K3 surfaces

lecture 10: Schouten brackets and holomorphic symplectic form.

Misha Verbitsky

IMPA, sala 236

November 28, 2022, 15:30

Derivations on $\Lambda^{0,*}(M)$

DEFINITION: Let $a \in \Lambda^{0,r} \otimes T^{1,0}(M)$, where M is a complex manifold. Using local coordinates, we can write a locally as a sum of coordinate monomials $\sum_J d\overline{z}_J \otimes X_J$, where $X_J \in T^{1,0}(M)$ is a vector field, and $d\overline{z}_J = d\overline{z}_{j_1} \wedge ... \wedge d\overline{z}_{j_r}$ a coordinate monomial. **Denote by** $\operatorname{Lie}_a(u) : \Lambda^{p,q} \longrightarrow \Lambda^{p,q+r}$ a derivation which takes a form $f_{KL}dz_K \wedge d\overline{z}_L$ to $\sum_J \operatorname{Lie}_{X_J}(f_{KL}) \wedge d\overline{z}_J \wedge dz_K \wedge d\overline{z}_L$.

REMARK: Clearly, Lie_a is a superderivation which vanishes on antiholomorphic forms.

CLAIM: Any derivation δ : $\Lambda^{0,*} \longrightarrow \Lambda^{0,*+p}$ vanishing on antiholomorphic forms is equal to Lie_a for an appropriate $a \in \Lambda^{0,p} \otimes T^{1,0}(M)$.

Proof. Step 1: A superderivation is determined by its restriction to any set of multiplicative generators.

Step 2: Since δ is a derivation, its restriction to $C^{\infty}M$ defines an $\Lambda^{0,p}(M)$ -valued vector field $a \in \Lambda^{0,p} \otimes TM$. Since a vanishes on antiholomorphic functions, it belogs to $\Lambda^{0,p} \otimes T^{1,0}(M)$. Now, δ and Lie_a are derivations which agree on antiholomorphic forms and on functions, and antiholomorphic forms and functions generate $\Lambda^{0,p}(M)$, hence $\delta = L_a$.

Schouten bracket

COROLLARY 1: Let $a \in \Lambda^{0,p} \otimes T^{1,0}(M)$, and $b \in \Lambda^{0,q} \otimes T^{1,0}(M)$, Then there exists $c \in \Lambda^{0,p+q} \otimes T^{1,0}(M)$, such that

 ${\operatorname{Lie}_a,\operatorname{Lie}_b} := \operatorname{Lie}_a\operatorname{Lie}_b - (-1)^{pq}\operatorname{Lie}_b\operatorname{Lie}_a = \operatorname{Lie}_c.$

Proof: Indeed, the supercommutator of derivations is a derivation, and $\{\text{Lie}_a, \text{Lie}_b\}$ vanishes on antiholomorphic forms, hence it is equal to Lie_c by the previous claim.

DEFINITION: The operation taking a, b to $c \in \Lambda^{0,p+q} \otimes T^{1,0}(M)$ is called the Schouten bracket of $a \in \Lambda^{0,p} \otimes T^{1,0}(M)$, and $b \in \Lambda^{0,q} \otimes T^{1,0}(M)$.

REMARK: Since $\{\cdot, \cdot\}$ is $\overline{\mathbb{O}}_M$ -linear, the Schouten bracket satisfies the Leibnitz identity: $\overline{\partial}(\{\alpha, \beta\}) = \{\overline{\partial}\alpha, \beta\} + \{\alpha, \overline{\partial}\beta\}.$

REMARK: This allows one to extend the Schouten bracket to the $\overline{\partial}$ -cohomology of the complex $(\Lambda^{0,*}(M) \otimes T^{1,0}M, \overline{\partial})$, which coincide with the cohomology of the sheaf of holomorphic vector fields: $\{\cdot, \cdot\}$: $H^p(TM) \times H^q(TM) \longrightarrow H^{p+q}(TM)$.

