_{n} - \sum_{i+j=n-1} \partial(\Lambda_{\Omega}(\eta_{i} \wedge \eta_{j})) \right) = 0.$$

Step 2: Since $\Omega_{\eta}^2 = -\Omega \wedge \Lambda_{\Omega}(\eta \wedge \eta) + \eta \wedge \eta$ and $\Omega \wedge (\Lambda_{\Omega}(\eta \wedge \eta)) = \eta \wedge \eta$, we have $\Omega_{\eta}^2 = 0$. For η sufficiently small, $\Omega_{\eta} \wedge \overline{\Omega}_{\eta}$ is non-degenerate, because $\Omega \wedge \overline{\Omega}$ is non-degenerate. Therefore, Ω_{η} is C-symplectic. It remains only to express the cohomology class of Ω_{η} through $[\eta_0] \in H_{\partial}^{1,1}(M)$.

From recursive solutions to solutions (2)

PROPOSITION: Let $\{\eta_i\}$ be a recursive solution of the symplectic Maurer-Cartan equation as above, and $\eta:=\sum_i\eta_it^i$. Then $\Omega_\eta:=\Omega+\eta-\Lambda_\Omega(\eta\wedge\eta)$ is $\mathbb C$ -symplectic, for t sufficiently small, and cohomologous to $[\Omega+\eta_0-L_\Omega^{-1}(\eta_0\wedge\eta_0)]$, where L_Ω is the multiplication by Ω acting on cohomology.

Step 1-2: Ω_{η} is C-symplectic.

Step 3: The (1,2)-form $d(\Lambda_{\Omega}(\eta \wedge \eta)) = \partial(\Lambda_{\Omega}(\eta \wedge \eta) = \overline{\partial}\eta$ is ∂ -exact and $\overline{\partial}$ -exact, hence it is $\partial\overline{\partial}$ -exact. Therefore, there exists a (0,1)-form α such that $\partial(\Lambda_{\Omega}(\eta \wedge \eta)) = \partial\overline{\partial}\alpha$. Then, the (0,2)-form $\beta := \Lambda_{\Omega}(\eta \wedge \eta) - \overline{\partial}\alpha$ is closed. We obtain that all Hodge components of $\Omega_{\eta} - d\alpha$ are closed: indeed, $d(\Omega_{\eta} - d\alpha) = 0$ and the form $(\Omega_{\eta} - d\alpha)^{0,2} = \beta$ is $\overline{\partial}$ and ∂ -closed. Therefore, the cohomology class $[\Omega_{\eta}]$ is equal to the sum of the Dolbeault classes of Ω , $\eta^{1,1}$ and β (this form is antiholomorphic). The de Rham cohomology class of $\eta - \partial \alpha$ is equal to its Dolbeault class $[\eta_0]$, and the de Rham cohomology class $[\beta] = const \cdot [\overline{\Omega}]$ of β is uniquely determined from

$$0 = [\Omega_{\eta}]^2 = ([\Omega] + [\eta_0] + [\beta])^2 = [\eta_0]^2 + 2[\Omega] \wedge [\beta].$$

From recursive solutions to deformations

PROPOSITION: Let $\{\eta_i\}$ be a recursive solution of the symplectic Maurer-Cartan equation, and $|t| < \varepsilon$. Consider the cohomology class $[\eta_0] \in H^{1,1}_{\partial}(M) = H^{1,1}(M)$ (here we identify the Dolbeault cohomology and the Hodge cohomology of M). Let $\eta := \sum_i \eta_i t^i$. Then $\Omega_{\eta} := \Omega + \eta - \Lambda_{\Omega}(\eta \wedge \eta)$ is \mathbb{C} -symplectic, for t sufficiently small, and cohomologous to $[\Omega + \eta_0 - L^{-1}_{\Omega}(\eta_0 \wedge \eta_0)]$, where L_{Ω} is the multiplication by Ω acting on cohomology.

Therefore, the local surjectivity of the period map is implied by the following

THEOREM: Let (M,Ω) be a compact holomorphic symplectic surface, and $\eta_0 \in \Lambda^{1,1}(M)$ a closed (1,1)-form. Then there exists a recursive solution $\{\eta_i\} \subset \Lambda^{1,1}(M)$ of the symplectic Maurer-Cartan equation.

