K3 surfaces, assignment 4: differential operators and connections

4.1 Differential operators (after Grothendieck)

Definition 4.1. Let R be a commutative ring over a field k. Given $a \in R$, consider the map $L_a : R \longrightarrow R$ mapping x to ax. Define $\text{Diff}^k(R) \subset \text{Hom}_k(R, R)$ inductively as follows. The $\text{Diff}^0(R)$ is the space of all R-linear maps from R to R, that is, the space of all $L_a, a \in R$. The space $\text{Diff}^k(R), k > 0$ is

 $\operatorname{Diff}^{k}(R) := \{ D \in \operatorname{Hom}_{k}(R, R) \mid [L_{a}, D] \in \operatorname{Diff}^{k-1}(R) \quad \forall a \in R. \}$

The union of all $\text{Diff}^{i}(R)$ is called **the space of differential operators on** R. Differential operators on the ring $C^{\infty}M$ is called **differential operators on** M, denoted $\text{Diff}^{*}(M)$.

Exercise 4.1. Let $D^i \in \text{Diff}^i(R)$, $D^j \in \text{Diff}^j(R)$ be differential operators. Prove that the composition $D^i D^j$ lies in $\text{Diff}^{i+j}(R)$.

Hint. Use induction and the identity $[v, D^i D^j] = [v, D^i] D^j + D^i [v, D^j]$

Exercise 4.2. Let $D^i \in \text{Diff}^i(R)$, $D^j \in \text{Diff}^j(R)$ be differential operators. Prove that the commutator $[D^i, D^j]$ lies in $\text{Diff}^{i+j-1}(R)$.

Hint. Use induction and the Jacobi identity

$$[v, [D^i, D^j]] = [[v, D^i], D^j] + [D^i, [v, D^j]].$$

Definition 4.2. Let *R* be a *k*-algebra, and $D : R \longrightarrow A$ a *k*-linear map from *R* to an *R*-module. It is called a *k*-derivation, or just derivation if it satisfies the Leibniz rule: D(xy) = yD(x) + xD(y).

- **Exercise 4.3.** a. Prove that D(k) = 0 for any k-derivation on a k-algebra (we assume char k = 0).
 - b. (!) Let R be a finite extension of a field k of characteristic 0. Prove that the space $\text{Der}_k(R, R)$ of derivations vanishes.

Exercise 4.4 (**). Let R be the ring of continuous functions on a manifold M. Prove that $\text{Der}_{\mathbb{R}}(R, R) = 0$, or find a counterexample.

Exercise 4.5 (*). Let $x_1, ..., x_n$ be coordinates on \mathbb{R}^n . Prove that any derivation on $C^{\infty}\mathbb{R}^n$ is written as coordinates as $D(f) = \sum_{i=1}^n f_i \frac{d}{dx_i}$, where $f_i \in C^{\infty}M$.

Hint. Use the Hadamard lemma and an inclusion $D(I^k) \subset I^{k-1}$ (Exercise 4.8).

Exercise 4.6 (!). Let $D \in \text{Diff}^1(R)$ be a differential operator of first order. Prove that D - D(1) is a derivation of R. Prove that $\text{Diff}^1(R) / \text{Diff}^0(R)$ is isomorphic to the space of derivations of R.

Exercise 4.7. Let R = k[t] be an algebra of polynomials over a field k of characteristic 0, and $D \in \text{Diff}^k(R)$.

a. Prove that D is uniquely determined by its restriction on polynomials of degree $\leqslant k.$

- b. (*) Prove that $\text{Diff}^k(R)$ is a free k[t]-module, generated by $\tau_0, \tau_1, ... \tau_k$, where τ_i maps all $1, t, t^2, t^3, ... t^k$ except t^i to 0, and t^i to 1.
- c. (**) Prove that Diff^{*}($\mathbb{R}[t_1, ..., t_n]$) is an algebra freely generated by generators $t_1, ..., t_n$ and $\frac{d}{dt_1}, ..., \frac{d}{dt_n}$ and relations $[t_i, \frac{d}{dt_i}] = \delta_{ij}$.

Exercise 4.8. Let $I \subset R$ be an ideal, and $D \in \text{Diff}^k(R)$. Prove that $D(I^{k+1}) \subset I$.

Hint. Use induction in k and identity $[D, L_a L_b] = [D, L_a]L_b + L_a[D, L_b].$

4.2 The ring of symbols of differential operators

Definition 4.3. Let R be an associative algebra. (Increasing) filtration on R is a collection of subspaces $R_0 \,\subset R_1 \,\subset R_2 \,\subset \ldots$ such that $R_i R_j \,\subset R_{i+j}$. The natural product map $(R_k/R_{k-1}) \otimes (R_l/R_{l-1}) \longrightarrow R_{k+l}/R_{k+l-1}$ defines an associative product structure on the space $\bigoplus_{i=0}^{\infty} R_i/R_{i-1}$. The algebra $\bigoplus_{i=0}^{\infty} R_i/R_{i-1}$ is called **the associated graded algebra** of this filtration.