Tian-Todorov lemma

DEFINITION: Assume that M is a complex *n*-manifold with trivial canonical bundle K_M , and Φ a non-degenerate section of K_M . We call a pair (M, Φ) a Calabi-Yau manifold. Substitution of a vector field into Φ gives an isomorphism $TM \cong \Omega^{n-1}(M)$. Similarly, one obtains an isomorphism

$$\Lambda^{0,q}M \otimes \Lambda^p TM \longrightarrow \Lambda^{0,q}M \otimes \Lambda^{n-p,0}M = \Lambda^{n-p,q}M. \quad (*)$$

Yukawa product • : $\Lambda^{p,q}M \otimes \Lambda^{p_1,q_1}M \longrightarrow \Lambda^{p+p_1-n,q+q_1}M$ is obtained from the usual product

$$\Lambda^{0,q}M \otimes \Lambda^p TM \times \Lambda^{0,q_1}M \otimes \Lambda^{p_1}TM \longrightarrow \Lambda^{0,q+q_1}M \otimes \Lambda^{p+p_1}TM$$

using the isomorphism (*).

TIAN-TODOROV LEMMA: Let (M, Φ) be a Calabi-Yau manifold, and

$$\{\cdot,\cdot\}$$
: $\wedge^{0,p}(M) \otimes T^{1,0}M \times \wedge^{0,q}(M) \otimes T^{1,0}M \longrightarrow \wedge^{0,p+q}(M) \otimes T^{1,0}M.$

its Schouten bracket. Using the isomorphism (*), we can interpret Schouten bracket as a map

$$\{\cdot,\cdot\}: \Lambda^{n-1,p}(M) \times \Lambda^{n-1,q}(M) \longrightarrow \Lambda^{n-1,p+q}(M).$$

Then, for any $\alpha \in \Lambda^{n-1,p}(M)$, $\beta \in \Lambda^{n-1,p_1}(M)$, one has

$$\{\alpha,\beta\} = \partial(\alpha \bullet \beta) - (\partial \alpha) \bullet \beta - (-1)^{n-1+p} \alpha \bullet (\partial \beta),$$

where • denotes the Yukawa product.

Maurer-Cartan equation and deformations

CLAIM: Let (M, I) be an almost complex manifold, and B an abstract vector bundle over \mathbb{C} isomorphic to $\Lambda^{0,1}(M)$. Consider a differential operator $\overline{\partial}$: $C^{\infty}M \longrightarrow B = \Lambda^{0,1}(M)$ satisfying the Leibnitz rule. Its symbol is a linear map $u : \Lambda^1(M, \mathbb{C}) \longrightarrow B$. Then $B = \frac{\Lambda^1(M, \mathbb{C})}{\ker u} = \Lambda^{0,1}(M)$. Extend $\overline{\partial} : C^{\infty}M \longrightarrow B$ to the corresponding exterior algebra using the Leibnitz rule:

$$C^{\infty}M \xrightarrow{\overline{\partial}} B \xrightarrow{\overline{\partial}} \Lambda^2 B \xrightarrow{\overline{\partial}} \Lambda^3 B \xrightarrow{\overline{\partial}} \dots$$

Then integrability of *I* is equivalent to $\overline{\partial}^2 = 0$.

Proof: This is essentially the Newlander-Nirenberg theorem.

REMARK: Almost complex deformations of I are given by the sections $\gamma \in T^{1,0}M \otimes \Lambda^{0,1}(M)$, with the integrability relation $(\overline{\partial} + \gamma)^2 = 0$ rewritten as **the Maurer-Cartan equation** $\overline{\partial}(\gamma) = -\{\gamma, \gamma\}$. Here $\overline{\partial}(\gamma)$ is identified with the anticommutator $\{\overline{\partial}, \gamma\}$, and $\{\gamma, \gamma\}$ is anticommutator of γ with itself, where γ is considered as a $\Lambda^{0,1}(M)$ -valued derivation. This identifies $\{\gamma, \gamma\}$ with the Schouten bracket.

Holomorphic symplectic Hodge star operator

Define the holomorphic symplectic ***-map**

$$\star : \Lambda^{p,0}(M) \longrightarrow \Lambda^{2n-p,0}(M)$$

via

$$(\alpha,\beta)_{\Omega} = \frac{\alpha \wedge \star \beta}{\Omega^n}.$$

This is the usual Hodge star operator on (1,0)-variables, with the holomorphic volume form used instead of the usual volume form. We extend \star -map to $\Lambda^{p,q}(M)$ by $\star(\alpha \wedge \gamma) = \star(\alpha) \wedge \gamma$ for any (0,p)-form γ .

