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Derivations on A%*(M)

DEFINITION: Let a € A9"®T1O0(M), where M is a complex manifold. Using
local coordinates, we can write a locally as a sum of coordinate monomials
> ydz;® X, where X; € TLO(M) is a vector field, and dz; = dz;, A ... Adz;,
a coordinate monomial. Denote by Lie,(u) : AP4 — AP4TT g derivation
which takes a form fgirdzg ANdzy to > ; LieXJ(fKL) Ndzj Ndzg Ndzg,.

REMARK: Clearly, Lie, 1S a superderivation which vanishes on antiholo-
morphic forms.

CLAIM: Any derivation § : A9* — AO*+P vanishing on antiholomorphic
forms is equal to Lie, for an appropriate a € AP @ T1.0(nr).

Proof. Step 1: A superderivation is determined by its restriction to any
set of multiplicative generators.

Step 2: Since § is a derivation, its restriction to C®°M defines an A%P(M)-
valued vector field a € AOP ® TM. Since a vanishes on antiholomorphic func-
tions, it belogs to A%P @ T1.0(A1). Now, § and Lie, are derivations which
agree on antiholomorphic forms and on functions, and antiholomorphic

forms and functions generate AOP(M), hence § = L,. m
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Schouten bracket

COROLLARY 1: Let a € A%P @ T1.O0(M1), and b € A% @ T1.O(M), Then
there exists ¢ € A9P+4® 71.0(Ar), such that

{Lieq, Liey} := Lieg Liey —(—1)P9 Ligy Lieg = Liec.

Proof: Indeed, the supercommutator of derivations is a derivation, and
{Lieq, Liey} vanishes on antiholomorphic forms, hence it is equal to Lie. by
the previous claim. m

DEFINITION: The operation taking a,b to ¢ € AOP+a g T1.0(Ar) is called
the Schouten bracket of a € A%? @ T1.O0(M), and b e A0 T1.0(Mr).

REMARK: Since {-,-} is O,-linear, the Schouten bracket satisfies the Leib-
nitz identity: 0({a, 8}) = {0a, B} + {a, 95}.

REMARK: This allows one to extend the Schouten bracket to the
d-cohomology of the complex (A%*(M) @ T1:OM,d), which coincide with
the cohomology of the sheaf of holomorphic vector fields: {-,-} : HP(TM) X
HY(TM) — HPTITM).
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Tian-Todorov lemma

DEFINITION: Assume that M is a complex n-manifold with trivial canon-
ical bundle Kj,;, and & a non-degenerate section of Kj;. We call a pair
(M,®) a Calabi-Yau manifold. Substitution of a vector field into @ gives
an isomorphism TM = Q™ 1(M). Similarly, one obtains an isomorphism

AOIN @ APTM — AQIM @ AP POM = AP PAN. (%)

Yukawa product e : APIM @ APL:91 )M — APTP1—1,9F41 \f is obtained from the
usual product

AN @ APTM x AOU M @ APLTM —s A9 A @ APTPIT 0
using the isomorphism (*).

TIAN-TODOROV LEMMA: Let (M,®) be a Calabi-Yau manifold, and
{3 AOP(M) @ THOM x A%9(M) @ THOM — AOPTI(M) @ THOM.

its Schouten bracket. Using the isomorphism (*), we can interpret Schouten
bracket as a map

{3 AL x AL — AP LR,
Then, for any a € A»~1P(M), 8 A"~ 1P1(M), one has
{a, B} = 0(ce B) — (0a) ¢ B — (—1)" 1T Pa e (88),

where e denotes the Yukawa product.
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Maurer-Cartan equation and deformations

CLAIM: Let (M, 1) be an almost complex manifold, and B an abstract vector

bundle over C isomorphic to A%1(M). Consider a differential operator 9 :
C>*M —s B = NO1 (M) satisfying the Leibnitz rule. Its symbol is a linear map

1 _
w: AYM,C) — B. Then B = A0 — \0O1(p1). Extend d: C*M — B

to the corresponding exterior algebra using the Leibnitz rule:

o>y 2 B 25 A2B 2, A3B 9,

Then integrability of I is equivalent to 3> = 0.
Proof:. This is essentially the Newlander-Nirenberg theorem. =

REMARK: Almost complex deformations of I are given by the sections ~ €
7100 @ AQL(M), with the integrability relation (84 ~)2 = 0 rewritten as the
Maurer-Cartan equation 9(y) = —{v,v}. Here 9(y) is identified with the
anticommutator {9,~}, and {~,~} is anticommutator of ~ with itself, where
~v is considered as a A%L(M)-valued derivation. This identifies {v,v} with
the Schouten bracket.
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Holomorphic symplectic Hodge star operator

Define the holomorphic symplectic x-map
x . APO(M) — A2 PO (A1)

Vvia

(o )0 =" 5.

This is the usual Hodge star operator on (1,0)-variables, with the holomorphic
volume form used instead of the usual volume form. We extend x-map to
APA(M) by x(aa Avy) = x(a) A for any (0, p)-form ~.

