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K3 surfaces, assignment 6: Local systems

6.1 Sheaves and vector bundles

Definition 6.1. Let M be a topological space. A sheaf F on M is a
collection of sets, abelian groups or vector spaces F(U) defined for each
open subset U ⊂ M , with the restriction maps, which are linear homo-

morphisms F(U)
φU,U′
−→ F(U ′), defined for each U ′ ⊂ U , and satisfying the

following conditions.

(A) Composition of restrictions is again a restriction: for any open subsets
U3 ⊂ U2 ⊂ U1, the corresponding restriction maps

F(U1)
φU1,U2−→ F(U2)

φU2,U3−→ F(U3)

give φU1,U2 ◦ φU2,U3 = φU1,U3 .1

(B) Let U ⊂M be an open subset, and {Ui} a cover of U . For any f ∈ F(U)
such that all restrictions of f to Ui vanish, one has f = 0.

(C) Let U ⊂ M be an open subset, and {Ui} a cover of U . Consider a
collection fi ∈ F(Ui) of sections, defined for each Ui, and satisfying

fi

∣∣∣
Ui∩Uj

= fj

∣∣∣
Ui∩Uj

for each Ui, Uj . Then there exists f ∈ F(U) such that the restriction
of f to Ui is fi.

The space F(U) is called the space of sections of the sheaf F on U .

The restriction maps are often denoted f −→ f
∣∣∣
U

.

Exercise 6.1. Let C be the category of open subsets of a topological space
M , with morphisms given by embeddings of a open subset U ⊂ M to an
open subset containign U . Prove that a presheaf is a functor from C to the
category of vector spaces.

1If (A) is satisfied, F is called a presheaf. Morphism of presheaves F −→ G is a
collection of maps F(U)−→ G(U), defined for all open subsets U ⊂ M , which commute
with the restriction maps.
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Exercise 6.2. Let M be a topological space equipped with a presheaf of
abelian groups F. Prove that the conditions (B) an (C) are equivalent to
exactness of the following sequence

0−→F(U)−→
∏
i

F(Ui)
Ψ−→

∏
i 6=j

F(Ui ∩ Uj)

for any open U ⊂M , and any cover {Ui} of U . Here the map Ψ takes
∏
i fi,

fi ∈ F(Ui) to
∏
i 6=j

[
ψj(fi) − ψi(fj)

]
, where ψj : F(Ui)−→F(Ui ∩ Uj)

denotes the restriction map.

Definition 6.2. A sheaf homomorphism ψ : F1 −→F2 is a collection
of homomorphisms

ψU : F1(U)−→F2(U),

defined for each U ⊂M , and commuting with the restriction maps. A sheaf
isomorphism is a homomorphism Ψ : F1 −→F2, for which there exists an
homomorphism Φ : F2 −→F1, such thate Φ ◦Ψ = Id and Ψ ◦ Φ = Id.

Exercise 6.3. Let ψ : F1 −→F2 be a sheaf homomorphism.

a. Show that U −→ kerψU and U −→ cokerψU are presheaves.

b. Prove that U −→ kerψU is a sheaf (it is called the kernel of a homo-
morphism ψ).

c. (*) Prove that U −→ cokerψU is not always a sheaf (find a coun-
terexample).

Definition 6.3. A subsheaf F′ ⊂ F is a sheaf associating to each U ⊂M
a subspace F′(U) ⊂ F(U).

Exercise 6.4. Find a non-zero sheaf F on M such that F(M) = 0.

Exercise 6.5. a. Given a covering {Ui} of U and a presheaf F on U ,

denote by F({Ui}) the kernel of the map
∏
iF(Ui)

Ψ−→
∏
i 6=j F(Ui ∩

Uj) (Exercise 6.2). Prove that for any refinement {Vj} of the covering
{Ui}, there is a functorial map F({Ui})−→F({Vj}).

b. Let F be a presheaf onM . Denote by F1(U) the direct limit of F({Ui})
taken over all sequences of successive refinements of the coverings of
U . Prove that this limit is well defined. Prove that U 7→ F1(U) defines
a presheaf on M .
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c. Prove that F1(U) satisfies the axiom C of the definition of sheaves
(Definition 6.1).

d. Denote by F2(U) the quotient of F1(U) by the union KU of the kernels
of the map F1(U)−→

∏
iF1(Ui) for all open coverings {Ui} of U .

Prove that the restriction map takesKU toKV for any open set V ⊂ U ,
Deduce that the restriction maps F1(U)

KU
−→ F1(V )

KV
define a structure of

presheaf on U 7→ F2(U)

e. Prove that F2 is a sheaf.

Definition 6.4. The sheaf F2 obtained from the presheaf F as above is
called the sheafification of F.