LEMMA: Let M be a holomorphic symplectic manifold. Consider the operators $L_{\Omega}(\alpha) := \Omega \wedge \alpha$, H_{Ω} acting as multiplication by n - p on $\Lambda^{p,q}(M)$, and $\Lambda_{\Omega} := *\Lambda *$. Then $L_{\Omega}, H_{\Omega}, \Lambda_{\Omega}$ satisfy the $\mathfrak{sl}(2)$ relations, similar to the Lefschetz triple: $[H_{\Omega}, L_{\Omega}] = 2L_{\Omega}, \quad [H_{\Omega}, \Lambda_{\Omega}] = -2\Lambda_{\Omega}, [L_{\Omega}, \Lambda_{\Omega}] = H_{\Omega}.$

Tian-Todorov lemma for holomorphically symplectic manifolds

Let now Ω be a holomorphically symplectic form on a complex manifold M, dim_{\mathbb{C}} M = 2n. Then $TM \cong \Omega^1 M$. Define **the holomorphic symplectic Schouten bracket** as the bracket

$$\Lambda^{1,p}(M) \times \Lambda^{1,q}(M) \longrightarrow \Lambda^{1,p+q}(M).$$

obtained from the usual Schouten bracket and this identification.

LEMMA: (Tian-Todorov for holomorphically symplectic manifolds) Let (M, Ω) be a holomorphically symplectic manifold, and

$$\{\cdot,\cdot\}_{\Omega} \colon \Lambda^{1,p}(M) \times \Lambda^{1,q}(M) \longrightarrow \Lambda^{1,p+q}(M).$$

the holomorphic symplectic Schouten bracket. Then for any $a, b \in \Lambda^{1,*}(M)$, one has

$$\{a,b\}_{\Omega} = \delta(a \wedge b) - (\delta a) \wedge b - (-1)^{\tilde{a}} a \wedge \delta(b),$$

where \tilde{a} is parity of a, and $\delta := [\Lambda_{\Omega}, \partial]$.

Proof: Later today. ■

Graded Jacobi identity for $\{\eta_i, \eta_j\}_{\Omega}$

COROLLARY: When a, b are (1, 1)-forms, **one has** $\{a, b\}_{\Omega} = \partial \Lambda_{\Omega}(a \wedge b) - \Lambda_{\Omega}(\partial(a) \wedge b) - (-1)^{\tilde{a}} \Lambda_{\Omega}(a \wedge \partial(b))$

Proof: These are the only terms which survive, because $\Lambda_{\Omega}|_{\Lambda^{1,*}(M)} = 0$.

From this corollary it follows that $\{\eta_i, \eta_j\}_{\Omega}$ satisfies the graded Jacobi relation. Indeed, this quantity is equal to the Schouten bracket, which is a super-commutator in the Lie algebra of derivations.

This proves the remaining claim from Lecture 9 (modulo the holomorphic symplectic Tian-Todorov lemma, which is not proven yet).

Tian-Todorov lemma

We use the usual TT-lemma:

LEMMA: (Tian-Todorov lemma)

Let (M, Φ) be a Calabi-Yau manifold, and

 $\{\cdot,\cdot\}$: $\Lambda^{0,p}(M) \otimes T^{1,0}M \times \Lambda^{0,q}(M) \otimes T^{1,0}M \longrightarrow \Lambda^{0,p+q}(M) \otimes T^{1,0}M.$

its Schouten bracket. Using the standard isomorphism $\Lambda^{0,p}(M) \otimes T^{1,0}M = \Lambda^{n-1,p}(M)$, we can interpret the Schouten bracket as a map

$$\{\cdot,\cdot\}: \Lambda^{n-1,p}(M) \times \Lambda^{n-1,q}(M) \longrightarrow \Lambda^{n-1,p+q}(M).$$

Then, for any $\alpha \in \Lambda^{n-1,p}(M)$, $\beta \in \Lambda^{n-1,p_1}(M)$, one has

$$\{\alpha,\beta\} = \partial(\alpha \bullet \beta) - (\partial\alpha) \bullet \beta - (-1)^{n-1+p} \alpha \bullet (\partial\beta), \quad (*)$$

where • denotes the Yukawa product.

