K3 surfaces, assignment 5: Ehresmann connections and foliations

5.1 Ehresmann connections

Definition 5.1. Let $\pi: M \longrightarrow Z$ be a smooth fibration, with $T_{\pi} M$ the bundle of vertical tangent vectors (vectors tangent to the fibers of π). An Ehresmann connection on π is a sub-bundle $T_{\text {hor }} M \subset T M$ such that $T M=T_{\text {hor }} M \oplus T_{\pi} M$. The parallel transport along the path $\gamma:[0, a] \longrightarrow Z$ associated with the Ehresmann connection is a diffeomorphism

$$
V_{t}: \pi^{-1}(\gamma(0)) \longrightarrow \pi^{-1}(\gamma(t))
$$

smoothly depending on $t \in[0, a]$ and satisfying $\frac{d V_{t}}{d t} \in T_{\text {hor }} M$.
Exercise 5.1 (*) *. Let $\pi: M \longrightarrow X$ be a continuous map of manifolds. Prove that π is proper (preimages of compacts are compact) if and only if it is closed (images of closed sets are closed) and all its fibers are compact.

Exercise 5.2. Let $\pi: M \longrightarrow X$ be a smooth submersion of manifolds. Prove that when π is proper, all fibers of π are diffeomorphic. Find an example when π is non-proper and its fibers are not diffeomorphic.

Exercise 5.3. Let M, Z be smooth manifolds, and $\pi: M \longrightarrow Z$ a proper submersion.
a. Prove that for any smooth path $\gamma:[0, a] \longrightarrow Z$, the parallel transport map exists, and is defined uniquely.
b. Prove that π is locally trivial, that is, for a sufficiently small $U \subset Z$ there exists a decomposition $\pi^{-1}(U)=F \times U$, and this identification carries π to the projection $F \times U \longrightarrow U$.

Remark 5.1. This statement is called the Ehresmann theorem: every proper smooth submersion defines a locally trivial fibration. Further on, the term "proper smooth submersion" is used as a synonym of "locally trivial smooth fibration".

Definition 5.2. Let $\pi_{1}: M_{1} \longrightarrow Z, \pi_{2}: M_{2} \longrightarrow Z$ be any maps. The fibered product $M_{1} \times{ }_{Z} M_{2}$ is

$$
M_{1} \times_{Z} M_{2}:=\left\{(u, v) \in M_{1} \times M_{2} \mid \pi_{1}(u)=\pi_{2}(v)\right\} .
$$

Exercise 5.4. Let $\pi_{1}: \quad M_{1} \longrightarrow Z, \pi_{2}: \quad M_{2} \longrightarrow Z$ be smooth submersions with fibers F_{1}, F_{2}. Prove that the fibered product $M_{1} \times_{Z} M_{2} \longrightarrow Z$ a smooth submersion with fiber $F_{1} \times F_{2}$.

Exercise 5.5. Let $\pi_{1}: M_{1} \longrightarrow Z, \pi_{2}: M_{2} \longrightarrow Z$ be smooth submersions with fibers F_{1}, F_{2}, and $T M_{i}=T_{\text {hor }} M_{i} \oplus T_{\pi} M_{i}$ the Ehresmann connections. Let $\pi: M_{1} \times{ }_{Z} M_{2} \longrightarrow Z$ be the standard projection.
a. Consider the exact sequence

$$
\begin{equation*}
0 \longrightarrow T_{\pi}\left(M_{1} \times_{Z} M_{2}\right) \longrightarrow T\left(M_{1} \times_{Z} M_{2}\right) \longrightarrow \pi^{*} T Z \longrightarrow 0 . \tag{5.1}
\end{equation*}
$$

