K3 surfaces lecture 9: local Torelli theorem. Surjectivity of the period map. Misha Verbitsky IMPA, sala 236 November 21, 2022, 15:30 # **C-symplectic structures (reminder)** **DEFINITION:** Let M be a smooth 4n-dimensional manifold. A closed complex-valued form Ω on M is called **C-symplectic** if $\Omega^{n+1} = 0$ and $\Omega^n \wedge \overline{\Omega}^n$ is a non-degenerate volume form. **THEOREM:** Let $\Omega \in \Lambda^2(M,\mathbb{C})$ be a C-symplectic form, and $T^{0,1}_{\Omega}(M)$ be equal to $\ker \Omega$, where $$\ker \Omega := \{ v \in TM \otimes \mathbb{C} \mid \Omega \lrcorner v = 0 \}.$$ Then $T_{\Omega}^{0,1}(M) \oplus \overline{T_{\Omega}^{0,1}(M)} = TM \otimes_{\mathbb{R}} \mathbb{C}$, hence the sub-bundle $T_{\Omega}^{0,1}(M)$ defines an almost complex structure I_{Ω} on M. If, in addition, Ω is closed, I_{Ω} is integrable, and Ω is holomorphically symplectic on (M, I_{Ω}) . **Proof:** Rank of Ω is 2n because $\Omega^{n+1}=0$ and $\operatorname{Re}\Omega$ is non-degenerate. Then $\ker \Omega \oplus \overline{\ker \Omega} = T_{\mathbb{C}}M$. The relation $[T_{\Omega}^{0,1}(M), T_{\Omega}^{0,1}(M)] \subset T_{\Omega}^{0,1}(M)$ follows from Theorem 1, Lecture 6. \blacksquare # Holomorphically symplectic Teichmüller space (reminder) **DEFINITION:** Let CSymp be the space of all C-symplectic forms on a manifold M, equipped with the C^{∞} -topology, and Diff_0 the connected component of the group of diffeomorphisms. The **holomorphically symplectic** Teichmüller space CTeich is the quotient $\frac{\mathrm{CSymp}}{\mathrm{Diff}_0}$. **REMARK:** Recall that the mapping class group of a manifold M is the group $\Gamma := \frac{\text{Diff}}{\text{Diff}_0}$ of connected components of Diff(M). REMARK: The quotient CTeich / Γ is identified with the set of all holomorphically symplectic structures on M up to isomorphism. # Period map for holomorphically symplectic manifolds (reminder) **DEFINITION:** Let (M, I, Ω) be a holomorphically symplectic manifold, and CSymp the space of all C-symplectic forms. The quotient CTeich := $\frac{\text{CSymp}}{\text{Diff}_0}$ is called **the holomorphically symplectic Teichmüller space**, and the map CTeich $\longrightarrow H^2(M, \mathbb{C})$ taking (M, I, Ω) to the cohomology class $[\Omega] \in H^2(M, \mathbb{C})$ **the holomorphically symplectic period map**. ## THEOREM: (Local Torelli theorem, due to Bogomolov) Let (M, I, Ω) be a complex, Kähler, holomorphically symplectic surface with $H^{0,1}(M)=0$, that is, a K3 surface. Consider the period map Per: CTeich $$\longrightarrow H^2(M,\mathbb{C})$$ taking (M, I, Ω) to the cohomology class $[\Omega] \in H^2(M, \mathbb{C})$. Then Per is a local diffeomorpism of CTeich to the period space $$Q := \left\{ v \in H^2(M, \mathbb{C}) \mid \int_M v \wedge v = 0, \int_M v \wedge \overline{v} > 0 \right\}.