Proof: Later today.

Holomorphically symplectic Schouten bracket

DEFINITION: Let $a, b \in \Lambda^{*,1}$ be (*, 1)-forms on a holomorphically symplectic manifold (M, Ω) , and

$$\{a,b\} := \delta(a \wedge b) - \delta(a) \wedge b - (-1)^{\tilde{a}-1}a \wedge \delta(b),$$

where $\delta = [\partial, \Lambda_{\Omega}]$. We call $\{\cdot, \cdot\}$ the holomorphically symplectic Schouten bracket.

REMARK: For (1,1)-forms, $\{a,b\} := \partial(\Lambda_{\Omega}(a \wedge b) - \Lambda_{\Omega}(\partial(a \wedge b)).$

REMARK: Clearly, the Schouten bracket is graded commutative:

$${a,b} - (-1)^{\tilde{a}\tilde{b}} {b,a} = 0.$$

THEOREM 1: The holomorphically symplectic Schouten bracket satisfies the odd graded Jacobi identity

$${a, \{b, c\}} = {\{a, b\}, c\} + (-1)^{(\tilde{a}-1)(\tilde{b}-1)} \{b, \{a, c\}\}.$$

Proof: Lecture 9 (next Monday). ■

The third commutator

Whenever a bracket $\{\cdot,\cdot\}$ is supercommutative and satisfies the graded Jacobi identity, the third commutator of a vector with itself vanishes.

COROLLARY: For any $v \in \Lambda^{*,1}$, one has $\{v, \{v, v\}\} = 0$.

Proof: If v is odd, $\{v,v\}=0$ because the Schouten bracket is graded commutative. If v is even, the odd graded Jacobi identity gives

$$\{v, \{v, v\}\} = \{\{v, v\}, v\} - \{v, \{v, v\}\},\$$

hence $2\{v,\{v,v\}\} = \{\{v,v\},v\} = -\{v,\{v,v\}\}$, implying $3\{v,\{v,v\}\} = 0$.

Solving the symplectic Maurer-Cartan equation

THEOREM: Let (M,Ω) be a compact holomorphic symplectic surface, and $\eta_0 \in \Lambda^{1,1}(M)$ a closed (1,1)-form. Then there exists a recursive solution $\{\eta_i\} \subset \Lambda^{1,1}(M)$ of the symplectic Maurer-Cartan equation

$$\overline{\partial}\eta_n = \sum_{i+j=n-1} \{\eta_i, \eta_j\}.$$

Proof. Step 1: Suppose that $\eta_0,...,\eta_{n-1} \in \Lambda^{1,1}(M)$ are already found, and satisfy $\overline{\eta}_k = \sum_{i+j=k-1} {\{\eta_i,\eta_j\}}$, $\partial \eta_i = 0$ for all k = 0,...,n-1. For any ∂ -closed $a,b \in \Lambda^{*,1}(M)$, we have

$$\overline{\partial}\{a,b\} = \overline{\partial}\{a,b\} = \overline{\partial}\partial(\Lambda_{\Omega}(a \wedge b)) = -\partial(\Lambda_{\Omega}(\overline{\partial}a \wedge b)) + (-1)^{\tilde{a}}\partial(\Lambda_{\Omega}(a \wedge \overline{\partial}b)),$$

because $\overline{\partial}$ commutes with Λ_{Ω} and anticommutes with ∂ . Taking $a=\eta_k, b=\eta_l$, k,l< n we obtain

$$\overline{\partial}\{\eta_k,\eta_l\} = \left\{ \sum_{i+j=k-1} \{\eta_i,\eta_j\}, \eta_l \right\} + \left\{ \eta_k, \sum_{i+j=l-1} \{\eta_i,\eta_j\} \right\}.$$

Solving the symplectic Maurer-Cartan equation (2)

THEOREM: Let (M,Ω) be a compact holomorphic symplectic surface, and $\eta_0 \in \Lambda^{1,1}(M)$ a closed (1,1)-form. Then there exists a recursive solution $\{\eta_i \in \Lambda^{1,1}(M)\}$ of the symplectic Maurer-Cartan equation $\overline{\partial}\eta_n = \sum_{i+j=n-1} \{\eta_i, \eta_j\}$.