Let $\Pi_{1}: M_{1} \times{ }_{Z} M_{2} \longrightarrow M_{1}, \Pi_{2}: M_{1} \times_{Z} M_{2} \longrightarrow M_{2}$ be the projection maps. Consider a sub-bundle
$B:=\left\{v \in T_{m_{1}, m_{2}}\left(M_{1} \times{ }_{Z} M_{2}\right) \mid D \Pi_{1}(v) \in T_{\text {hor }} M_{1}\right.$, and $\left.D \Pi_{2}(v) \in T_{\text {hor }} M_{2}\right\}$.
Prove that B is isomorphic to $\pi^{*} T Z$ and defines a splitting of the exact sequence (5.1), $T\left(M_{1} \times{ }_{Z} M_{2}\right)=B \oplus T_{\pi}\left(M_{1} \times{ }_{Z} M_{2}\right)$, that is, an Ehresmann connection on the fibration $M_{1} \times{ }_{Z} M_{2}$.
b. Conversely, consider an Ehresmann connection $T\left(M_{1} \times{ }_{Z} M_{2}\right)=T_{\pi}\left(M_{1} \times{ }_{Z}\right.$ $\left.M_{2}\right) \oplus T_{\text {hor }}\left(M_{1} \times{ }_{Z} M_{2}\right)$. Prove that image of the differential $D \Pi_{i}\left(T_{\text {hor }}\left(M_{1} \times{ }_{Z}\right.\right.$ $\left.\left.M_{2}\right)\right) \subset T M_{i}$ satisfies $D \Pi_{i}\left(T_{\mathrm{hor}}\left(M_{1} \times_{Z} M_{2}\right)\right) \oplus T_{\pi_{i}} M_{i}=T M_{i}$, that is, defines an Ehresmann connection on the fibration $\pi_{i} M_{i} \longrightarrow Z$.
c. Construct a bijective correspondence between the Ehresmann connections on the fibration $\pi: M_{1} \times{ }_{Z} M_{2} \longrightarrow Z$ and the pairs of Ehresmann connections on $\pi_{1}: M_{1} \longrightarrow Z, \pi_{2}: M_{2} \longrightarrow Z$.

Definition 5.3. Let B be a vector bundle on M and π : $\operatorname{Tot} B \longrightarrow M$ its total space. An Ehresmann connection $T \operatorname{Tot} B=T_{\text {hor }} \operatorname{Tot} B \oplus T_{\pi} \operatorname{Tot} B$ on π is called homogeneous if the decomposition $T \operatorname{Tot} B=T_{\text {hor }} \operatorname{Tot} B \oplus T_{\pi} \operatorname{Tot} B$ is preserved by the differential of homothety map $v \longrightarrow \lambda v$, that is, if the differential of homothety map takes horizontal tangent vectors to horizontal tangent vectors. Consider the addition map $\operatorname{Tot} B \times_{M} \operatorname{Tot} B \longrightarrow \operatorname{Tot} B$, and let $\tilde{\nabla}$ denote the Ehresmann connection on $\operatorname{Tot} B \times_{M} \operatorname{Tot} B \longrightarrow \operatorname{Tot} B$ induced by the Ehresmann connection on Tot B as in Exercise 5.5. We say that an Ehresmann connection $T \operatorname{Tot} B=T_{\text {hor }} \operatorname{Tot} B \oplus T_{\pi} \operatorname{Tot} B$ is additive if the differential of the addition map $\operatorname{Tot} B \times_{M} \operatorname{Tot} B \longrightarrow \operatorname{Tot} B$ takes horizontal vectors to horizontal vectors. We say that an Ehresmann connection is linear if it is additive and homogeneous.

Exercise 5.6. Let B be a vector bundle on M and π : $\operatorname{Tot} B \longrightarrow M$ its total space. Prove that an Ehresmann connection on Tot B is linear of and only if the parallel transport map $V_{t}: \pi^{-1}(\gamma(0)) \longrightarrow \pi^{-1}(\gamma(t))$ taking a fiber of B to another fiber of B is linear with respect to the structure of the vector space on these fibers.

Definition 5.4. Let $M \longrightarrow Z$ be a locally trivial fibration equipped with an Ehresmann connection. The projection $\pi: M \longrightarrow Z$ defines an isomorphism $\left.T_{\text {hor }} M\right|_{x} \xrightarrow{\sim} T_{\pi(x)} Z$. Therefore, for each vector field $X \in T Z$, there exists a unique vector field $X_{\text {hor }} \in T_{\text {hor }} M$ such that $d \pi\left(X_{\text {hor }}\right)=X$, called the horizontal lift of X.

Exercise 5.7. Prove that an Ehresmann connection on Tot B is linear if and only if the flow V_{t} of any horizontal lift $X_{\text {hor }} \in T_{\text {hor }} \operatorname{Tot} B$ is compatible with the structure of vector space on the fibers of π.

Exercise 5.8. Let $T \operatorname{Tot} B=T_{\text {hor }} \operatorname{Tot} B \oplus T_{\pi}$ Tot B be an Ehresmann connection, and $\operatorname{Tot} B^{*} \times_{M} \operatorname{Tot} B \xrightarrow{\kappa} \operatorname{Tot} C^{\infty} M=\mathbb{C} \times M$ the natural pairing. Prove that there exists a unique Ehresmann connection on Tot B^{*} such that the map κ takes horizontal vectors to horizontal vectors.

