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K3 surfaces, assignment 5: Ehresmann connec-
tions and foliations

5.1 Ehresmann connections

Definition 5.1. Let π : M −→ Z be a smooth fibration, with TπM the
bundle of vertical tangent vectors (vectors tangent to the fibers of π).
An Ehresmann connection on π is a sub-bundle ThorM ⊂ TM such that
TM = ThorM ⊕ TπM . The parallel transport along the path γ : [0, a]−→ Z
associated with the Ehresmann connection is a diffeomorphism

Vt : π−1(γ(0))−→ π−1(γ(t))

smoothly depending on t ∈ [0, a] and satisfying dVt

dt ∈ ThorM .

Exercise 5.1 (*). Let π : M −→X be a continuous map of manifolds. Prove
that π is proper (preimages of compacts are compact) if and only if it is closed
(images of closed sets are closed) and all its fibers are compact.

Exercise 5.2. Let π : M −→X be a smooth submersion of manifolds. Prove
that when π is proper, all fibers of π are diffeomorphic. Find an example when
π is non-proper and its fibers are not diffeomorphic.

Exercise 5.3. Let M,Z be smooth manifolds, and π : M −→ Z a proper
submersion.

a. Prove that for any smooth path γ : [0, a]−→ Z, the parallel transport
map exists, and is defined uniquely.

b. Prove that π is locally trivial, that is, for a sufficiently small U ⊂ Z there
exists a decomposition π−1(U) = F × U , and this identification carries π
to the projection F × U −→ U .

Remark 5.1. This statement is called the Ehresmann theorem: every proper
smooth submersion defines a locally trivial fibration. Further on, the term
“proper smooth submersion” is used as a synonym of “locally trivial smooth
fibration”.

Definition 5.2. Let π1 : M1 −→ Z, π2 : M2 −→ Z be any maps. The fibered
product M1 ×Z M2 is

M1 ×Z M2 := {(u, v) ∈M1 ×M2 | π1(u) = π2(v)}.

Exercise 5.4. Let π1 : M1 −→ Z, π2 : M2 −→ Z be smooth submersions
with fibers F1, F2. Prove that the fibered product M1 ×Z M2 −→ Z a smooth
submersion with fiber F1 × F2.

Issued 26.09.2022 – 1 – Handouts version 2.0, 04.12.2022



K3 surfaces, assignment 5: Ehresmann connections and foliations K3 surfaces, Misha Verbitsky

Exercise 5.5. Let π1 : M1 −→ Z, π2 : M2 −→ Z be smooth submersions
with fibers F1, F2, and TMi = ThorMi ⊕ TπMi the Ehresmann connections. Let
π : M1 ×Z M2 −→ Z be the standard projection.

a. Consider the exact sequence

0−→ Tπ(M1 ×Z M2)−→ T (M1 ×Z M2)−→ π∗TZ −→ 0. (5.1)

Let Π1 : M1 ×Z M2 −→M1, Π2 : M1 ×Z M2 −→M2 be the projection
maps. Consider a sub-bundle

B := {v ∈ Tm1,m2
(M1×ZM2) | DΠ1(v) ∈ ThorM1, and DΠ2(v) ∈ ThorM2}.

Prove that B is isomorphic to π∗TZ and defines a splitting of the exact
sequence (5.1), T (M1×ZM2) = B⊕Tπ(M1×ZM2), that is, an Ehresmann
connection on the fibration M1 ×Z M2.

b. Conversely, consider an Ehresmann connection T (M1×ZM2) = Tπ(M1×Z
M2)⊕Thor(M1×ZM2). Prove that image of the differentialDΠi(Thor(M1×Z
M2)) ⊂ TMi satisfies DΠi(Thor(M1 ×Z M2))⊕ Tπi

Mi = TMi, that is, de-
fines an Ehresmann connection on the fibration πiMi −→ Z.

c. Construct a bijective correspondence between the Ehresmann connections
on the fibration π : M1×ZM2 −→ Z and the pairs of Ehresmann connec-
tions on π1 : M1 −→ Z, π2 : M2 −→ Z.

Definition 5.3. Let B be a vector bundle on M and π : TotB −→M its to-
tal space. An Ehresmann connection T TotB = Thor TotB ⊕ Tπ TotB on π is
called homogeneous if the decomposition T TotB = Thor TotB ⊕ Tπ TotB is
preserved by the differential of homothety map v −→ λv, that is, if the differ-
ential of homothety map takes horizontal tangent vectors to horizontal tangent
vectors. Consider the addition map TotB ×M TotB −→ TotB, and let ∇̃ de-
note the Ehresmann connection on TotB ×M TotB −→ TotB induced by the
Ehresmann connection on TotB as in Exercise 5.5. We say that an Ehresmann
connection T TotB = Thor TotB⊕Tπ TotB is additive if the differential of the
addition map TotB ×M TotB −→ TotB takes horizontal vectors to horizontal
vectors. We say that an Ehresmann connection is linear if it is additive and
homogeneous.