LEMMA: Let M be a holomorphic symplectic manifold. Consider the oper-
ators Lo(a) ;= Q2 A a, Ho acting as multiplication by n —p on AP4(M), and
N = xA\x. Then Lo, Ho,\o satisfy the s((2) relations, similar to the
Lefschetz triple: [HQ,LQ] = 2L, [HQ,/\Q] = —2A\q, [LQ,/\Q] — Ho. =
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Tian-Todorov lemma for holomorphically symplectic manifolds

Let now 2 be a holomorphically symplectic form on a complex manifold M,
dimgM = 2n. Then TM = Qlp. Define the holomorphic symplectic
Schouten bracket as the bracket

ALYP(M) x AVI(M) — ALPTI(AD).

obtained from the usual Schouten bracket and this identification.

LEMMA: (Tian-Todorov for holomorphically symplectic manifolds)
Let (M,2) be a holomorphically symplectic manifold, and

{,3g: AVP(M) x AVI(M) — ALPTI(M).

the holomorphic symplectic Schouten bracket. Then for any a,b € AL*(M),
one has

{a,b}g = 8(a Ab) — (6a) Ab— (—1)% A S(b),

where a Is parity of a, and § := [\, J].

Proof: Later today. m
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Graded Jacobi identity for {n;,n;}q

COROLLARY: When a,b are (1,1)-forms, one has {a,b}o = INg(a A b) —
Ao (8(a) Ab) — (=1)"Ng(a A (b))

Proof: These are the only terms which survive, because /\Q‘Al,*(]m = 0.
n

From this corollary it follows that {7;,n;}q satisfies the graded Jacobi
relation. Indeed, this quantity is equal to the Schouten bracket, which is a
super-commutator in the Lie algebra of derivations.

T his proves the remaining claim from Lecture 9 (modulo the holomorphic
symplectic Tian-Todorov lemma, which is not proven yet).
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Tian-Todorov lemmma
We use the usual TT-lemma:

LEMMA: (Tian-Todorov lemma)
Let (M, d) be a Calabi-Yau manifold, and

{3 AOP(M) @ TYOM x A%9(M) @ TYOM —s AOPTa(A) @ THOM.
its Schouten bracket. Using the standard isomorphism A9P(M) @ T1OM =
A"—LP(M), we can interpret the Schouten bracket as a map
{-,-} 1 APLP(A) x ALY — APTLPTA(AD.
Then, for any a € A"~ 1P(M), 8 € A»~1P1(M), one has

{a,8} =9(aep) — (0a) e B — (—1)" 1 TPa e (08), (¥)

where e denotes the Yukawa product.

Proof: Since the Schouten bracket is a derivation with respect to the Yukawa
product, it suffices to prove (*) on the generators of the Yukawa algebra. The
same argument which proves the Moser lemma implies that locally there exist
coordinates zq, ..., zn such that the holomorphic volume form & is dz1 A...Adzp.
Then {a,8} and d(c e B) — (8a) e 3 — (—1)""11Pn e (93) can be computed
explicitly when a and 8 are monomials times a function. m
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Proof of holomorphic symplectic Tian-Todorov lemma

LEMMA: (Tian-Todorov for holomorphically symplectic manifolds)
Let (M, ) be a holomorphically symplectic manifold, and {-,-}o : ALP(M) x
ALa(M) — ALPTA(M) the holomorphic symplectic Schouten bracket. Then
for any a,b € AL*(M), one has

{a,b}g = 8(aAb) — (6a) Ab— (—=1)% AS(D), (*x)
where a Is parity of a, and § := [\, J].
Proof. Step 1: Acting by x on A**(M), we obtain the Yukawa multiplication

from the usual multiplication: ae 8 = £+ x (xa A x8). Moreover, the Schouten
bracket interpreted as in Tian-Todorov lemma gives a map

{3 APLP(A) x AP L) — APTLPTA( ).

after twisting by x becomes the bracket {-,-} defined above. Then (**)
becomes

{a,b}g =+ x (a Ab) — (x0*a) Ab— (—=1)% A *d % (b).

Therefore, (**) would be implied if we prove the following holomorphic
symplectic analogue of the Kahler relations:

*Ok = [/\Q, 8] (>I< * >l<)
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Proof of holomorphic symplectic Tian-Todorov lemma (2)

LEMMA: (Tian-Todorov for holomorphically symplectic manifolds)
Let (M, ) be a holomorphically symplectic manifold, and {-,-}o : ALP(M) x
ALa(M) — ALPTA(MT) the holomorphic symplectic Schouten bracket. Then
for any a,b € AL*(M), one has

{a,b}g =8(aAb) — (6a) Ab— (—1)%a A 8(b), (xx)
where a is parity of a, and § := [Aq, J].

Step 1: We reduced this statement to
*8* = [/\Q, 8] (>|< * >|<)

Step 2: Denote by § the operator [Ag,0]. The formula (***) is local, hence
it would suffice to prove it in a coordinate patch. Using the Moser lemma,
we choose holomorphic Darboux coordinates such that €2 = 7" ;dzp;—1 A
dzp;. Let a be a coordinate monomial and f a function. Then §(fa) =
5 %iQ_l(dzi)(a), where Q~1(dz;) the vector field dual to dz; via . Similarly,

*Ox (fa) = Zi%*ed%*a, where e, (a) = dz; Aa. Therefore, the commutator
(
relation (***) follows from xeq, x = i-1(4z,)- 1 his is Clear, because %eg, * is
1

the convolution with a vector field €2-dual to dz;. =
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