K3 surfaces

lecture 10: Schouten brackets and holomorphic symplectic form.

Misha Verbitsky

IMPA, sala 236
November 28, 2022, 15:30

Derivations on $\wedge^{0, *}(M)$
DEFINITION: Let $a \in \Lambda^{0, r} \otimes T^{1,0}(M)$, where M is a complex manifold. Using local coordinates, we can write a locally as a sum of coordinate monomials $\sum_{J} d \bar{z}_{J} \otimes X_{J}$, where $X_{J} \in T^{1,0}(M)$ is a vector field, and $d \bar{z}_{J}=d \bar{z}_{j_{1}} \wedge \ldots \wedge d \bar{z}_{j_{r}}$ a coordinate monomial. Denote by $\operatorname{Lie}_{a}(u): \Lambda^{p, q} \longrightarrow \Lambda^{p, q+r}$ a derivation which takes a form $f_{K L} d z_{K} \wedge d \bar{z}_{L}$ to $\sum_{J} \operatorname{Lie}_{X_{J}}\left(f_{K L}\right) \wedge d \bar{z}_{J} \wedge d z_{K} \wedge d \bar{z}_{L}$.

REMARK: Clearly, Lie_{a} is a superderivation which vanishes on antiholomorphic forms.

CLAIM: Any derivation $\delta: \wedge^{0, *} \longrightarrow \Lambda^{0, *+p}$ vanishing on antiholomorphic forms is equal to Lie_{a} for an appropriate $a \in \wedge^{0, p} \otimes T^{1,0}(M)$.

Proof. Step 1: A superderivation is determined by its restriction to any set of multiplicative generators.

Step 2: Since δ is a derivation, its restriction to $C^{\infty} M$ defines an $\wedge^{0, p}(M)$ valued vector field $a \in \Lambda^{0, p} \otimes T M$. Since a vanishes on antiholomorphic functions, it belogs to $\Lambda^{0, p} \otimes T^{1,0}(M)$. Now, δ and Lie ${ }_{a}$ are derivations which agree on antiholomorphic forms and on functions, and antiholomorphic forms and functions generate $\wedge^{0, p}(M)$, hence $\delta=L_{a}$.

Schouten bracket

COROLLARY 1: Let $a \in \Lambda^{0, p} \otimes T^{1,0}(M)$, and $b \in \Lambda^{0, q} \otimes T^{1,0}(M)$, Then there exists $c \in \Lambda^{0, p+q} \otimes T^{1,0}(M)$, such that

$$
\left\{\operatorname{Lie}_{a}, \operatorname{Lie}_{b}\right\}:=\operatorname{Lie}_{a} \operatorname{Lie}_{b}-(-1)^{p q} \operatorname{Lie}_{b} \operatorname{Lie}_{a}=\operatorname{Lie}_{c} .
$$

Proof: Indeed, the supercommutator of derivations is a derivation, and $\left\{\right.$ Lie $_{a}$, Lie $\left._{b}\right\}$ vanishes on antiholomorphic forms, hence it is equal to Lie ${ }_{c}$ by the previous claim.

DEFINITION: The operation taking a, b to $c \in \Lambda^{0, p+q} \otimes T^{1,0}(M)$ is called the Schouten bracket of $a \in \Lambda^{0, p} \otimes T^{1,0}(M)$, and $b \in \Lambda^{0, q} \otimes T^{1,0}(M)$.

REMARK: Since $\{\cdot, \cdot\}$ is $\overline{\mathcal{G}}_{M^{-}}$-linear, the Schouten bracket satisfies the Leibnitz identity: $\bar{\partial}(\{\alpha, \beta\})=\{\bar{\partial} \alpha, \beta\}+\{\alpha, \bar{\partial} \beta\}$.

REMARK: This allows one to extend the Schouten bracket to the $\bar{\partial}$-cohomology of the complex $\left(\wedge^{0, *}(M) \otimes T^{1,0} M, \bar{\partial}\right)$, which coincide with the cohomology of the sheaf of holomorphic vector fields: $\{\cdot, \cdot\}: H^{p}(T M) \times$ $H^{q}(T M) \longrightarrow H^{p+q}(T M)$.

