K3 surfaces, assignment 4: differential operators and connections

4.1 Differential operators (after Grothendieck)

Definition 4.1. Let R be a commutative ring over a field k. Given $a \in R$, consider the map $L_{a}: R \longrightarrow R$ mapping x to $a x$. Define $\operatorname{Diff}^{k}(R) \subset \operatorname{Hom}_{k}(R, R)$ inductively as follows. The $\operatorname{Diff}^{0}(R)$ is the space of all R-linear maps from R to R, that is, the space of all $L_{a}, a \in R$. The space $\operatorname{Diff}^{k}(R), k>0$ is

$$
\operatorname{Diff}^{k}(R):=\left\{D \in \operatorname{Hom}_{k}(R, R) \quad \mid \quad\left[L_{a}, D\right] \in \operatorname{Diff}^{k-1}(R) \quad \forall a \in R .\right\}
$$

The union of all $\operatorname{Diff}^{i}(R)$ is called the space of differential operators on R. Differential operators on the ring $C^{\infty} M$ is called differential operators on M, denoted Diff* (M).

Exercise 4.1. Let $D^{i} \in \operatorname{Diff}^{i}(R), D^{j} \in \operatorname{Diff}^{j}(R)$ be differential operators. Prove that the composition $D^{i} D^{j}$ lies in $\operatorname{Diff}^{i+j}(R)$.

Hint. Use induction and the identity $\left[v, D^{i} D^{j}\right]=\left[v, D^{i}\right] D^{j}+D^{i}\left[v, D^{j}\right]$
Exercise 4.2. Let $D^{i} \in \operatorname{Diff}^{i}(R), D^{j} \in \operatorname{Diff}^{j}(R)$ be differential operators. Prove that the commutator $\left[D^{i}, D^{j}\right]$ lies in $\operatorname{Diff}^{i+j-1}(R)$.

Hint. Use induction and the Jacobi identity

$$
\left[v,\left[D^{i}, D^{j}\right]\right]=\left[\left[v, D^{i}\right], D^{j}\right]+\left[D^{i},\left[v, D^{j}\right]\right]
$$

Definition 4.2. Let R be a k-algebra, and $D: R \longrightarrow A$ a k-linear map from R to an R-module. It is called a k-derivation, or just derivation if it satisfies the Leibniz rule: $D(x y)=y D(x)+x D(y)$.

Exercise 4.3. a. Prove that $D(k)=0$ for any k-derivation on a k-algebra (we assume char $k=0$).
b. (!) Let R be a finite extension of a field k of characteristic 0 . Prove that the space $\operatorname{Der}_{k}(R, R)$ of derivations vanishes.

Exercise $4.4\left(^{* *}\right)$. Let R be the ring of continuous functions on a manifold M. Prove that $\operatorname{Der}_{\mathbb{R}}(R, R)=0$, or find a counterexample.

Exercise 4.5 (*). Let x_{1}, \ldots, x_{n} be coordinates on \mathbb{R}^{n}. Prove that any derivation on $C^{\infty} \mathbb{R}^{n}$ is written as coordinates as $D(f)=\sum_{i=1}^{n} f_{i} \frac{d}{d x_{i}}$, where $f_{i} \in C^{\infty} M$.

Hint. Use the Hadamard lemma and an inclusion $D\left(I^{k}\right) \subset I^{k-1}$ (Exercise 4.8).
Exercise 4.6 (!). Let $D \in \operatorname{Diff}^{1}(R)$ be a differential operator of first order. Prove that $D-D(1)$ is a derivation of R. Prove that $\operatorname{Diff}^{1}(R) / \operatorname{Diff}^{0}(R)$ is isomorphic to the space of derivations of R.