Exercise 5.6. Let B be a vector bundle on M and π : TotB −→M its total
space. Prove that an Ehresmann connection on TotB is linear of and only if
the parallel transport map Vt : π−1(γ(0))−→ π−1(γ(t)) taking a fiber of B to
another fiber of B is linear with respect to the structure of the vector space on
these fibers.

Definition 5.4. Let M −→ Z be a locally trivial fibration equipped with an
Ehresmann connection. The projection π : M −→ Z defines an isomorphism
ThorM

∣∣
x
−̃→ Tπ(x)Z. Therefore, for each vector field X ∈ TZ, there exists a

unique vector fieldXhor ∈ ThorM such that dπ(Xhor) = X, called the horizontal
lift of X.
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Exercise 5.7. Prove that an Ehresmann connection on TotB is linear if and
only if the flow Vt of any horizontal lift Xhor ∈ Thor TotB is compatible with the
structure of vector space on the fibers of π.

Exercise 5.8. Let T TotB = Thor TotB ⊕ Tπ TotB be an Ehresmann connec-
tion, and TotB∗×M TotB

κ−→ TotC∞M = C×M the natural pairing. Prove
that there exists a unique Ehresmann connection on TotB∗ such that the map
κ takes horizontal vectors to horizontal vectors.

Definition 5.5. We call the Ehresmann connection on TotB∗ defined in Ex-
ercise 5.8 the dual Ehresmann connection.

Definition 5.6. Let B be a vector bundle, and f a function on TotB which is
linear on all fibers of π. Such a function is called fiberwise linear.

Exercise 5.9. Prove that an Ehresmann connection on TotB is linear if and
only if the Lie derivative of a fiberwise linear function along a horizontal vector
field is again fiberwise linear.

Hint. The diffeomorphism flow associated with a horizontal lift induces a linear
map on fibers if and only if the Ehresmann connection is linear.

Exercise 5.10. Prove that every section of B defines a fiberwise linear func-
tion on TotB∗, and, conversely, every fiberwise linear function on TotB∗ is
associated with a smooth section of B.

Exercise 5.11. Let TotB be a total space of a vector bundle equipped with
an linear Ehresmann connection, and ∇ the dual Ehresmann connection on
TotB∗ (Exercise 5.8). For a vector field X on M , denote by X̃ ∈ T TotB∗

its horizontal lift. Consider a section b of B as a fiberwise linear function on
TotB∗. Let ∇Xb := LieX̃ b be the fiberwise linear function on B∗ obtained as
a horizontal lift of X. Using Exercises 5.9, 5.10, we interpret ∇Xb as a section
of B. Prove that b−→∇Xb defines a connection operator on the vector bundle
B.

Exercise 5.12. Let B be a smooth vector bundle on a manifold M . Construct
a natural bijective correspondence between the linear Ehresmann connections
on TotB and the connection operators on B.

Hint. Use the previous exercise.
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5.2 Frobenius theorem

Definition 5.7. A distribution on a manifold is a sub-bundle B ⊂ TM .

Exercise 5.13. Let Π : TM −→ TM/B be the projection, and x, y ∈ B some
vector fields. Prove that the map x, y −→Π([x, y]) is linear in x and y.

Definition 5.8. The map [B,B]−→ TM/B, putting x, y to Π([x, y]), is called
Frobenius bracket (or Frobenius form); it is a skew-symmetric C∞(M)-
linear form on B with values in TM/B.

Definition 5.9. A distribution is called integrable, or Frobenius integrable,
or holonomic, or involutive, if its Frobenius form vanishes.

Remark 5.2. Let B ⊂ TM be a sub-bundle. Frobenius theorem claims
that B is involutive if and only if each point x ∈M has a neighbourhood U 3 x
and a smooth submersion U

π−→ V such that B is its vertical tangent space:
B = TπM . We shall prove it later in this assignment.

Definition 5.10. The fibers of π are called leaves, or integral submanifolds
of the distribution B. Globally on M , a leaf of B is a maximal connected
manifold Z ↪→M which is immersed to M and tangent to B at each point. The
set of leaves of an integrable distribution is called a foliation. The leaves are
manifolds which are immersed in M . 1

Remark 5.3. Let U ⊂ M be an open subset. A leaf of the foliation F in
U ⊂ M is a connected component of F ∩ U , where F is a leaf of F in M .
However, the intersection F ∩U can possibly have many connected components.
This means that the set of leaves of F on U is different from the set of leaves
of F on M .