Proof. Step 1:
$$\overline{\partial}\{\eta_k,\eta_l\} = \left\{\sum\limits_{i+j=k-1}\{\eta_i,\eta_j\},\eta_l\right\} + \left\{\eta_k,\sum\limits_{i+j=l-1}\{\eta_i,\eta_j\}\right\}.$$

Step 2: Let $\theta_n := \sum_{i=0}^{n-1} t^i \eta_i$. Then Theorem 1 implies that

$$\overline{\partial}\{\theta_{n},\theta_{n}\} = \sum_{m=0}^{n-1} \sum_{k+l=m} t^{k+l} \overline{\partial}\{\eta_{k},\eta_{l}\} = \sum_{m=0}^{n-1} \sum_{p+q+r=m-1} t^{p+q+r} \left(\{\{\eta_{p},\eta_{q}\},\eta_{r}\} + \{\eta_{p},\{\eta_{q},\eta_{r}\}\}\right) = \{\theta_{n},\{\theta_{n},\theta_{n}\}\} + \{\{\theta_{n},\theta_{n}\},\theta_{n}\} = 0.$$

This gives $\overline{\partial}\left(\sum_{i+j=n-1}\{\eta_i,\eta_j\}\right)=0$.

Step 3: Since $\sum_{i+j=n-1} \{\eta_i, \eta_j\} = \sum_{i+j=n-1} \partial \Lambda_{\Omega}(\eta_i \wedge \eta_j)$ is ∂ -closed and ∂ -exact,

this form is $\overline{\partial}\partial$ -exact: $\overline{\partial}\partial\beta=\sum_{i+j=n-1}\{\eta_i,\eta_j\}$. Take $\eta_n:=\partial\beta$; this form is ∂ -exact and satisfies the equation $\overline{\partial}\eta_n=\sum_{i+j=n-1}\{\eta_i,\eta_j\}$. It remains to make sure that the power series $\sum_{i=0}^{\infty}t^i\eta_i$ converges for t sufficiently small.

Solving the symplectic Maurer-Cartan equation (3)

Step 4: We will use the operator $G_{\Delta}\overline{\partial}^*$ to invert $\overline{\partial}$; this was justified earlier using the Hodge theory. This allows us to take $\eta_n = G_{\Delta}\overline{\partial}^*(\sum_{i+j=n-1}\{\eta_i,\eta_j\})$. It remains to check the convergence of the power series $\sum_{i=0}^{\infty} t^i \eta_i$, for $|\eta_0|$ sufficiently small. We supply the space $\Lambda^*(M)$ with a Hilbert norm L_r^2 associated with the integral of sum of first r derivatives. Since Δ is elliptic, its inverse G_{Δ} is diagonal with bounded eigenvalues. Using the same arguments, it is possible to show that the operator $G_{\Delta}\overline{\partial}^*\partial$ has bounded operator norm.

Step 5: Applying the Cauchy-Schwarz inequality to deduce $|a \wedge b| < A|a||b|$, we obtain

$$|\eta_n| = \left| G_{\Delta} \overline{\partial}^* \left(\sum_{i+j=n-1} \{ \eta_i, \eta_j \} \right) \right| \leqslant AC \sum_{i+j=n-1} |\eta_i| |\eta_j|$$

where C is the operator norm of $G_{\Delta}\overline{\partial}^*\partial$. Iterating this estimate, we obtain $|\eta_n|\leqslant C^nS_n|\eta_0|^n$, where S_n is the n-th Catalan number (the number of ways of putting n brackets into a sum of n+1 terms). Catalan numbers can be expressed as $S_n=\frac{2n!}{n!(n+1)!}\leqslant 2^n$, which gives $|\eta_n|\leqslant C^n2^n|\eta_0|^n$. Then the series $\sum t^i|\eta_i|$ converges absolutely for some t>0.