Proof: Since the Schouten bracket is a derivation with respect to the Yukawa product, it suffices to prove (*) on the generators of the Yukawa algebra. The same argument which proves the Moser lemma implies that locally there exist coordinates $z_1, ..., z_n$ such that the holomorphic volume form Φ is $dz_1 \wedge ... \wedge dz_n$. Then $\{\alpha, \beta\}$ and $\partial(\alpha \bullet \beta) - (\partial \alpha) \bullet \beta - (-1)^{n-1+p} \alpha \bullet (\partial \beta)$ can be computed explicitly when α and β are monomials times a function.

Proof of holomorphic symplectic Tian-Todorov lemma

LEMMA: (Tian-Todorov for holomorphically symplectic manifolds) Let (M, Ω) be a holomorphically symplectic manifold, and $\{\cdot, \cdot\}_{\Omega} : \Lambda^{1,p}(M) \times \Lambda^{1,q}(M) \longrightarrow \Lambda^{1,p+q}(M)$ the holomorphic symplectic Schouten bracket. Then for any $a, b \in \Lambda^{1,*}(M)$, one has

$$\{a,b\}_{\Omega} = \delta(a \wedge b) - (\delta a) \wedge b - (-1)^{\tilde{a}} a \wedge \delta(b), \quad (**)$$

where \tilde{a} is parity of a, and $\delta := [\Lambda_{\Omega}, \partial]$.

Proof. Step 1: Acting by \star on $\Lambda^{*,*}(M)$, we obtain the Yukawa multiplication from the usual multiplication: $\alpha \bullet \beta = \pm \star (\star \alpha \wedge \star \beta)$. Moreover, the Schouten bracket interpreted as in Tian-Todorov lemma gives a map

$$\{\cdot,\cdot\}$$
: $\wedge^{n-1,p}(M) \times \wedge^{n-1,q}(M) \longrightarrow \wedge^{n-1,p+q}(M).$

after twisting by \star becomes the bracket $\{\cdot,\cdot\}_\Omega$ defined above. Then (**) becomes

$$\{a,b\}_{\Omega} = \star \partial \star (a \wedge b) - (\star \partial \star a) \wedge b - (-1)^{\tilde{a}} a \wedge \star \partial \star (b).$$

Therefore, (**) would be implied if we prove the following holomorphic symplectic analogue of the Kähler relations:

$$\star \partial \star = [\Lambda_{\Omega}, \partial]. \quad (* * *)$$

Proof of holomorphic symplectic Tian-Todorov lemma (2)

LEMMA: (Tian-Todorov for holomorphically symplectic manifolds) Let (M, Ω) be a holomorphically symplectic manifold, and $\{\cdot, \cdot\}_{\Omega} : \Lambda^{1,p}(M) \times \Lambda^{1,q}(M) \longrightarrow \Lambda^{1,p+q}(M)$ the holomorphic symplectic Schouten bracket. Then for any $a, b \in \Lambda^{1,*}(M)$, one has

$$\{a,b\}_{\Omega} = \delta(a \wedge b) - (\delta a) \wedge b - (-1)^{\tilde{a}} a \wedge \delta(b), \quad (**)$$

where \tilde{a} is parity of a, and $\delta := [\Lambda_{\Omega}, \partial]$.

Step 1: We reduced this statement to

 $\star \partial \star = [\Lambda_{\Omega}, \partial]. \quad (* * *)$

Step 2: Denote by δ the operator $[\Lambda_{\Omega}, \partial]$. The formula (***) is local, hence it would suffice to prove it in a coordinate patch. Using the Moser lemma, we choose holomorphic Darboux coordinates such that $\Omega = \sum_{i=1}^{n} dz_{2i-1} \wedge dz_{2i}$. Let α be a coordinate monomial and f a function. Then $\delta(f\alpha) = \sum_i \frac{\partial f}{\partial z_i} i_{\Omega^{-1}(dz_i)}(\alpha)$, where $\Omega^{-1}(dz_i)$ the vector field dual to dz_i via Ω . Similarly, $*\partial * (f\alpha) = \sum_i \frac{\partial f}{\partial z_i} * e_{dz_i} * \alpha$, where $e_{dz_i}(\alpha) = dz_i \wedge \alpha$. Therefore, the commutator relation (***) follows from $*e_{dz_i} * = i_{\Omega^{-1}(dz_i)}$. This is clear, because $*e_{dz_i} *$ is the convolution with a vector field Ω -dual to dz_i .