K3 surfaces, assignment 1: Connections, holonomy, Calabi-Yau manifolds

Exercise 1.1. A connection ∇ is called flat if its curvature vanishes. Let (B, ∇) be a flat vector bundle over a simply connected manifold. A section b is called parallel $\nabla(b)=0$. Prove that B is generated by parallel sections.

Exercise 1.2. Let $\left(B_{1}, \nabla_{1}\right)$ and $\left(B_{2}, \nabla_{2}\right)$ be vector bundles with connection over $M \in x$, and $\Theta_{i} \in \Lambda^{2} M \otimes \operatorname{End}\left(B_{i}\right)$ their curvature forms. Denote by $\Theta \in \Lambda^{2} M \otimes \operatorname{End}\left(B_{1} \otimes B_{2}\right)$ the curvature of the connection

$$
\nabla\left(b_{1} \otimes b_{2}\right)=\nabla_{1}\left(b_{1}\right) \otimes b_{2}+b_{1} \otimes \nabla_{2}\left(b_{2}\right)
$$

induced by ∇_{1}, ∇_{2} on $B_{1} \otimes B_{2}$. Prove that for any $u, v \in T_{x} M$, one has

$$
\Theta(u, v)\left(b_{1} \otimes b_{2}\right)=\Theta_{1}(u, v)\left(b_{1}\right) \otimes b_{2}+b_{1} \otimes \Theta_{1}(u, v)\left(b_{2}\right)
$$

Exercise 1.3. Let (B, ∇) be a bundle over $M \ni x$, and $\operatorname{Hol} \subset G L\left(T_{x} M\right)$ its holonomy group. Assume that a 2 -form $\eta \in\left(T_{x} T \otimes T_{x} M\right)^{*}$ is Hol-invariant. Prove that it can be extended to a parallel 2-form on B.

Exercise 1.4. Construct a compact 2-dimensional Riemannian manifold with holonomy of the Levi-Civita connection finite.

Exercise 1.5. Let M be a Riemannian manifold equipped with the Levi-Civita connection, and η a parallel differential form on M. Prove that $d \eta=0$.

Definition 1.1. A $\bar{\partial}$-closed $(k, 0)$-form on a complex manifold is called holomorphic.

Exercise 1.6. Let F be an exact holomorphic p-form on a compact p-dimensional complex manifold. Prove that $F=0$.

Exercise 1.7. Let M be a compact complex surface (not necessarily Kählerian). Prove that all holomorphic forms on M are closed.

Exercise 1.8. Let M be a compact complex surface equipped with a smooth holomorphic map $M \longrightarrow E$. Assume that E and all fibers of M are elliptic curves. Prove that the canonical bundle of M is trivial.

Exercise 1.9. Let $\mathbb{C}^{2} /\{ \pm 1\}$ be the complex variety obtained as a finite quotient of \mathbb{C}^{2}, and $\widetilde{\mathbb{C}^{2} /\{ \pm 1\}}$ its blow-up in zero. Prove that $\widetilde{\mathbb{C}^{2} /\{ \pm 1\}} \cong T^{*} \mathbb{C} P^{1}$.

Exercise 1.10. Let $H=\mathbb{C}^{2} / \mathbb{Z}^{4}$ be a complex torus, and $H /\{ \pm 1\}$ its quotient by the map $x \mapsto-x$. Denote by M the blow-up of $H /\{ \pm 1\}$ in 16 singular points. Prove that M is holomorphically symplectic, that is, admits a closed, non-degenerate $(2,0)$-form.

Hint. Use the previous exercise.
Remark 1.1. This M is called the Kummer surface. It is a K3.