Definition 5.5. We call the Ehresmann connection on Tot B^{*} defined in Exercise 5.8 the dual Ehresmann connection.

Definition 5.6. Let B be a vector bundle, and f a function on $\operatorname{Tot} B$ which is linear on all fibers of π. Such a function is called fiberwise linear.

Exercise 5.9. Prove that an Ehresmann connection on Tot B is linear if and only if the Lie derivative of a fiberwise linear function along a horizontal vector field is again fiberwise linear.

Hint. The diffeomorphism flow associated with a horizontal lift induces a linear map on fibers if and only if the Ehresmann connection is linear.

Exercise 5.10. Prove that every section of B defines a fiberwise linear function on $\operatorname{Tot} B^{*}$, and, conversely, every fiberwise linear function on $\operatorname{Tot} B^{*}$ is associated with a smooth section of B.

Exercise 5.11. Let Tot B be a total space of a vector bundle equipped with an linear Ehresmann connection, and ∇ the dual Ehresmann connection on Tot B^{*} (Exercise 5.8). For a vector field X on M, denote by $\tilde{X} \in T \operatorname{Tot} B^{*}$ its horizontal lift. Consider a section b of B as a fiberwise linear function on Tot B^{*}. Let $\nabla_{X} b:=\operatorname{Lie}_{\tilde{X}} b$ be the fiberwise linear function on B^{*} obtained as a horizontal lift of X. Using Exercises 5.9, 5.10, we interpret $\nabla_{X} b$ as a section of B. Prove that $b \longrightarrow \nabla_{X} b$ defines a connection operator on the vector bundle B.

Exercise 5.12. Let B be a smooth vector bundle on a manifold M. Construct a natural bijective correspondence between the linear Ehresmann connections on $\operatorname{Tot} B$ and the connection operators on B.

Hint. Use the previous exercise.

5.2 Frobenius theorem

Definition 5.7. A distribution on a manifold is a sub-bundle $B \subset T M$.
Exercise 5.13. Let $\Pi: T M \longrightarrow T M / B$ be the projection, and $x, y \in B$ some vector fields. Prove that the map $x, y \longrightarrow \Pi([x, y])$ is linear in x and y.

Definition 5.8. The map $[B, B] \longrightarrow T M / B$, putting x, y to $\Pi([x, y])$, is called Frobenius bracket (or Frobenius form); it is a skew-symmetric $C^{\infty}(M)$ linear form on B with values in $T M / B$.

Definition 5.9. A distribution is called integrable, or Frobenius integrable, or holonomic, or involutive, if its Frobenius form vanishes.

Remark 5.2. Let $B \subset T M$ be a sub-bundle. Frobenius theorem claims that B is involutive if and only if each point $x \in M$ has a neighbourhood $U \ni x$ and a smooth submersion $U \xrightarrow{\pi} V$ such that B is its vertical tangent space: $B=T_{\pi} M$. We shall prove it later in this assignment.

Definition 5.10. The fibers of π are called leaves, or integral submanifolds of the distribution B. Globally on M, a leaf of B is a maximal connected manifold $Z \hookrightarrow M$ which is immersed to M and tangent to B at each point. The set of leaves of an integrable distribution is called a foliation. The leaves are manifolds which are immersed in $M .{ }^{1}$

Remark 5.3. Let $U \subset M$ be an open subset. A leaf of the foliation \mathcal{F} in $U \subset M$ is a connected component of $F \cap U$, where F is a leaf of \mathscr{F} in M. However, the intersection $F \cap U$ can possibly have many connected components. This means that the set of leaves of \mathcal{F} on U is different from the set of leaves of \mathscr{F} on M.

Remark 5.4. If B is the tangent bundle to a foliation, then the condition $[B, B] \subset B$ is clear, because it is true leaf-wise. To prove the Frobenius theorem we need only to prove the existence of the foliation tangent to B, for any involutive $B \subset T M$.

Remark 5.5. To prove the Frobenius theorem for $B \subset T M$, it suffices to show that each point is contained in an integral submanifold. In this case, the smooth submersion $U \xrightarrow{\pi} V$ is the projection to the leaf space of B.

Exercise 5.14. Let G be a Lie group acting on a manifold M. Assume that the vector fields from the Lie algebra of G generate a sub-bundle $B \subset T M$. Prove that Frobenius theorem holds for B.

[^0]Hint. Prove that the leaves of the corresponding foliation are the orbits of the G-action.

