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K3 surfaces, assignment 4: differential operators and
connections

4.1 Differential operators (after Grothendieck)

Definition 4.1. Let R be a commutative ring over a field k. Given a ∈ R, consider
the map La : R−→R mapping x to ax. Define Diffk(R) ⊂ Homk(R,R) inductively
as follows. The Diff0(R) is the space of all R-linear maps from R to R, that is, the
space of all La, a ∈ R. The space Diffk(R), k > 0 is

Diffk(R) := {D ∈ Homk(R,R) | [La, D] ∈ Diffk−1(R) ∀a ∈ R.}

The union of all Diffi(R) is called the space of differential operators on R.
Differential operators on the ring C∞M is called differential operators on M ,
denoted Diff∗(M).

Exercise 4.1. Let Di ∈ Diffi(R), Dj ∈ Diffj(R) be differential operators. Prove that
the composition DiDj lies in Diffi+j(R).

Hint. Use induction and the identity [v,DiDj ] = [v,Di]Dj +Di[v,Dj ]

Exercise 4.2. Let Di ∈ Diffi(R), Dj ∈ Diffj(R) be differential operators. Prove that
the commutator [Di, Dj ] lies in Diffi+j−1(R).

Hint. Use induction and the Jacobi identity

[v, [Di, Dj ]] = [[v,Di], Dj ] + [Di, [v,Dj ]].

Definition 4.2. Let R be a k-algebra, and D : R−→A a k-linear map from R to an
R-module. It is called a k-derivation, or just derivation if it satisfies the Leibniz
rule: D(xy) = yD(x) + xD(y).

Exercise 4.3. a. Prove that D(k) = 0 for any k-derivation on a k-algebra (we
assume char k = 0).

b. (!) Let R be a finite extension of a field k of characteristic 0. Prove that the
space Derk(R,R) of derivations vanishes.

Exercise 4.4 (**). Let R be the ring of continuous functions on a manifold M . Prove
that DerR(R,R) = 0, or find a counterexample.

Exercise 4.5 (*). Let x1, ..., xn be coordinates on Rn. Prove that any derivation on
C∞Rn is written as coordinates as D(f) =

∑n
i=1 fi

d
dxi

, where fi ∈ C∞M .

Hint. Use the Hadamard lemma and an inclusion D(Ik) ⊂ Ik−1 (Exercise 4.8).

Exercise 4.6 (!). Let D ∈ Diff1(R) be a differential operator of first order. Prove
that D−D(1) is a derivation of R. Prove that Diff1(R)/Diff0(R) is isomorphic to the
space of derivations of R.

Exercise 4.7. Let R = k[t] be an algebra of polynomials over a field k of characteristic
0, and D ∈ Diffk(R).

a. Prove that D is uniquely determined by its restriction on polynomials of degree
6 k.
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b. (*) Prove that Diffk(R) is a free k[t]-module, generated by τ0, τ1, ...τk, where
τi maps all 1, t, t2, t3, ...tk except ti to 0, and ti to 1.

c. (**) Prove that Diff∗(R[t1, ..., tn]) is an algebra freely generated by generators
t1, ..., tn and d

dt1
, ..., d

dtn
and relations [ti,

d
dtj

] = δij .

Exercise 4.8. Let I ⊂ R be an ideal, and D ∈ Diffk(R). Prove that D(Ik+1) ⊂ I.

Hint. Use induction in k and identity [D,LaLb] = [D,La]Lb + La[D,Lb].

4.2 The ring of symbols of differential operators

Definition 4.3. Let R be an associative algebra. (Increasing) filtration on R
is a collection of subspaces R0 ⊂ R1 ⊂ R2 ⊂ ... such that RiRj ⊂ Ri+j . The
natural product map (Rk/Rk−1)⊗ (Rl/Rl−1)−→Rk+l/Rk+l−1 defines an associative
product structure on the space

⊕∞
i=0Ri/Ri−1. The algebra

⊕∞
i=0Ri/Ri−1 is called

the associated graded algebra of this filtration.