Exercise 6.6. Let F be a sheaf, F2 its sheafification.

a. Prove that the natural maps F(U)−→F1(U)−→F2(U) define a mor-
phism of the presheaf F to its sheafification.

b. Prove that for any presheaf morphism φ : F −→G to a sheaf G, the
morphism φ factorizes through the sheafification F2.

Remark 6.1. Let A
φ−→ B be a ring homomorphism, and V a B-module.

Then V is equipped with a natural A-module structure: av := φ(a)v.

Definition 6.5. A sheaf of rings on a manifold M is a sheaf F with all
the spaces F(U) equipped with a ring structure, and all restriction maps
ring homomorphisms.

Definition 6.6. Let F be a sheaf of rings on a topological space M , and
B another sheaf. It is called a sheaf of F-modules if for all U ⊂ M the
space of sections B(U) is equipped with a structure of F(U)-module, and

for all U ′ ⊂ U , the restriction map B(U)
φU,U′
−→ B(U ′) is a homomorphism

of F(U)-modules (use Remark 6.1 to obtain a structure of F(U)-module on
B(U ′)).

Exercise 6.7. Let F1 be a sheaf of rings and F its subsheaf, closed under
multiplication (that is, F is a ring subsheaf). Prove that F1 is a sheaf of
modules over F.

Definition 6.7. A free sheaf of modules Fn over a ring sheaf F maps an
open set U to the space F(U)n. A sheaf of F-modules is non-free if it is
not isomorphic to a free sheaf.
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Exercise 6.8 (!). Find a subsheaf of modules in C∞M which is non-free
in the sense of this definition.

Definition 6.8. Locally free sheaf of modules over a sheaf of rings F

is a sheaf of modules B satisfying the following condition. For each x ∈ M
there exists a neighbourhood U 3 x such that the restriction B

∣∣∣
U

is free.

Definition 6.9. A smooth vector bundle on a smooth manifold M is a
locally free sheaf of C∞M -modules.

Exercise 6.9. Let B be a vector bundle on M . Prove that B can be always
equipped with a smooth Euclidean metric.

Exercise 6.10. Let M be a compact smooth manifold.

a. Prove that M admits an embedding to Rn.

b. Prove that its tangent bundle can be obtained as a direct summand
of a trivial vector bundle.

Hint. Prove that TM is embedded to TRn
∣∣∣
M

and use the previous exercise.

Exercise 6.11. Let B be a vector bundle on M , B1 := B ⊕ C∞M , and
M1 := PB1 its projectivization. Consider an embedding τ : M −→M1

taking x ∈M to a point (0 : 1) of the fiber P
(
B ⊕ C∞M

∣∣∣
x

)
.

a. Prove that τ∗(TM1) ∼= B ⊕ TM .

b. Prove that any vector bundle on a compact smooth manifold can be
obtained as a direct summand of a trivial vector bundle.

Hint. Apply Whitney embedding theorem to M1 and use the previous ex-
ercise.

Exercise 6.12 (**). Let M be a smooth compact manifold. Recall that
a module over a ring R is called projective if it is a direct summand of a
free module RI =

⊕
i∈I R. Let Γ(C∞M) be the ring of smooth functions

on M . Serre-Swann theorem claims that the category of vector bundles on
M is equivalent to the category of projective Γ(C∞M)-modules. Define the
morphisms in both categories so that this statement makes sense, and prove
it.
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6.2 Germs and pullbacks

Definition 6.10. Let Z ⊂ M be a subset of a topological space (not nec-
essarily open or closed), and F a sheaf on M . Two sections f1, f2 of F

defined in two open neighbourhoods U1, U2 of Z have equivalent germs
in Z if for a sufficiently small neighbourhood U of Z, with U ⊂ U1∩U2, one

has f1

∣∣∣
U

= f2

∣∣∣
U

. The set of such equivalence classes is called the space

of germs of sections of F in Z; it is equipped with a natural group
structure.

Exercise 6.13. Let B be a sheaf on M such that the space of germs of B
in all points of M is equal 0. Prove that B = 0.

Exercise 6.14. Find a sheaf F on M with the space of germs in all points
of M non-zero, and F(M) zero.

Definition 6.11. A sheaf F on M is called soft if for any closed subset
X ⊂ M , the natural map from the space of global sections F(M) to the
space of germs Fg(X) is surjective.

Exercise 6.15. Show that the sheaf of real analytic functions on Rn is not
soft.

Exercise 6.16. Show that a constant sheaf on a manifold of positive di-
mension is not soft.

Exercise 6.17. Find a topological space M and a functions F on it such
that the restriction map from F(M) to the space of germs of F in a point
is always surjective, but the sheaf F is not soft.

Exercise 6.18. Let N,N ′ ⊂ M be two closed subsets of a metric space,
N ∩N ′ = ∅. Prove that there exist non-intersecting neighbourhoods U ⊃ N ,
U ′ ⊃ N ′.

