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Derivations on Λ0,∗(M)

DEFINITION: Let a ∈ Λ0,r⊗T1,0(M), where M is a complex manifold. Using
local coordinates, we can write a locally as a sum of coordinate monomials∑
J dzJ ⊗XJ, where XJ ∈ T1,0(M) is a vector field, and dzJ = dzj1 ∧ ... ∧ dzjr

a coordinate monomial. Denote by Liea(u) : Λp,q −→ Λp,q+r a derivation
which takes a form fKLdzK ∧ dzL to

∑
J LieXJ(fKL) ∧ dzJ ∧ dzK ∧ dzL.

REMARK: Clearly, Liea is a superderivation which vanishes on antiholo-
morphic forms.

CLAIM: Any derivation δ : Λ0,∗ −→ Λ0,∗+p vanishing on antiholomorphic
forms is equal to Liea for an appropriate a ∈ Λ0,p ⊗ T1,0(M).

Proof. Step 1: A superderivation is determined by its restriction to any
set of multiplicative generators.

Step 2: Since δ is a derivation, its restriction to C∞M defines an Λ0,p(M)-
valued vector field a ∈ Λ0,p ⊗ TM . Since a vanishes on antiholomorphic func-
tions, it belogs to Λ0,p ⊗ T1,0(M). Now, δ and Liea are derivations which
agree on antiholomorphic forms and on functions, and antiholomorphic
forms and functions generate Λ0,p(M), hence δ = La.
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Schouten bracket

COROLLARY 1: Let a ∈ Λ0,p ⊗ T1,0(M), and b ∈ Λ0,q ⊗ T1,0(M), Then

there exists c ∈ Λ0,p+q ⊗ T1,0(M), such that

{Liea,Lieb} := LieaLieb−(−1)pq LiebLiea = Liec .

Proof: Indeed, the supercommutator of derivations is a derivation, and

{Liea,Lieb} vanishes on antiholomorphic forms, hence it is equal to Liec by

the previous claim.

DEFINITION: The operation taking a, b to c ∈ Λ0,p+q ⊗ T1,0(M) is called

the Schouten bracket of a ∈ Λ0,p ⊗ T1,0(M), and b ∈ Λ0,q ⊗ T1,0(M).

REMARK: Since {·, ·} is OM-linear, the Schouten bracket satisfies the Leib-

nitz identity: ∂({α, β}) = {∂α, β}+ {α, ∂β}.

REMARK: This allows one to extend the Schouten bracket to the

∂-cohomology of the complex (Λ0,∗(M) ⊗ T1,0M,∂), which coincide with

the cohomology of the sheaf of holomorphic vector fields: {·, ·} : Hp(TM)×
Hq(TM)−→Hp+q(TM).
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Tian-Todorov lemma

DEFINITION: Assume that M is a complex n-manifold with trivial canon-
ical bundle KM , and Φ a non-degenerate section of KM . We call a pair
(M,Φ) a Calabi-Yau manifold. Substitution of a vector field into Φ gives
an isomorphism TM ∼= Ωn−1(M). Similarly, one obtains an isomorphism

Λ0,qM ⊗ ΛpTM −→ Λ0,qM ⊗ Λn−p,0M = Λn−p,qM. (∗)
Yukawa product • : Λp,qM⊗Λp1,q1M −→ Λp+p1−n,q+q1M is obtained from the
usual product

Λ0,qM ⊗ ΛpTM × Λ0,q1M ⊗ Λp1TM −→ Λ0,q+q1M ⊗ Λp+p1TM

using the isomorphism (*).

TIAN-TODOROV LEMMA: Let (M,Φ) be a Calabi-Yau manifold, and

{·, ·} : Λ0,p(M)⊗ T1,0M × Λ0,q(M)⊗ T1,0M −→ Λ0,p+q(M)⊗ T1,0M.

its Schouten bracket. Using the isomorphism (*), we can interpret Schouten
bracket as a map

{·, ·} : Λn−1,p(M)× Λn−1,q(M)−→ Λn−1,p+q(M).