Exercise 4.7. Let $R=k[t]$ be an algebra of polynomials over a field k of characteristic 0 , and $D \in \operatorname{Diff}^{k}(R)$.
a. Prove that D is uniquely determined by its restriction on polynomials of degree $\leqslant k$.
b. (*) Prove that $\operatorname{Diff}^{k}(R)$ is a free $k[t]$-module, generated by $\tau_{0}, \tau_{1}, \ldots \tau_{k}$, where τ_{i} maps all $1, t, t^{2}, t^{3}, \ldots t^{k}$ except t^{i} to 0 , and t^{i} to 1 .
c. $\left.{ }^{* *}\right)$ Prove that $\operatorname{Diff}\left(\mathbb{R}\left[t_{1}, \ldots, t_{n}\right]\right)$ is an algebra freely generated by generators t_{1}, \ldots, t_{n} and $\frac{d}{d t_{1}}, \ldots, \frac{d}{d t_{n}}$ and relations $\left[t_{i}, \frac{d}{d t_{j}}\right]=\delta_{i j}$.

Exercise 4.8. Let $I \subset R$ be an ideal, and $D \in \operatorname{Diff}^{k}(R)$. Prove that $D\left(I^{k+1}\right) \subset I$.
Hint. Use induction in k and identity $\left[D, L_{a} L_{b}\right]=\left[D, L_{a}\right] L_{b}+L_{a}\left[D, L_{b}\right]$.

4.2 The ring of symbols of differential operators

Definition 4.3. Let R be an associative algebra. (Increasing) filtration on R is a collection of subspaces $R_{0} \subset R_{1} \subset R_{2} \subset \ldots$ such that $R_{i} R_{j} \subset R_{i+j}$. The natural product map $\left(R_{k} / R_{k-1}\right) \otimes\left(R_{l} / R_{l-1}\right) \longrightarrow R_{k+l} / R_{k+l-1}$ defines an associative product structure on the space $\bigoplus_{i=0}^{\infty} R_{i} / R_{i-1}$. The algebra $\bigoplus_{i=0}^{\infty} R_{i} / R_{i-1}$ is called the associated graded algebra of this filtration.

Exercise 4.9. Consider the algebra $\operatorname{Diff}^{*}(R)$ with its filtration by $\operatorname{Diff}^{i}(M)$. Prove that its associated graded algebra is commutative.

Hint. Use Exercise 4.2.
Definition 4.4. This ring is called the ring of symbols of differential operators. For any $D \in \operatorname{Diff}^{k}(R)$, its class in $\frac{D_{i f f}^{k}(R)}{\operatorname{Diff}^{k-1}(R)}$ is called the symbol of D.

Exercise 4.10. Consider sections of $T M$ as differential operators of the first order.
a. Prove that $T M=\operatorname{Diff}^{1} M / \operatorname{Diff}^{0} M$.
b. Prove that the multiplication in the ring of symbols defines a surjective, $C^{\infty} M$ linear map Sym $^{k} T M \longrightarrow$ Diff $^{k} M /$ Diff $^{k-1} M$.
c. (!) Prove that this map is an isomorphism.

4.3 Connections

Definition 4.5. Let B be a vector bundle on a smooth manifold M, and

$$
\nabla: B \longrightarrow B \otimes \Lambda^{1} M
$$

a differential operator which satisfies

$$
\nabla(f b)=b \otimes d f+f \nabla b
$$

for any $f \in C^{\infty}(M)$ and any $b \in B$. Then ∇ is called a connection on B. Given a vector field X, consider an operator $\nabla_{X}: B \longrightarrow B$ obtained by the convolution of $\nabla(b)$ with X. This operator is called the covariant derivative along X.

Exercise 4.11. Prove that the covariant derivative ∇_{X} satisfies the Leibniz rule $\nabla_{X}(f b)=\langle d f, X\rangle b+f \nabla_{X} b$. Here $\langle d f, X\rangle$ denotes the derivative of f along X; elsewhere it is denoted by $\operatorname{Lie}_{X} f$ or $\left.d f\right\lrcorner X$.

Exercise 4.12. Let B be a vector bundle on M. Suppose that for any vector field $X \in T M$ we are provided with a covariant derivative operator $\nabla_{X}: B \longrightarrow B$ satisfying the Leibniz rule and $C^{\infty} M$-linear on X. Prove that ∇_{X} is obtained from a connection.