$$ **Proof:** Surjectivity: later today. Injectivity: lecture 7. ■ ### dd^c -lemma (reminder) **THEOREM:** Let η be a form on a compact Kähler manifold, satisfying one of the following conditions. - (1). η is an exact (p,q)-form. (2). η is d-exact, d^c -closed. - (3). η is ∂ -exact, $\overline{\partial}$ -closed. Then $\eta \in \operatorname{im} dd^c = \operatorname{im} \partial \overline{\partial}$. **Proof:** Notice immediately that in all three cases η is closed and orthogonal to the kernel of Δ , hence its cohomology class vanishes. Indeed, $\ker \Delta$ is orthogonal to the image of ∂ , $\overline{\partial}$ and d. Since η is exact, it lies in the image of Δ . Operator $G_{\Delta} := \Delta^{-1}$ is defined on $\operatorname{im} \Delta = \ker \Delta^{\perp}$ and commutes with d, d^c . In case (1), η is d-exact, and $I(\eta) = (\sqrt{-1})^{p-q}\eta$ is d-closed, hence η is d-exact, d^c -closed like in (2). Then $\eta = d\alpha$, where $\alpha := G_{\Delta}d^*\eta$. Since G_{Δ} and d^* commute with d^c , the form α is d^c -closed; since it belongs to im $\Delta = \operatorname{im} G_{\Delta}$, it is d^c -exact, $\alpha = d^c\beta$ which gives $\eta = dd^c\beta$. In case (3), we have $\eta = \partial \alpha$, where $\alpha := G_{\Delta} \partial^* \eta$. Since G_{Δ} and ∂^* commute with $\overline{\partial}$, the form α is $\overline{\partial}$ -closed; since it belongs to im Δ , it is $\overline{\partial}$ -exact, $\alpha = \overline{\partial} \beta$ which gives $\eta = \partial \overline{\partial} \beta$. ### **Deformation of C-symplectic structures** Let Ω be a holomorphically symplectic form on a complex surface, and $u \in \Lambda^{1,1} + \Lambda^{0,2}$. Then $\Omega + u$ is C-symplectic if and only if du = 0 and $$(\Omega + \eta)^2 = \eta \wedge \eta - u^{0,2} \wedge \Omega = 0 \quad (*)$$ where $\eta = u^{1,1}$. Denote by Λ_{Ω} : $\Lambda^{p,q}(M) \longrightarrow \Lambda^{p,q-2}(M)$ the operator of convolution with the (2,0)-bivector dual to Ω ; it is inverse to L_{Ω} , where $L_{\Omega}(x) = x \wedge \Omega$. The equation (*) is equivalent to $\Lambda_{\Omega}(\eta \wedge \eta) = -u^{0,2}$. Then du = 0 is equivalent to $$\partial \eta = 0, \quad \overline{\partial}(\Lambda_{\Omega}(\eta \wedge \eta)) = 0, \quad \overline{\partial}\eta = \partial(\Lambda_{\Omega}(\eta \wedge \eta)).$$ The second equation is automatic, because Λ_{Ω} commutes with $\overline{\partial}$, since the bivector dual to Ω is holomorphic, and $\overline{\partial}\eta \wedge \eta = 0$ because it is a 5-form. We proved the following theorem. **THEOREM:** Let Ω be a holomorphically symplectic form on a complex surface, and $u \in \Lambda^{1,1} + \Lambda^{0,2}$. Let $\eta := u^{1,1}$. Then $\Omega + u$ is C-symplectic if and only if $\partial \eta = 0$, $u^{2,0} = \Lambda_{\Omega}(\eta \wedge \eta)$, and $\overline{\partial} \eta = \partial u^{2,0}$. ### Recursive solutions of Maurer-Cartan equation **REMARK:** The equation $\overline{\partial}\eta = \partial(\Lambda_{\Omega}(\eta \wedge \eta))$ ("symplectic Maurer-Cartan equation") is a form of Maurer-Cartan equation known in deformation theory. We will solve it in the same way as the usual Maurer-Cartan: recursively. **DEFINITION:** Let $\eta_i \in \Lambda^{1,1}(M)$, i = 0, 1, ... be (1,1)-forms on a holomorphic symplectic surface. We say that $\{\eta_i\}$ is a recursive solution of the symplectic Maurer-Cartan equation, if - (i) the series $\sum_i \eta_i t^i$ converges absolutely for $|t| < \varepsilon$ - (ii) η_i are ∂ -closed and ∂ -exact for i > 0. - (iii) $\overline{\partial}\eta_n = \sum_{i+j=n-1} \partial(\Lambda_{\Omega}(\eta_i \wedge \eta_j))$ for all n. #### From recursive solutions to solutions