Exercise 4.9. Consider the algebra Diff∗(R) with its filtration by Diffi(M). Prove
that its associated graded algebra is commutative.

Hint. Use Exercise 4.2.

Definition 4.4. This ring is called the ring of symbols of differential operators.

For any D ∈ Diffk(R), its class in Diffk(R)

Diffk−1(R)
is called the symbol of D.

Exercise 4.10. Consider sections of TM as differential operators of the first order.

a. Prove that TM = Diff1M/Diff0M .

b. Prove that the multiplication in the ring of symbols defines a surjective, C∞M -
linear map Symk TM −→ DiffkM/Diffk−1M .

c. (!) Prove that this map is an isomorphism.

4.3 Connections

Definition 4.5. Let B be a vector bundle on a smooth manifold M , and

∇ : B −→B ⊗ Λ1M

a differential operator which satisfies

∇(fb) = b⊗ df + f∇b,

for any f ∈ C∞(M) and any b ∈ B. Then ∇ is called a connection on B. Given
a vector field X, consider an operator ∇X : B −→B obtained by the convolution of
∇(b) with X. This operator is called the covariant derivative along X.

Exercise 4.11. Prove that the covariant derivative ∇X satisfies the Leibniz rule
∇X(fb) = 〈df,X〉b + f∇Xb. Here 〈df,X〉 denotes the derivative of f along X; else-
where it is denoted by LieX f or df yX.

Exercise 4.12. Let B be a vector bundle on M . Suppose that for any vector field
X ∈ TM we are provided with a covariant derivative operator∇X : B −→B satisfying
the Leibniz rule and C∞M -linear on X. Prove that ∇X is obtained from a connection.
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Exercise 4.13. Prove that the symbol Symb(∇) ∈ TM ⊗ Hom(B,Λ1M ⊗ B) of a
connection is given by an identity map IdTM ⊗ IdB : TM ⊗ T ∗M ⊗Hom(B,B).

Exercise 4.14 (!). Let D be a first order differential operator on a bundle B with
symbol Symb(D) ∈ TM ⊗ Hom(B,Λ1M ⊗ B) given by an identity map IdTM ⊗ IdB :
TM ⊗ T ∗M ⊗Hom(B,B). Prove that it is a connection.

Exercise 4.15 (!). Let ∇ be a connection on B, B∗ the dual bundle. Prove that
there exists a unique operator ∇∗ : B∗ −→B∗ ⊗ Λ1M such that

d〈b, b′〉 = 〈∇b, b′〉+ 〈b,∇∗b′〉

for any b ∈ B, b′ ∈ B∗. Prove that ∇∗ is a connection on B∗.

Exercise 4.16. Let B1, ..., Bn be vector bundles with connections, denoted by∇ (peo-
ple often use the same letter ∇ to denote different connections if they are defined on
different bundles). Consider the following differential operator

∇ : B1 ⊗ ...⊗Bn −→B1 ⊗ ...⊗Bn ⊗ Λ1M,

∇(b1⊗b2⊗ ...⊗bn) = ∇(b1)⊗b2⊗ ...⊗bn+b1⊗∇(b2)⊗ ...⊗bn+ ...+b1⊗b2⊗ ...⊗∇(bn).
Prove that ∇ defines a connection on the vector bundle B1 ⊗ ...⊗Bn.

Remark 4.1. Previous two exercises show that a connection on a bundle B defines
a connection on any tensor power B⊗n ⊗ (B∗)⊗m. This connection is almost always
denoted by the same letter.

Exercise 4.17 (!). Let B be a vector bundle over a manifold admitting partition of
unity. Prove that B admits a connection.

4.4 Holonomy

Definition 4.6. Let (B,∇) be a bundle with connection. A tensor Ψ ∈ B⊗i⊗ (B∗)⊗j

is called parallel if ∇(Ψ) = 0. In this case we also say that Ψ is preserved by ∇.