Exercise 4.13. Prove that the symbol $\operatorname{Symb}(\nabla) \in T M \otimes \operatorname{Hom}\left(B, \Lambda^{1} M \otimes B\right)$ of a

Exercise 4.14 (!). Let D be a first order differential operator on a bundle B with $\operatorname{symbol} \operatorname{Symb}(D) \in T M \otimes \operatorname{Hom}\left(B, \Lambda^{1} M \otimes B\right)$ given by an identity map $\mathbf{I d}_{T M} \otimes \mathbf{l d}_{B}:$ $T M \otimes T^{*} M \otimes \operatorname{Hom}(B, B)$. Prove that it is a connection.

Exercise 4.15 (!). Let ∇ be a connection on B, B^{*} the dual bundle. Prove that there exists a unique operator $\nabla^{*}: B^{*} \longrightarrow B^{*} \otimes \Lambda^{1} M$ such that

$$
d\left\langle b, b^{\prime}\right\rangle=\left\langle\nabla b, b^{\prime}\right\rangle+\left\langle b, \nabla^{*} b^{\prime}\right\rangle
$$

for any $b \in B, b^{\prime} \in B^{*}$. Prove that ∇^{*} is a connection on B^{*}.
Exercise 4.16. Let B_{1}, \ldots, B_{n} be vector bundles with connections, denoted by ∇ (people often use the same letter ∇ to denote different connections if they are defined on different bundles). Consider the following differential operator

$$
\nabla: B_{1} \otimes \ldots \otimes B_{n} \longrightarrow B_{1} \otimes \ldots \otimes B_{n} \otimes \Lambda^{1} M
$$

$\nabla\left(b_{1} \otimes b_{2} \otimes \ldots \otimes b_{n}\right)=\nabla\left(b_{1}\right) \otimes b_{2} \otimes \ldots \otimes b_{n}+b_{1} \otimes \nabla\left(b_{2}\right) \otimes \ldots \otimes b_{n}+\ldots+b_{1} \otimes b_{2} \otimes \ldots \otimes \nabla\left(b_{n}\right)$. Prove that ∇ defines a connection on the vector bundle $B_{1} \otimes \ldots \otimes B_{n}$.

Remark 4.1. Previous two exercises show that a connection on a bundle B defines a connection on any tensor power $B^{\otimes n} \otimes\left(B^{*}\right)^{\otimes m}$. This connection is almost always denoted by the same letter.

Exercise 4.17 (!). Let B be a vector bundle over a manifold admitting partition of unity. Prove that B admits a connection.

4.4 Holonomy

Definition 4.6. Let (B, ∇) be a bundle with connection. A tensor $\Psi \in B^{\otimes i} \otimes\left(B^{*}\right)^{\otimes j}$ is called parallel if $\nabla(\Psi)=0$. In this case we also say that Ψ is preserved by ∇.

Exercise 4.18. Let g be a tensor on a bundle B over M. Construct a connection ∇ such that $\nabla(g)=0$ if
a. (!) $\quad g$ is a non-degenerate bilinear symmetric form on B.
b. $\left(^{*}\right) \quad g$ is a non-degenerate bilinear antisymmetric form on B.
c. $\left(^{*}\right) \quad g$ is a bilinear symmetric form of constant rank on B.

Exercise 4.19. Let B be a trivial vector bundle with connection over \mathbb{R}. Prove that for each $x \in \mathbb{R}$ and each vector $\left.b_{x} \in B\right|_{x}$ there exists a unique section $b \in B$ such that $\nabla b=0,\left.b\right|_{x}=b_{x}$.

Definition 4.7. Let $\gamma:[0,1] \longrightarrow M$ be a smooth path in M connecting x and y, and (B, ∇) a vector bundle with connection. Restricting (B, ∇) to $\gamma[0,1]$, we obtain a bundle with connection on an interval. Solve an equation $\nabla(b)=0$ for $\left.b \in B\right|_{\gamma([0,1])}$ and initial condition $\left.b\right|_{x}=b_{x}$. This process is called parallel transport along the path via the connection. The vector $b_{y}:=\left.b\right|_{y}$ is called vector obtained by parallel transport of b_{x} along γ. Holonomy group of γ is the group of endomorphisms of the fiber B_{x} obtained from parallel transports along all paths starting and ending in $x \in M$

Exercise 4.20. Let (B, ∇) be a vector bundle over a connected manifold M, and $x, y \in M$. Construct an isomorphism of the corresponding holonomy groups $\operatorname{Hol}_{x}(\nabla) \longrightarrow \operatorname{Hol}_{y}(\nabla)$.