Then, for any α ∈ Λn−1,p(M), β ∈ Λn−1,p1(M), one has

{α, β} = ∂(α • β)− (∂α) • β − (−1)n−1+pα • (∂β),

where • denotes the Yukawa product.
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Maurer-Cartan equation and deformations

CLAIM: Let (M, I) be an almost complex manifold, and B an abstract vector

bundle over C isomorphic to Λ0,1(M). Consider a differential operator ∂ :

C∞M −→B = Λ0,1(M) satisfying the Leibnitz rule. Its symbol is a linear map

u : Λ1(M,C)−→B. Then B = Λ1(M,C)
ker u = Λ0,1(M). Extend ∂ : C∞M −→B

to the corresponding exterior algebra using the Leibnitz rule:

C∞M ∂−→ B
∂−→ Λ2B

∂−→ Λ3B
∂−→ ...

Then integrability of I is equivalent to ∂
2

= 0.

Proof: This is essentially the Newlander-Nirenberg theorem.

REMARK: Almost complex deformations of I are given by the sections γ ∈
T1,0M ⊗Λ0,1(M), with the integrability relation (∂+ γ)2 = 0 rewritten as the

Maurer-Cartan equation ∂(γ) = −{γ, γ}. Here ∂(γ) is identified with the

anticommutator {∂, γ}, and {γ, γ} is anticommutator of γ with itself, where

γ is considered as a Λ0,1(M)-valued derivation. This identifies {γ, γ} with

the Schouten bracket.
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Holomorphic symplectic Hodge star operator

Define the holomorphic symplectic ?-map

? : Λp,0(M)−→ Λ2n−p,0(M)

via

(α, β)Ω =
α ∧ ?β

Ωn
.

This is the usual Hodge star operator on (1,0)-variables, with the holomorphic

volume form used instead of the usual volume form. We extend ?-map to

Λp,q(M) by ?(α ∧ γ) = ?(α) ∧ γ for any (0, p)-form γ.

LEMMA: Let M be a holomorphic symplectic manifold. Consider the oper-

ators LΩ(α) := Ω ∧ α, HΩ acting as multiplication by n − p on Λp,q(M), and

ΛΩ := ?Λ?. Then LΩ, HΩ,ΛΩ satisfy the sl(2) relations, similar to the

Lefschetz triple: [HΩ, LΩ] = 2LΩ, [HΩ,ΛΩ] = −2ΛΩ, [LΩ,ΛΩ] = HΩ.
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Tian-Todorov lemma for holomorphically symplectic manifolds

Let now Ω be a holomorphically symplectic form on a complex manifold M ,

dimCM = 2n. Then TM ∼= Ω1M . Define the holomorphic symplectic

Schouten bracket as the bracket

Λ1,p(M)× Λ1,q(M)−→ Λ1,p+q(M).

obtained from the usual Schouten bracket and this identification.

LEMMA: (Tian-Todorov for holomorphically symplectic manifolds)

Let (M,Ω) be a holomorphically symplectic manifold, and

{·, ·}Ω : Λ1,p(M)× Λ1,q(M)−→ Λ1,p+q(M).

the holomorphic symplectic Schouten bracket. Then for any a, b ∈ Λ1,∗(M),

one has

{a, b}Ω = δ(a ∧ b)− (δa) ∧ b− (−1)ãa ∧ δ(b),

where ã is parity of a, and δ := [ΛΩ, ∂].

Proof: Later today.
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Graded Jacobi identity for {ηi, ηj}Ω

COROLLARY: When a, b are (1,1)-forms, one has {a, b}Ω = ∂ΛΩ(a ∧ b) −
ΛΩ(∂(a) ∧ b)− (−1)ãΛΩ(a ∧ ∂(b))

Proof: These are the only terms which survive, because ΛΩ

∣∣∣Λ1,∗(M) = 0.

From this corollary it follows that {ηi, ηj}Ω satisfies the graded Jacobi

relation. Indeed, this quantity is equal to the Schouten bracket, which is a

super-commutator in the Lie algebra of derivations.

This proves the remaining claim from Lecture 9 (modulo the holomorphic

symplectic Tian-Todorov lemma, which is not proven yet).