Exercise 4.18. Let g be a tensor on a bundle B over M . Construct a connection ∇
such that ∇(g) = 0 if

a. (!) g is a non-degenerate bilinear symmetric form on B.

b. (*) g is a non-degenerate bilinear antisymmetric form on B.

c. (*) g is a bilinear symmetric form of constant rank on B.

Exercise 4.19. Let B be a trivial vector bundle with connection over R. Prove that
for each x ∈ R and each vector bx ∈ B

∣∣
x

there exists a unique section b ∈ B such that

∇b = 0, b
∣∣
x

= bx.

Definition 4.7. Let γ : [0, 1]−→M be a smooth path in M connecting x and y,
and (B,∇) a vector bundle with connection. Restricting (B,∇) to γ[0, 1], we obtain

a bundle with connection on an interval. Solve an equation ∇(b) = 0 for b ∈ B
∣∣∣
γ([0,1])

and initial condition b
∣∣
x

= bx. This process is called parallel transport along the

path via the connection. The vector by := b
∣∣∣
y

is called vector obtained by parallel

transport of bx along γ. Holonomy group of γ is the group of endomorphisms of
the fiber Bx obtained from parallel transports along all paths starting and ending in
x ∈M
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Exercise 4.20. Let (B,∇) be a vector bundle over a connected manifold M , and
x, y ∈M . Construct an isomorphism of the corresponding holonomy groups
Holx(∇)−→ Holy(∇).

Exercise 4.21. Find a bundle with connection over S1 which has non-trivial holon-
omy.

4.5 Iterated connection

Definition 4.8. Let M be a smooth manifold. A connection on TM or on Λ1M is
called connection on M . This connection defines a connection on all tensor powers of
TM and Λ1M . A tensor product of several copies of TM and Λ1M is called a tensor
bundle on M , and its section a tensor. Similarly, a section of a tensor product of
several copies of B and B∗ is called a tensor over a bundle B.

Definition 4.9. Let B be a vector bundle with connection ∇0 over a manifold M ,
and ∇ a connection on Λ1M . Define a connection

∇i : B ⊗ Λ1M ⊗ ...︸ ︷︷ ︸
i times

−→B ⊗ Λ1M ⊗ ...︸ ︷︷ ︸
i + 1 times

(4.1)

using the Leibniz formula

∇i(b⊗ ξ1 ⊗ ...⊗ ξi) = ∇i−1(b⊗ ξ1 ⊗ ...⊗ ξi−1)⊗ ξi + b⊗ ξ1 ⊗ ...⊗ ξi−1 ⊗∇ξi.

Denote by
∇i : B −→B ⊗ Λ1M ⊗ ...︸ ︷︷ ︸

i times

the composition ∇0 ◦ ∇1 ◦ ... ◦ ∇i. This operator is called an i-th power of the
connection ∇.

Exercise 4.22. a. Prove that the symbol of ∇2, considered as an element of

Sym2 TM ⊗Hom(B,B ⊗ Λ1M ⊗ Λ1M)

is symmetric under the permutation of the tensor multipliers Λ1M ⊗ Λ1M .

b. (*) Let S be the symbol of ∇i,

S ∈ Symi TM ⊗Hom

(
B,B ⊗ Λ1M ⊗ ...︸ ︷︷ ︸

i times

)
Prove that S is symmetric under the permutations of the tensor multipliers
Λ1M ⊗ Λ1M ⊗ ...⊗ Λ1M .

c. (*) Prove that S is given by Id ∈ End(Symi Λ1M ⊗ B), where the bundle
End(Symi Λ1M⊗B) is identified with Symi TM⊗Hom(B,B⊗Symi Λ1M) using
an isomorphism V ⊗ Hom(B,B ⊗ V ∗) = Hom(B ⊗ V ∗, B ⊗ V ∗), where V =
Symi TM .

Exercise 4.23. Let D ∈ Diffs(B,C) be a differential operator on vector bundles B,
C. Prove that there exists a C∞-linear map

Ψ : B ⊗
s⊕

i=0

(Λ1M)⊗i −→ C

such that D(b) = Ψ
(⊕s

i=0∇ib
)
.
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