PROPOSITION: Let $\{\eta_i\}$ be a recursive solution of the symplectic Maurer-Cartan equation, and $|t| < \varepsilon$. Consider the cohomology class $[\eta_0] \in H^{1,1}_{\partial}(M) = H^{1,1}(M)$ (here we identify the Dolbeault cohomology and the Hodge cohomology of M). Let $\eta := \sum_i \eta_i t^i$. Then $\Omega_{\eta} := \Omega + \eta - \Lambda_{\Omega}(\eta \wedge \eta)$ is \mathbb{C} -symplectic, for t sufficiently small, and cohomologous to $[\Omega + \eta_0 - L^{-1}_{\Omega}(\eta_0 \wedge \eta_0)]$, where L_{Ω} is the multiplication by Ω acting on cohomology. **Proof. Step 1:** Since Λ_{Ω} commutes with $\overline{\partial}$, we have $$\overline{\partial} \Lambda_{\Omega}(\eta \wedge \eta) = 2\Lambda_{\Omega}(\overline{\partial} \eta \wedge \eta) = 0,$$ because $\overline{\partial}\eta\wedge\eta$ is a (2,3)-form. Also, $\partial\eta=0$, because all η_i are ∂ -closed. Then $$d(\Omega_{\eta}) = \overline{\partial}\eta - \partial\Lambda_{\Omega}(\eta \wedge \eta) = \sum_{n} t^{n} \left(\overline{\partial}\eta_{n} - \sum_{i+j=n-1} \partial(\Lambda_{\Omega}(\eta_{i} \wedge \eta_{j})) \right) = 0.$$ Step 2: Since $\Omega_{\eta}^2 = -\Omega \wedge \Lambda_{\Omega}(\eta \wedge \eta) + \eta \wedge \eta$ and $\Omega \wedge (\Lambda_{\Omega}(\eta \wedge \eta)) = \eta \wedge \eta$, we have $\Omega_{\eta}^2 = 0$. For η sufficiently small, $\Omega_{\eta} \wedge \overline{\Omega}_{\eta}$ is non-degenerate, because $\Omega \wedge \overline{\Omega}$ is non-degenerate. Therefore, Ω_{η} is C-symplectic. It remains only to express the cohomology class of Ω_{η} through $[\eta_0] \in H_{\partial}^{1,1}(M)$. ## From recursive solutions to solutions (2) **PROPOSITION:** Let $\{\eta_i\}$ be a recursive solution of the symplectic Maurer-Cartan equation as above, and $\eta:=\sum_i\eta_it^i$. Then $\Omega_\eta:=\Omega+\eta-\Lambda_\Omega(\eta\wedge\eta)$ is $\mathbb C$ -symplectic, for t sufficiently small, and cohomologous to $[\Omega+\eta_0-L_\Omega^{-1}(\eta_0\wedge\eta_0)]$, where L_Ω is the multiplication by Ω acting on cohomology. **Step 1-2:** Ω_{η} is C-symplectic. Step 3: The (1,2)-form $d(\Lambda_{\Omega}(\eta \wedge \eta)) = \partial(\Lambda_{\Omega}(\eta \wedge \eta) = \overline{\partial}\eta$ is ∂ -exact and $\overline{\partial}$ -exact, hence it is $\partial\overline{\partial}$ -exact. Therefore, there exists a (0,1)-form α such that $\partial(\Lambda_{\Omega}(\eta \wedge \eta)) = \partial\overline{\partial}\alpha$. Then, the (0,2)-form $\beta := \Lambda_{\Omega}(\eta \wedge \eta) - \overline{\partial}\alpha$ is closed. We obtain that all Hodge components of $\Omega_{\eta} - d\alpha$ are closed: indeed, $d(\Omega_{\eta} - d\alpha) = 0$ and the form $(\Omega_{\eta} - d\alpha)^{0,2} = \beta$ is $\overline{\partial}$ and ∂ -closed. Therefore, the cohomology class $[\Omega_{\eta}]$ is equal to the sum of the Dolbeault classes of Ω , $\eta^{1,1}$ and β (this form is antiholomorphic). The de Rham cohomology class of $\eta - \partial \alpha$ is equal to its Dolbeault class $[\eta_0]$, and the de Rham cohomology class $[\beta] = const \cdot [\overline{\Omega}]$ of β is uniquely determined from $$0 = [\Omega_{\eta}]^2 = ([\Omega] + [\eta_0] + [\beta])^2 = [\eta_0]^2 + 2[\Omega] \wedge [\beta].