Remark 5.4. If B is the tangent bundle to a foliation, then the condition
[B,B] ⊂ B is clear, because it is true leaf-wise. To prove the Frobenius theo-
rem we need only to prove the existence of the foliation tangent to B, for any
involutive B ⊂ TM .

Remark 5.5. To prove the Frobenius theorem for B ⊂ TM , it suffices to show
that each point is contained in an integral submanifold. In this case, the smooth
submersion U

π−→ V is the projection to the leaf space of B.

Exercise 5.14. Let G be a Lie group acting on a manifold M . Assume that
the vector fields from the Lie algebra of G generate a sub-bundle B ⊂ TM .
Prove that Frobenius theorem holds for B.

1The leaves are immersed, but not necessarily closed. Quite often it occurs that some (or
all) leaves of a foliation are dense in M .
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Hint. Prove that the leaves of the corresponding foliation are the orbits of the
G-action.

Exercise 5.15. Let u be a non-vanishing vector field on a manifold M . Prove
that locally around every point of M there exists a coordinate system with
coordinate functions x1, ..., xn such that u = ∂

∂x1
.

Exercise 5.16. Let u, v be commuting vector fields on a manifold M , and etu,
etv be corresponding diffeomorphism flows. Prove that etu, etv commute.

Hint. Use the previus exercise, express v in coordinates x1, ..., xn, and prove
that the coefficients of v depend only on x2, ..., xn.

Remark 5.6. Let B ⊂ TM be a distribution such that [B,B] ⊂ B. We are
going to show that locally B has a basis ξ1, ..., ξk of commuting vector fields.
By the previous exercise, the diffeomorphisms etξi generate a finite-dimensional
commutative Lie group acting locally on M , and by Exercise 5.14, Frobenius
theorem holds true for B.

Exercise 5.17. Let σ : M −→M1 be a smooth submersion,

Dσ : TxM −→ Tσ(x)M1

its differential, and v ∈ TM a vector field which satisfies

Dσ(v)
∣∣
x

= Dσ(v)
∣∣∣
y

(5.2)

for any x, y ∈ σ−1(z) and any z ∈ M1. Clearly, in this case D(σ(v)) is a well-
defined vector field on M1. Let u, v ∈ TM be vector fields which satisfy (5.2).
Prove that the commutator [u, v] also satisfies (5.2), and, moreover, Dσ([u, v]) =
[Dσ(u), Dσ(v)].

Exercise 5.18. Let B ⊂ TM be any distribution, and m ∈M any point.

a. Prove that there exists a neighbourhood U 3 m and a smooth submersion
σ : U −→W such that kerDσ ⊕B = TM .

b. For any vector field X ∈ TW , prove that there exists a unique vector field
X̃ ∈ B satisfying (5.2). We call X̃ a B-lift of X

c. Let X,Y ∈ TW be commuting vector fields, and X̃, Ỹ their B-lifts. Prove
that [X̃, Ỹ ] ∈ kerDσ

Hint. Use the previous exercise.

Exercise 5.19. Let B ⊂ TM be a distribution which satisfies [B,B] ⊂ B, and
σ : M −→M1 a smooth submersion such that TM = kerDσ ⊕ B. Consider
commuting vector fields X,Y ∈ TM1, and let X̃, Ỹ be their B-lifts. Prove that
[X̃, Ỹ ] = 0.
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Hint. Use the previous exercise.

Exercise 5.20. Let B ⊂ TM be a distribution which satisfies [B,B] ⊂ B.
Prove that every point m ∈M has a neighbourhood U such that the restriction
of B to U has a basis of commuting vector fields.

Hint. Use Exercise 5.18 and Exercise 5.19.

Exercise 5.21. Prove Frobenius theorem: for any distribution B ⊂ TM which
satisfies [B,B] ⊂ B, and any point m ∈M has a neighbourhood U which admits
a smooth submersion π : U −→ V such that B = kerDπ.

Hint. Use Exercise 5.20 and Remark 5.6.

Exercise 5.22 (*). Construct a 4-manifold M and a rank 2 distribution B ⊂
TM such that [B,B] has rank 3 and [[B,B], B] has rank 4.

Exercise 5.23 (*). Let M = R. Find two vector fields X,Y on M such that
the successive commutators of X,Y generate an infinite-dimensional Lie algebra.

Exercise 5.24. Construct a 4-dimensional smooth manifold not admitting rank
3 distributions.

Exercise 5.25. Prove that a compact n-dimensional torus admits a rank one
foliation with all leaves dense.
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