Exercise 4.9. Consider the algebra $\text{Diff}^*(R)$ with its filtration by $\text{Diff}^i(M)$. Prove that its associated graded algebra is commutative.

Hint. Use Exercise 4.2.

Definition 4.4. This ring is called the ring of symbols of differential operators. For any $D \in \text{Diff}^k(R)$, its class in $\frac{\text{Diff}^k(R)}{\text{Diff}^{k-1}(R)}$ is called the symbol of D.

Exercise 4.10. Consider sections of TM as differential operators of the first order.

- a. Prove that $TM = \text{Diff}^1 M / \text{Diff}^0 M$.
- b. Prove that the multiplication in the ring of symbols defines a surjective, $C^{\infty}M$ -linear map $\operatorname{Sym}^{k}TM \longrightarrow \operatorname{Diff}^{k}M/\operatorname{Diff}^{k-1}M$.
- c. (!) Prove that this map is an isomorphism.

4.3 Connections

Definition 4.5. Let B be a vector bundle on a smooth manifold M, and

$$\nabla: B \longrightarrow B \otimes \Lambda^1 M$$

a differential operator which satisfies

$$\nabla(fb) = b \otimes df + f\nabla b,$$

for any $f \in C^{\infty}(M)$ and any $b \in B$. Then ∇ is called **a connection** on B. Given a vector field X, consider an operator $\nabla_X : B \longrightarrow B$ obtained by the convolution of $\nabla(b)$ with X. This operator is called **the covariant derivative** along X.

Exercise 4.11. Prove that the covariant derivative ∇_X satisfies the Leibniz rule $\nabla_X(fb) = \langle df, X \rangle b + f \nabla_X b$. Here $\langle df, X \rangle$ denotes the derivative of f along X; elsewhere it is denoted by $\text{Lie}_X f$ or $df \,\lrcorner\, X$.

Exercise 4.12. Let *B* be a vector bundle on *M*. Suppose that for any vector field $X \in TM$ we are provided with a covariant derivative operator $\nabla_X : B \longrightarrow B$ satisfying the Leibniz rule and $C^{\infty}M$ -linear on *X*. Prove that ∇_X is obtained from a connection.

Issued 19.09.2022

Exercise 4.13. Prove that the symbol $\text{Symb}(\nabla) \in TM \otimes \text{Hom}(B, \Lambda^1 M \otimes B)$ of a connection is given by an identity map $\text{Id}_{TM} \otimes \text{Id}_B : TM \otimes T^*M \otimes \text{Hom}(B, B)$.

Exercise 4.14 (!). Let D be a first order differential operator on a bundle B with symbol Symb $(D) \in TM \otimes \text{Hom}(B, \Lambda^1 M \otimes B)$ given by an identity map $\mathsf{Id}_{TM} \otimes \mathsf{Id}_B : TM \otimes T^*M \otimes \text{Hom}(B, B)$. Prove that it is a connection.

Exercise 4.15 (!). Let ∇ be a connection on B, B^* the dual bundle. Prove that there exists a unique operator $\nabla^* : B^* \longrightarrow B^* \otimes \Lambda^1 M$ such that

$$d\langle b, b' \rangle = \langle \nabla b, b' \rangle + \langle b, \nabla^* b' \rangle$$

for any $b \in B, b' \in B^*$. Prove that ∇^* is a connection on B^* .

Exercise 4.16. Let $B_1, ..., B_n$ be vector bundles with connections, denoted by ∇ (people often use the same letter ∇ to denote different connections if they are defined on different bundles). Consider the following differential operator

$$\nabla: B_1 \otimes \ldots \otimes B_n \longrightarrow B_1 \otimes \ldots \otimes B_n \otimes \Lambda^1 M,$$

 $\nabla(b_1 \otimes b_2 \otimes \ldots \otimes b_n) = \nabla(b_1) \otimes b_2 \otimes \ldots \otimes b_n + b_1 \otimes \nabla(b_2) \otimes \ldots \otimes b_n + \ldots + b_1 \otimes b_2 \otimes \ldots \otimes \nabla(b_n).$ Prove that ∇ defines a connection on the vector bundle $B_1 \otimes \ldots \otimes B_n$.

Remark 4.1. Previous two exercises show that a connection on a bundle *B* defines a connection on any tensor power $B^{\otimes n} \otimes (B^*)^{\otimes m}$. This connection is almost always denoted by the same letter.

Exercise 4.17 (!). Let B be a vector bundle over a manifold admitting partition of unity. Prove that B admits a connection.

4.4 Holonomy

Definition 4.6. Let (B, ∇) be a bundle with connection. A tensor $\Psi \in B^{\otimes i} \otimes (B^*)^{\otimes j}$ is called **parallel** if $\nabla(\Psi) = 0$. In this case we also say that Ψ is preserved by ∇ .

Exercise 4.18. Let g be a tensor on a bundle B over M. Construct a connection ∇ such that $\nabla(g) = 0$ if

- a. (!) g is a non-degenerate bilinear symmetric form on B.
- b. (*) g is a non-degenerate bilinear antisymmetric form on B.
- c. (*) g is a bilinear symmetric form of constant rank on B.