Exercise 4.21. Find a bundle with connection over S^{1} which has non-trivial holonomy.

4.5 Iterated connection

Definition 4.8. Let M be a smooth manifold. A connection on $T M$ or on $\Lambda^{1} M$ is called connection on M. This connection defines a connection on all tensor powers of $T M$ and $\Lambda^{1} M$. A tensor product of several copies of $T M$ and $\Lambda^{1} M$ is called a tensor bundle on M, and its section a tensor. Similarly, a section of a tensor product of several copies of B and B^{*} is called a tensor over a bundle B.

Definition 4.9. Let B be a vector bundle with connection ∇_{0} over a manifold M, and ∇ a connection on $\Lambda^{1} M$. Define a connection

$$
\begin{equation*}
\nabla_{i}: B \otimes \underbrace{\Lambda^{1} M \otimes \ldots}_{i \text { times }} \longrightarrow B \otimes \underbrace{\Lambda^{1} M \otimes \ldots}_{i+1 \text { times }} \tag{4.1}
\end{equation*}
$$

using the Leibniz formula

$$
\nabla_{i}\left(b \otimes \xi_{1} \otimes \ldots \otimes \xi_{i}\right)=\nabla_{i-1}\left(b \otimes \xi_{1} \otimes \ldots \otimes \xi_{i-1}\right) \otimes \xi_{i}+b \otimes \xi_{1} \otimes \ldots \otimes \xi_{i-1} \otimes \nabla \xi_{i}
$$

Denote by

$$
\nabla^{i}: B \longrightarrow B \otimes \underbrace{\Lambda^{1} M \otimes \ldots}_{i \text { times }}
$$

the composition $\nabla_{0} \circ \nabla_{1} \circ \ldots \circ \nabla_{i}$. This operator is called an i-th power of the connection ∇.

Exercise 4.22. a. Prove that the symbol of ∇^{2}, considered as an element of

$$
\operatorname{Sym}^{2} T M \otimes \operatorname{Hom}\left(B, B \otimes \Lambda^{1} M \otimes \Lambda^{1} M\right)
$$

is symmetric under the permutation of the tensor multipliers $\Lambda^{1} M \otimes \Lambda^{1} M$.
b. $\left(^{*}\right) \quad$ Let S be the symbol of ∇^{i},

$$
S \in \operatorname{Sym}^{i} T M \otimes \operatorname{Hom}(B, B \otimes \underbrace{\Lambda^{1} M \otimes \ldots}_{i \text { times }})
$$

Prove that S is symmetric under the permutations of the tensor multipliers $\Lambda^{1} M \otimes \Lambda^{1} M \otimes \ldots \otimes \Lambda^{1} M$.
c. $\left(^{*}\right) \quad$ Prove that S is given by $I d \in \operatorname{End}\left(\operatorname{Sym}^{i} \Lambda^{1} M \otimes B\right)$, where the bundle $\operatorname{End}\left(\operatorname{Sym}^{i} \Lambda^{1} M \otimes B\right)$ is identified with $\operatorname{Sym}^{i} T M \otimes \operatorname{Hom}\left(B, B \otimes \operatorname{Sym}^{i} \Lambda^{1} M\right)$ using an isomorphism $V \otimes \operatorname{Hom}\left(B, B \otimes V^{*}\right)=\operatorname{Hom}\left(B \otimes V^{*}, B \otimes V^{*}\right)$, where $V=$ $\mathrm{Sym}^{i} T M$.

Exercise 4.23. Let $D \in \operatorname{Diff}^{s}(B, C)$ be a differential operator on vector bundles B, C. Prove that there exists a C^{∞}-linear map

$$
\Psi: B \otimes \bigoplus_{i=0}^{s}\left(\Lambda^{1} M\right)^{\otimes i} \longrightarrow C
$$

such that $D(b)=\Psi\left(\bigoplus_{i=0}^{s} \nabla^{i} b\right)$.