Tian-Todorov Iemma

DEFINITION: Assume that M is a complex n-manifold with trivial canonical bundle K_{M}, and Φ a non-degenerate section of K_{M}. We call a pair (M, Φ) a Calabi-Yau manifold. Substitution of a vector field into Φ gives an isomorphism $T M \cong \Omega^{n-1}(M)$. Similarly, one obtains an isomorphism

$$
\wedge^{0, q} M \otimes \wedge^{p} T M \longrightarrow \wedge^{0, q} M \otimes \wedge^{n-p, 0} M=\wedge^{n-p, q} M
$$

Yukawa product $\bullet: \wedge^{p, q} M \otimes \wedge^{p_{1}, q_{1}} M \longrightarrow \wedge^{p+p_{1}-n, q+q_{1}} M$ is obtained from the usual product

$$
\wedge^{0, q} M \otimes \wedge^{p} T M \times \wedge^{0, q_{1}} M \otimes \wedge^{p_{1}} T M \longrightarrow \wedge^{0, q+q_{1}} M \otimes \wedge^{p+p_{1}} T M
$$

using the isomorphism (*).
TIAN-TODOROV LEMMA: Let (M, Φ) be a Calabi-Yau manifold, and

$$
\{\cdot, \cdot\}: \wedge^{0, p}(M) \otimes T^{1,0} M \times \wedge^{0, q}(M) \otimes T^{1,0} M \longrightarrow \wedge^{0, p+q}(M) \otimes T^{1,0} M
$$

its Schouten bracket. Using the isomorphism (*), we can interpret Schouten bracket as a map

$$
\{\cdot, \cdot\}: \wedge^{n-1, p}(M) \times \wedge^{n-1, q}(M) \longrightarrow \wedge^{n-1, p+q}(M)
$$

Then, for any $\alpha \in \Lambda^{n-1, p}(M), \beta \in \Lambda^{n-1, p_{1}}(M)$, one has

$$
\{\alpha, \beta\}=\partial(\alpha \bullet \beta)-(\partial \alpha) \bullet \beta-(-1)^{n-1+p} \alpha \bullet(\partial \beta)
$$

where • denotes the Yukawa product.

Maurer-Cartan equation and deformations

CLAIM: Let (M, I) be an almost complex manifold, and B an abstract vector bundle over \mathbb{C} isomorphic to $\Lambda^{0,1}(M)$. Consider a differential operator $\bar{\partial}$: $C^{\infty} M \longrightarrow B=\wedge^{0,1}(M)$ satisfying the Leibnitz rule. Its symbol is a linear map $u: \Lambda^{1}(M, \mathbb{C}) \longrightarrow B$. Then $B=\frac{\Lambda^{1}(M, \mathbb{C})}{\operatorname{ker} u}=\wedge^{0,1}(M)$. Extend $\bar{\partial}: C^{\infty} M \longrightarrow B$ to the corresponding exterior algebra using the Leibnitz rule:

$$
C^{\infty} M \xrightarrow{\bar{\partial}} B \xrightarrow{\bar{\partial}} \wedge^{2} B \xrightarrow{\bar{\partial}} \wedge^{3} B \xrightarrow{\overline{\bar{\jmath}}} \ldots
$$

Then integrability of I is equivalent to $\bar{\partial}^{2}=0$.

Proof: This is essentially the Newlander-Nirenberg theorem.

REMARK: Almost complex deformations of I are given by the sections $\gamma \in$ $T^{1,0} M \otimes \wedge^{0,1}(M)$, with the integrability relation $(\bar{\partial}+\gamma)^{2}=0$ rewritten as the Maurer-Cartan equation $\bar{\partial}(\gamma)=-\{\gamma, \gamma\}$. Here $\bar{\partial}(\gamma)$ is identified with the anticommutator $\{\bar{\partial}, \gamma\}$, and $\{\gamma, \gamma\}$ is anticommutator of γ with itself, where γ is considered as a $\wedge^{0,1}(M)$-valued derivation. This identifies $\{\gamma, \gamma\}$ with the Schouten bracket.

Holomorphic symplectic Hodge star operator

Define the holomorphic symplectic \star-map

$$
\star: \wedge^{p, 0}(M) \longrightarrow \wedge^{2 n-p, 0}(M)
$$

via

$$
(\alpha, \beta)_{\Omega}=\frac{\alpha \wedge \star \beta}{\Omega^{n}} .
$$

This is the usual Hodge star operator on $(1,0)$-variables, with the holomorphic volume form used instead of the usual volume form. We extend \star-map to $\wedge^{p, q}(M)$ by $\star(\alpha \wedge \gamma)=\star(\alpha) \wedge \gamma$ for any ($0, p$)-form γ.