Exercise 4.19. Let *B* be a trivial vector bundle with connection over \mathbb{R} . Prove that for each $x \in \mathbb{R}$ and each vector $b_x \in B|_x$ there exists a unique section $b \in B$ such that $\nabla b = 0, b|_x = b_x$.

Definition 4.7. Let $\gamma : [0,1] \longrightarrow M$ be a smooth path in M connecting x and y, and (B, ∇) a vector bundle with connection. Restricting (B, ∇) to $\gamma[0,1]$, we obtain a bundle with connection on an interval. Solve an equation $\nabla(b) = 0$ for $b \in B\Big|_{\gamma([0,1])}$ and initial condition $b\Big|_x = b_x$. This process is called **parallel transport** along the path via the connection. The vector $b_y := b\Big|_y$ is called **vector obtained by parallel transport of** b_x along γ . Holonomy group of γ is the group of endomorphisms of the fiber B_x obtained from parallel transports along all paths starting and ending in $x \in M$

Exercise 4.20. Let (B, ∇) be a vector bundle over a connected manifold M, and $x, y \in M$. Construct an isomorphism of the corresponding holonomy groups $\operatorname{Hol}_{x}(\nabla) \longrightarrow \operatorname{Hol}_{y}(\nabla)$.

Exercise 4.21. Find a bundle with connection over S^1 which has non-trivial holonomy.

4.5 Iterated connection

Definition 4.8. Let M be a smooth manifold. A connection on TM or on $\Lambda^1 M$ is called **connection on** M. This connection defines a connection on all tensor powers of TM and $\Lambda^1 M$. A tensor product of several copies of TM and $\Lambda^1 M$ is called **a tensor bundle** on M, and its section **a tensor**. Similarly, a section of a tensor product of several copies of B and B^* is called **a tensor over a bundle** B.

Definition 4.9. Let *B* be a vector bundle with connection ∇_0 over a manifold *M*, and ∇ a connection on $\Lambda^1 M$. Define a connection

$$\nabla_i: B \otimes \underbrace{\Lambda^1 M \otimes \dots}_{i \text{ times}} \longrightarrow B \otimes \underbrace{\Lambda^1 M \otimes \dots}_{i+1 \text{ times}}$$
(4.1)

using the Leibniz formula

$$\nabla_i (b \otimes \xi_1 \otimes \ldots \otimes \xi_i) = \nabla_{i-1} (b \otimes \xi_1 \otimes \ldots \otimes \xi_{i-1}) \otimes \xi_i + b \otimes \xi_1 \otimes \ldots \otimes \xi_{i-1} \otimes \nabla \xi_i.$$

Denote by

$$\nabla^i: B \longrightarrow B \otimes \underbrace{\Lambda^1 M \otimes \dots}_{i \text{ times}}$$

the composition $\nabla_0 \circ \nabla_1 \circ ... \circ \nabla_i$. This operator is called **an** *i*-th **power of the connection** ∇ .

Exercise 4.22. a. Prove that the symbol of ∇^2 , considered as an element of

 $\operatorname{Sym}^2 TM \otimes \operatorname{Hom}(B, B \otimes \Lambda^1 M \otimes \Lambda^1 M)$

is symmetric under the permutation of the tensor multipliers $\Lambda^1 M \otimes \Lambda^1 M$.

b. (*) Let S be the symbol of ∇^i ,

$$S \in \operatorname{Sym}^{i} TM \otimes \operatorname{Hom}\left(B, B \otimes \underbrace{\Lambda^{1}M \otimes \dots}_{i \text{ times}}\right)$$

Prove that S is symmetric under the permutations of the tensor multipliers $\Lambda^1 M \otimes \Lambda^1 M \otimes \ldots \otimes \Lambda^1 M$.

c. (*) Prove that S is given by $\mathsf{Id} \in \mathrm{End}(\mathsf{Sym}^i \Lambda^1 M \otimes B)$, where the bundle $\mathrm{End}(\mathsf{Sym}^i \Lambda^1 M \otimes B)$ is identified with $\mathsf{Sym}^i TM \otimes \mathrm{Hom}(B, B \otimes \mathsf{Sym}^i \Lambda^1 M)$ using an isomorphism $V \otimes \mathrm{Hom}(B, B \otimes V^*) = \mathrm{Hom}(B \otimes V^*, B \otimes V^*)$, where $V = \mathrm{Sym}^i TM$.

Exercise 4.23. Let $D \in \text{Diff}^{s}(B, C)$ be a differential operator on vector bundles B, C. Prove that there exists a C^{∞} -linear map

$$\Psi: B \otimes \bigoplus_{i=0}^{s} (\Lambda^{1}M)^{\otimes i} \longrightarrow C$$

such that $D(b) = \Psi \left(\bigoplus_{i=0}^{s} \nabla^{i} b \right).$

Issued 19.09.2022