Exercise 5.15. Let u be a non-vanishing vector field on a manifold M. Prove that locally around every point of M there exists a coordinate system with coordinate functions x_{1}, \ldots, x_{n} such that $u=\frac{\partial}{\partial x_{1}}$.

Exercise 5.16. Let u, v be commuting vector fields on a manifold M, and $e^{t u}$, $e^{t v}$ be corresponding diffeomorphism flows. Prove that $e^{t u}, e^{t v}$ commute.

Hint. Use the previus exercise, express v in coordinates x_{1}, \ldots, x_{n}, and prove that the coefficients of v depend only on x_{2}, \ldots, x_{n}.

Remark 5.6. Let $B \subset T M$ be a distribution such that $[B, B] \subset B$. We are going to show that locally B has a basis ξ_{1}, \ldots, ξ_{k} of commuting vector fields. By the previous exercise, the diffeomorphisms $e^{t \xi_{i}}$ generate a finite-dimensional commutative Lie group acting locally on M, and by Exercise 5.14, Frobenius theorem holds true for B.

Exercise 5.17. Let $\sigma: M \longrightarrow M_{1}$ be a smooth submersion,

$$
D \sigma: T_{x} M \longrightarrow T_{\sigma(x)} M_{1}
$$

its differential, and $v \in T M$ a vector field which satisfies

$$
\begin{equation*}
\left.D \sigma(v)\right|_{x}=\left.D \sigma(v)\right|_{y} \tag{5.2}
\end{equation*}
$$

for any $x, y \in \sigma^{-1}(z)$ and any $z \in M_{1}$. Clearly, in this case $D(\sigma(v))$ is a welldefined vector field on M_{1}. Let $u, v \in T M$ be vector fields which satisfy (5.2). Prove that the commutator $[u, v]$ also satisfies (5.2), and, moreover, $D \sigma([u, v])=$ $[D \sigma(u), D \sigma(v)]$.

Exercise 5.18. Let $B \subset T M$ be any distribution, and $m \in M$ any point.
a. Prove that there exists a neighbourhood $U \ni m$ and a smooth submersion $\sigma: U \longrightarrow W$ such that ker $D \sigma \oplus B=T M$.
b. For any vector field $X \in T W$, prove that there exists a unique vector field $\tilde{X} \in B$ satisfying (5.2). We call \tilde{X} a B-lift of X
c. Let $X, Y \in T W$ be commuting vector fields, and \tilde{X}, \tilde{Y} their B-lifts. Prove that $[\tilde{X}, \tilde{Y}] \in \operatorname{ker} D \sigma$

Hint. Use the previous exercise.
Exercise 5.19. Let $B \subset T M$ be a distribution which satisfies $[B, B] \subset B$, and $\sigma: M \longrightarrow M_{1}$ a smooth submersion such that $T M=$ ker $D \sigma \oplus B$. Consider commuting vector fields $X, Y \in T M_{1}$, and let \tilde{X}, \tilde{Y} be their B-lifts. Prove that $[\tilde{X}, \tilde{Y}]=0$.

Hint. Use the previous exercise.
Exercise 5.20. Let $B \subset T M$ be a distribution which satisfies $[B, B] \subset B$. Prove that every point $m \in M$ has a neighbourhood U such that the restriction of B to U has a basis of commuting vector fields.

Hint. Use Exercise 5.18 and Exercise 5.19.
Exercise 5.21. Prove Frobenius theorem: for any distribution $B \subset T M$ which satisfies $[B, B] \subset B$, and any point $m \in M$ has a neighbourhood U which admits a smooth submersion $\pi: U \longrightarrow V$ such that $B=\operatorname{ker} D \pi$.

Hint. Use Exercise 5.20 and Remark 5.6.
Exercise 5.22 (*). Construct a 4 -manifold M and a rank 2 distribution $B \subset$ $T M$ such that $[B, B]$ has rank 3 and $[[B, B], B]$ has rank 4 .

Exercise $5.23\left(^{*}\right)$. Let $M=\mathbb{R}$. Find two vector fields X, Y on M such that the successive commutators of X, Y generate an infinite-dimensional Lie algebra.

Exercise 5.24. Construct a 4-dimensional smooth manifold not admitting rank 3 distributions.

Exercise 5.25. Prove that a compact n-dimensional torus admits a rank one foliation with all leaves dense.

[^0]: ${ }^{1}$ The leaves are immersed, but not necessarily closed. Quite often it occurs that some (or all) leaves of a foliation are dense in M.