LEMMA: Let M be a holomorphic symplectic manifold. Consider the operators $L_{\Omega}(\alpha):=\Omega \wedge \alpha, H_{\Omega}$ acting as multiplication by $n-p$ on $\wedge^{p, q}(M)$, and $\Lambda_{\Omega}:=\star \Lambda_{\star}$. Then $L_{\Omega}, H_{\Omega}, \Lambda_{\Omega}$ satisfy the $\mathfrak{s l}(2)$ relations, similar to the Lefschetz triple: $\left[H_{\Omega}, L_{\Omega}\right]=2 L_{\Omega}, \quad\left[H_{\Omega}, \wedge_{\Omega}\right]=-2 \wedge_{\Omega},\left[L_{\Omega}, \wedge_{\Omega}\right]=H_{\Omega}$.

Tian-Todorov lemma for holomorphically symplectic manifolds

Let now Ω be a holomorphically symplectic form on a complex manifold M, $\operatorname{dim}_{\mathbb{C}} M=2 n$. Then $T M \cong \Omega^{1} M$. Define the holomorphic symplectic Schouten bracket as the bracket

$$
\wedge^{1, p}(M) \times \wedge^{1, q}(M) \longrightarrow \Lambda^{1, p+q}(M) .
$$

obtained from the usual Schouten bracket and this identification.

LEMMA: (Tian-Todorov for holomorphically symplectic manifolds)
Let (M, Ω) be a holomorphically symplectic manifold, and

$$
\{\cdot, \cdot\}_{\Omega}: \Lambda^{1, p}(M) \times \Lambda^{1, q}(M) \longrightarrow \Lambda^{1, p+q}(M) .
$$

the holomorphic symplectic Schouten bracket. Then for any $a, b \in \Lambda^{1, *}(M)$, one has

$$
\{a, b\}_{\Omega}=\delta(a \wedge b)-(\delta a) \wedge b-(-1)^{\tilde{a}} a \wedge \delta(b)
$$

where \tilde{a} is parity of a, and $\delta:=\left[\wedge_{\Omega}, \partial\right]$.

Proof: Later today.

Graded Jacobi identity for $\left\{\eta_{i}, \eta_{j}\right\}_{\Omega}$
COROLLARY: When a, b are (1,1)-forms, one has $\{a, b\}_{\Omega}=\partial \wedge_{\Omega}(a \wedge b)-$ $\wedge_{\Omega}(\partial(a) \wedge b)-(-1)^{\tilde{a}} \wedge_{\Omega}(a \wedge \partial(b))$

Proof: These are the only terms which survive, because $\left.\wedge_{\Omega}\right|_{\wedge^{1, *}(M)}=0$.

From this corollary it follows that $\left\{\eta_{i}, \eta_{j}\right\}_{\Omega}$ satisfies the graded Jacobi relation. Indeed, this quantity is equal to the Schouten bracket, which is a super-commutator in the Lie algebra of derivations.

This proves the remaining claim from Lecture 9 (modulo the holomorphic symplectic Tian-Todorov Iemma, which is not proven yet).

Tian-Todorov Iemma

We use the usual TT-Iemma:

LEMMA: (Tian-Todorov Iemma)

Let (M, Φ) be a Calabi-Yau manifold, and

$$
\{\cdot, \cdot\}: \wedge^{0, p}(M) \otimes T^{1,0} M \times \wedge^{0, q}(M) \otimes T^{1,0} M \longrightarrow \Lambda^{0, p+q}(M) \otimes T^{1,0} M
$$

its Schouten bracket. Using the standard isomorphism $\wedge^{0, p}(M) \otimes T^{1,0} M=$ $\Lambda^{n-1, p}(M)$, we can interpret the Schouten bracket as a map

$$
\{\cdot, \cdot\}: \wedge^{n-1, p}(M) \times \wedge^{n-1, q}(M) \longrightarrow \wedge^{n-1, p+q}(M) .
$$

Then, for any $\alpha \in \wedge^{n-1, p}(M), \beta \in \wedge^{n-1, p_{1}}(M)$, one has

$$
\begin{equation*}
\{\alpha, \beta\}=\partial(\alpha \bullet \beta)-(\partial \alpha) \bullet \beta-(-1)^{n-1+p} \alpha \bullet(\partial \beta), \tag{*}
\end{equation*}
$$

where • denotes the Yukawa product.
Proof: Since the Schouten bracket is a derivation with respect to the Yukawa product, it suffices to prove (*) on the generators of the Yukawa algebra. The same argument which proves the Moser lemma implies that locally there exist coordinates z_{1}, \ldots, z_{n} such that the holomorphic volume form Φ is $d z_{1} \wedge \ldots \wedge d z_{n}$. Then $\{\alpha, \beta\}$ and $\partial(\alpha \bullet \beta)-(\partial \alpha) \bullet \beta-(-1)^{n-1+p} \alpha \bullet(\partial \beta)$ can be computed explicitly when α and β are monomials times a function.