8



K3 surfaces, lecture 10 M. Verbitsky

Tian-Todorov lemma

We use the usual TT-lemma:

LEMMA: (Tian-Todorov lemma)
Let (M,Φ) be a Calabi-Yau manifold, and

{·, ·} : Λ0,p(M)⊗ T1,0M × Λ0,q(M)⊗ T1,0M −→ Λ0,p+q(M)⊗ T1,0M.

its Schouten bracket. Using the standard isomorphism Λ0,p(M) ⊗ T1,0M =
Λn−1,p(M), we can interpret the Schouten bracket as a map

{·, ·} : Λn−1,p(M)× Λn−1,q(M)−→ Λn−1,p+q(M).

Then, for any α ∈ Λn−1,p(M), β ∈ Λn−1,p1(M), one has

{α, β} = ∂(α • β)− (∂α) • β − (−1)n−1+pα • (∂β), (∗)
where • denotes the Yukawa product.

Proof: Since the Schouten bracket is a derivation with respect to the Yukawa
product, it suffices to prove (*) on the generators of the Yukawa algebra. The
same argument which proves the Moser lemma implies that locally there exist
coordinates z1, ..., zn such that the holomorphic volume form Φ is dz1∧ ...∧dzn.
Then {α, β} and ∂(α • β) − (∂α) • β − (−1)n−1+pα • (∂β) can be computed
explicitly when α and β are monomials times a function.
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Proof of holomorphic symplectic Tian-Todorov lemma

LEMMA: (Tian-Todorov for holomorphically symplectic manifolds)
Let (M,Ω) be a holomorphically symplectic manifold, and {·, ·}Ω : Λ1,p(M)×
Λ1,q(M)−→ Λ1,p+q(M) the holomorphic symplectic Schouten bracket. Then
for any a, b ∈ Λ1,∗(M), one has

{a, b}Ω = δ(a ∧ b)− (δa) ∧ b− (−1)ãa ∧ δ(b), (∗∗)
where ã is parity of a, and δ := [ΛΩ, ∂].

Proof. Step 1: Acting by ? on Λ∗,∗(M), we obtain the Yukawa multiplication
from the usual multiplication: α • β = ± ? (?α ∧ ?β). Moreover, the Schouten
bracket interpreted as in Tian-Todorov lemma gives a map

{·, ·} : Λn−1,p(M)× Λn−1,q(M)−→ Λn−1,p+q(M).

after twisting by ? becomes the bracket {·, ·}Ω defined above. Then (**)
becomes

{a, b}Ω = ?∂ ? (a ∧ b)− (?∂ ? a) ∧ b− (−1)ãa ∧ ?∂ ? (b).

Therefore, (**) would be implied if we prove the following holomorphic
symplectic analogue of the Kähler relations:

?∂? = [ΛΩ, ∂]. (∗ ∗ ∗)
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Proof of holomorphic symplectic Tian-Todorov lemma (2)

LEMMA: (Tian-Todorov for holomorphically symplectic manifolds)
Let (M,Ω) be a holomorphically symplectic manifold, and {·, ·}Ω : Λ1,p(M)×
Λ1,q(M)−→ Λ1,p+q(M) the holomorphic symplectic Schouten bracket. Then
for any a, b ∈ Λ1,∗(M), one has

{a, b}Ω = δ(a ∧ b)− (δa) ∧ b− (−1)ãa ∧ δ(b), (∗∗)

where ã is parity of a, and δ := [ΛΩ, ∂].

Step 1: We reduced this statement to

?∂? = [ΛΩ, ∂]. (∗ ∗ ∗)

Step 2: Denote by δ the operator [ΛΩ, ∂]. The formula (***) is local, hence
it would suffice to prove it in a coordinate patch. Using the Moser lemma,
we choose holomorphic Darboux coordinates such that Ω =

∑n
i=1 dz2i−1 ∧

dz2i. Let α be a coordinate monomial and f a function. Then δ(fα) =∑
i
∂f
∂zi
iΩ−1(dzi)

(α), where Ω−1(dzi) the vector field dual to dzi via Ω. Similarly,

?∂ ?(fα) =
∑
i
∂f
∂zi

?edzi ?α, where edzi(α) = dzi∧α. Therefore, the commutator
relation (***) follows from ?edzi? = iΩ−1(dzi)

. This is clear, because ?edzi? is
the convolution with a vector field Ω-dual to dzi.
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