$$ #### From recursive solutions to deformations PROPOSITION: Let $\{\eta_i\}$ be a recursive solution of the symplectic Maurer-Cartan equation, and $|t| < \varepsilon$. Consider the cohomology class $[\eta_0] \in H^{1,1}_{\partial}(M) = H^{1,1}(M)$ (here we identify the Dolbeault cohomology and the Hodge cohomology of M). Let $\eta := \sum_i \eta_i t^i$. Then $\Omega_{\eta} := \Omega + \eta - \Lambda_{\Omega}(\eta \wedge \eta)$ is \mathbb{C} -symplectic, for t sufficiently small, and cohomologous to $[\Omega + \eta_0 - L^{-1}_{\Omega}(\eta_0 \wedge \eta_0)]$, where L_{Ω} is the multiplication by Ω acting on cohomology. Therefore, the local surjectivity of the period map is implied by the following **THEOREM:** Let (M,Ω) be a compact holomorphic symplectic surface, and $\eta_0 \in \Lambda^{1,1}(M)$ a closed (1,1)-form. Then there exists a recursive solution $\{\eta_i\} \subset \Lambda^{1,1}(M)$ of the symplectic Maurer-Cartan equation. **Proof:** Later today. ## **Holomorphically symplectic Schouten bracket** **DEFINITION:** Let $a, b \in \Lambda^{*,1}$ be (*, 1)-forms on a holomorphically symplectic manifold (M, Ω) , and $$\{a,b\} := \delta(a \wedge b) - \delta(a) \wedge b - (-1)^{\tilde{a}-1}a \wedge \delta(b),$$ where $\delta = [\partial, \Lambda_{\Omega}]$. We call $\{\cdot, \cdot\}$ the holomorphically symplectic Schouten bracket. **REMARK:** For (1,1)-forms, $\{a,b\} := \partial(\Lambda_{\Omega}(a \wedge b) - \Lambda_{\Omega}(\partial(a \wedge b)).$ REMARK: Clearly, the Schouten bracket is graded commutative: $${a,b} - (-1)^{\tilde{a}\tilde{b}} {b,a} = 0.$$ THEOREM 1: The holomorphically symplectic Schouten bracket satisfies the odd graded Jacobi identity $${a, \{b, c\}} = {\{a, b\}, c\} + (-1)^{(\tilde{a}-1)(\tilde{b}-1)} \{b, \{a, c\}\}.$$ **Proof:** Lecture 9 (next Monday). ■ #### The third commutator Whenever a bracket $\{\cdot,\cdot\}$ is supercommutative and satisfies the graded Jacobi identity, the third commutator of a vector with itself vanishes. **COROLLARY:** For any $v \in \Lambda^{*,1}$, one has $\{v, \{v, v\}\} = 0$. **Proof:** If v is odd, $\{v,v\}=0$ because the Schouten bracket is graded commutative. If v is even, the odd graded Jacobi identity gives $$\{v, \{v, v\}\} = \{\{v, v\}, v\} - \{v, \{v, v\}\},\$$ hence $2\{v,\{v,v\}\} = \{\{v,v\},v\} = -\{v,\{v,v\}\}$, implying $3\{v,\{v,v\}\} = 0$. ### Solving the symplectic Maurer-Cartan equation **THEOREM:** Let (M,Ω) be a compact holomorphic symplectic surface, and $\eta_0 \in \Lambda^{1,1}(M)$ a closed (1,1)-form. Then there exists a recursive solution $\{\eta_i\} \subset \Lambda^{1,1}(M)$ of the symplectic Maurer-Cartan equation $$\overline{\partial}\eta_n = \sum_{i+j=n-1} \{\eta_i, \eta_j\}.$$ **Proof. Step 1:** Suppose that $\eta_0,...,\eta_{n-1} \in \Lambda^{1,1}(M)$ are already found, and satisfy $\overline{\eta}_k = \sum_{i+j=k-1} {\{\eta_i,\eta_j\}}$, $\partial \eta_i = 0$ for all k = 0,...,n-1. For any ∂ -closed $a,b \in \Lambda^{*,1}(M)$, we have $$\overline{\partial}\{a,b\} = \overline{\partial}\{a,b\} = \overline{\partial}\partial(\Lambda_{\Omega}(a \wedge b)) = -\partial(\Lambda_{\Omega}(\overline{\partial}a \wedge b)) + (-1)^{\tilde{a}}\partial(\Lambda_{\Omega}(a \wedge \overline{\partial}b)),$$ because $\overline{\partial}$ commutes with Λ_{Ω} and anticommutes with ∂ . Taking $a=\eta_k, b=\eta_l$, k,l< n we obtain $$\overline{\partial}\{\eta_k,\eta_l\} = \left\{ \sum_{i+j=k-1} \{\eta_i,\eta_j\}, \eta_l \right\} + \left\{ \eta_k, \sum_{i+j=l-1} \{\eta_i,\eta_j\} \right\}.