Proof of holomorphic symplectic Tian-Todorov Iemma

LEMMA: (Tian-Todorov for holomorphically symplectic manifolds)
Let (M, Ω) be a holomorphically symplectic manifold, and $\{\cdot, \cdot\}_{\Omega}: \Lambda^{1, p}(M) \times$ $\Lambda^{1, q}(M) \longrightarrow \Lambda^{1, p+q}(M)$ the holomorphic symplectic Schouten bracket. Then for any $a, b \in \Lambda^{1, *}(M)$, one has

$$
\{a, b\}_{\Omega}=\delta(a \wedge b)-(\delta a) \wedge b-(-1)^{\tilde{a}} a \wedge \delta(b), \quad(* *)
$$

where \tilde{a} is parity of a, and $\delta:=\left[\wedge_{\Omega}, \partial\right]$.
Proof. Step 1: Acting by \star on $\wedge^{*, *}(M)$, we obtain the Yukawa multiplication from the usual multiplication: $\alpha \bullet \beta= \pm \star(\star \alpha \wedge \star \beta)$. Moreover, the Schouten bracket interpreted as in Tian-Todorov lemma gives a map

$$
\{\cdot, \cdot\}: \wedge^{n-1, p}(M) \times \wedge^{n-1, q}(M) \longrightarrow \wedge^{n-1, p+q}(M)
$$

after twisting by \star becomes the bracket $\{\cdot, \cdot\}_{\Omega}$ defined above. Then (${ }^{* *)}$ becomes

$$
\{a, b\}_{\Omega}=\star \partial \star(a \wedge b)-(\star \partial \star a) \wedge b-(-1)^{\tilde{a}} a \wedge \star \partial \star(b) .
$$

Therefore, $\left({ }^{* *}\right)$ would be implied if we prove the following holomorphic symplectic analogue of the Kähler relations:

$$
\star \partial \star=\left[\wedge_{\Omega}, \partial\right] . \quad(* * *)
$$

Proof of holomorphic symplectic Tian-Todorov Iemma (2)

LEMMA: (Tian-Todorov for holomorphically symplectic manifolds)

Let (M, Ω) be a holomorphically symplectic manifold, and $\{\cdot, \cdot\}_{\Omega}: \Lambda^{1, p}(M) \times$ $\Lambda^{1, q}(M) \longrightarrow \Lambda^{1, p+q}(M)$ the holomorphic symplectic Schouten bracket. Then for any $a, b \in \Lambda^{1, *}(M)$, one has

$$
\{a, b\}_{\Omega}=\delta(a \wedge b)-(\delta a) \wedge b-(-1)^{\tilde{a}} a \wedge \delta(b), \quad(* *)
$$

where \tilde{a} is parity of a, and $\delta:=\left[\wedge_{\Omega}, \partial\right]$.

Step 1: We reduced this statement to

$$
\star \partial \star=\left[\wedge_{\Omega}, \partial\right] . \quad(* * *)
$$

Step 2: Denote by δ the operator $\left[\Lambda_{\Omega}, \partial\right]$. The formula ($* * *$) is local, hence it would suffice to prove it in a coordinate patch. Using the Moser lemma, we choose holomorphic Darboux coordinates such that $\Omega=\sum_{i=1}^{n} d z_{2 i-1} \wedge$ $d z_{2 i}$. Let α be a coordinate monomial and f a function. Then $\delta(f \alpha)=$ $\sum_{i} \frac{\partial f}{\partial z_{i}} \Omega_{\Omega^{-1}\left(d z_{i}\right)}(\alpha)$, where $\Omega^{-1}\left(d z_{i}\right)$ the vector field dual to $d z_{i}$ via Ω. Similarly, $\star \partial \star(f \alpha)=\sum_{i} \frac{\partial f}{\partial z_{i}} \star e_{d z_{i}} \star \alpha$, where $e_{d z_{i}}(\alpha)=d z_{i} \wedge \alpha$. Therefore, the commutator relation ($* * *$) follows from $\star e_{d z_{i}}{ }^{\star}=i_{\Omega^{-1}\left(d z_{i}\right)}$. This is clear, because $\star e_{d z_{i}} \star$ is the convolution with a vector field Ω-dual to $d z_{i}$.