$$ ## Solving the symplectic Maurer-Cartan equation (2) **THEOREM:** Let (M,Ω) be a compact holomorphic symplectic surface, and $\eta_0 \in \Lambda^{1,1}(M)$ a closed (1,1)-form. Then there exists a recursive solution $\{\eta_i \in \Lambda^{1,1}(M)\}$ of the symplectic Maurer-Cartan equation $\overline{\partial}\eta_n = \sum_{i+j=n-1} \{\eta_i, \eta_j\}$. **Proof. Step 1:** $$\overline{\partial}\{\eta_k,\eta_l\} = \left\{\sum\limits_{i+j=k-1}\{\eta_i,\eta_j\},\eta_l\right\} + \left\{\eta_k,\sum\limits_{i+j=l-1}\{\eta_i,\eta_j\}\right\}.$$ **Step 2:** Let $\theta_n := \sum_{i=0}^{n-1} t^i \eta_i$. Then Theorem 1 implies that $$\overline{\partial}\{\theta_{n},\theta_{n}\} = \sum_{m=0}^{n-1} \sum_{k+l=m} t^{k+l} \overline{\partial}\{\eta_{k},\eta_{l}\} = \sum_{m=0}^{n-1} \sum_{p+q+r=m-1} t^{p+q+r} \left(\{\{\eta_{p},\eta_{q}\},\eta_{r}\} + \{\eta_{p},\{\eta_{q},\eta_{r}\}\}\right) = \{\theta_{n},\{\theta_{n},\theta_{n}\}\} + \{\{\theta_{n},\theta_{n}\},\theta_{n}\} = 0.$$ This gives $\overline{\partial}\left(\sum_{i+j=n-1}\{\eta_i,\eta_j\}\right)=0$. **Step 3:** Since $\sum_{i+j=n-1} \{\eta_i, \eta_j\} = \sum_{i+j=n-1} \partial \Lambda_{\Omega}(\eta_i \wedge \eta_j)$ is ∂ -closed and ∂ -exact, this form is $\overline{\partial}\partial$ -exact: $\overline{\partial}\partial\beta=\sum_{i+j=n-1}\{\eta_i,\eta_j\}$. Take $\eta_n:=\partial\beta$; this form is ∂ -exact and satisfies the equation $\overline{\partial}\eta_n=\sum_{i+j=n-1}\{\eta_i,\eta_j\}$. It remains to make sure that the power series $\sum_{i=0}^{\infty}t^i\eta_i$ converges for t sufficiently small. # Solving the symplectic Maurer-Cartan equation (3) Step 4: We will use the operator $G_{\Delta}\overline{\partial}^*$ to invert $\overline{\partial}$; this was justified earlier using the Hodge theory. This allows us to take $\eta_n = G_{\Delta}\overline{\partial}^*(\sum_{i+j=n-1}\{\eta_i,\eta_j\})$. It remains to check the convergence of the power series $\sum_{i=0}^{\infty} t^i \eta_i$, for $|\eta_0|$ sufficiently small. We supply the space $\Lambda^*(M)$ with a Hilbert norm L_r^2 associated with the integral of sum of first r derivatives. Since Δ is elliptic, its inverse G_{Δ} is diagonal with bounded eigenvalues. Using the same arguments, it is possible to show that the operator $G_{\Delta}\overline{\partial}^*\partial$ has bounded operator norm. **Step 5:** Applying the Cauchy-Schwarz inequality to deduce $|a \wedge b| < A|a||b|$, we obtain $$|\eta_n| = \left| G_{\Delta} \overline{\partial}^* \left(\sum_{i+j=n-1} \{ \eta_i, \eta_j \} \right) \right| \leqslant AC \sum_{i+j=n-1} |\eta_i| |\eta_j|$$ where C is the operator norm of $G_{\Delta}\overline{\partial}^*\partial$. Iterating this estimate, we obtain $|\eta_n|\leqslant C^nS_n|\eta_0|^n$, where S_n is the n-th Catalan number (the number of ways of putting n brackets into a sum of n+1 terms). Catalan numbers can be expressed as $S_n=\frac{2n!}{n!(n+1)!}\leqslant 2^n$, which gives $|\eta_n|\leqslant C^n2^n|\eta_0|^n$. Then the series $\sum t^i|\eta_i|$ converges absolutely for some t>0.