Exercise 6.19. Let M be a manifold admitting a partition of unity, N ⊂M
a closed subset, and U ⊃ N its neighbourhood. Prove that M has a locally
finite cover {Ui}, such that all Ui which intersect N have compact closures
and satisfy Ūi ⊂ U .

Hint. Prove that M admits a metric, and use the previous exercise.
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Definition 6.12. Support of a function f is the set of all points where
f 6= 0. A function is called supported in U if its support is contained in
U .

Exercise 6.20. Let U ⊂ M be an open subset of a manifold, U ′ ⊂ M
an open subset with compact closure satisfying Ū ′ ⊂ U , and f a smooth
function on U with support in U ′. Prove that f can be extended to a
smooth function on M .

Exercise 6.21 (*). Let M be a manifold admitting a partition of unity.
Prove that the sheaf of smooth functions on M is soft.

Hint. Given a smooth function f on U ⊃ N , find a cover {Ui}, i ∈ I as in
Exercise 6.19, and let {ψi} be a subordinate partition of unity. Let A ⊂ I
be the set of indices α ∈ I such that Uα ∩N 6= 0. Prove that the function
f ′ :=

∑
α∈A ψαf is supported in U ′ b U , can be extended smoothly to the

whole M , and equal f on N .

Definition 6.13. Let F be a sheaf on X, and f : Y −→X a continuous
map. Let Fg(Z) denote the space of germs of F in Z ⊂ X. Define the pull-
back presheaf f∗(F) as f∗(F)(U) := Fg(f(U)). Since Fg(Z) is equipped
with a natural restriction map Fg(Z)−→Fg(Z

′) for any Z ′ ⊂ Z, compat-
ible with successive embeddings Z ′′ ⊂ Z ′ ⊂ Z, the map U −→ f∗(F)(U)
defines a presheaf. We define the pullback sheaf as the sheafification of
this presheaf.

Exercise 6.22. Find an example when the pullback presheaf is not a sheaf.

Exercise 6.23. Let f : Y −→X be a continuous map, and F a sheaf on
X. Prove that the germ space of f∗F in y ∈ Y is equal to the germ space
of F in f(y).

Exercise 6.24. Prove that the functor F→ f∗(F) is exact, that is, takes
an exact sequence

0−→F1 −→F2 −→F3 −→ 0

to an exact sequence

0−→ f∗F1 −→ f∗F2 −→ f∗F3 −→ 0.
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6.3 Local systems

Definition 6.14. A constant sheaf on a on a topological space M is a
sheaf F such that for any connected open set, F(U) = A, where A is a fixed
vector space, and the corresponding restricion maps are isomorphisms. A
locally constant sheaf is a sheaf F such that for each x ∈M there exists

a neighbourhood U 3 x such that the restriction F

∣∣∣
U

is a constant sheaf. A

local system is a locally constant sheaf of abelian groups or vector spaces.

Exercise 6.25. Let M be a manifold, and O(U) takes U to the set of all
orientations on U . Prove that O(M) is a locally constant sheaf of sets. Prove
that this sheaf is constant when M is orientable and non-constant when M
is not orientable.

Exercise 6.26. Let F be a locally constant sheaf on M , x ∈M a point, and
Fx the space of germs of F in x. Prove that Fx = F(U) for any sufficiently
small connected neighbourhood containing x.

Exercise 6.27. Conversely, let F be a sheaf such that the natural map
F(U)−→Fx is an isomorphism for any sufficiently small neighbourhood of
x. Prove that F is locally constant.

Exercise 6.28. Prove that a pullback of a locally constant sheaf is locally
constant.

Exercise 6.29. Prove that any locally constant sheaf on an interval [0, 1]
is constant.

Exercise 6.30. Prove that any locally constant sheaf on an the square
[0, 1]× [0, 1] is constant.

Definition 6.15. Let F be a locally constant sheaf on S1, and [0, 1]
τ−→ S1

the map gluing the ends together. Since the sheaf τ∗F is locally constant
on [0, 1], it is constant (Exercise 6.29). This can be used to construct an
isomorphism of the germ spaces Ψ : τ∗F0 −→ τ∗F1. Another isomorphism,
denoted by Φ, is produced by identifying τ∗F1, τ∗F0 and F0. The composi-
tion Ψ⊗ Φ−1 : F0 → F0 is called the monodromy of the local system
on S1. It is obtained by taking a section of F(τ(]0, ε[)), moving it along S1

by identifying naturally F(]x, y[) and F(]x + δ, y + δ[) for δ < |x − y|, and
going the full circle.
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Exercise 6.31 (!). Let R be the functor taking a local system F on S1

to a representation of Z on F0 defined by the monodromy. Prove that this
functor defines an equivalence of categories between the local systems on S1

and representations of Z.

Exercise 6.32. Let F be a local system on a manifoldM , and γ : [0, 1]−→M
a smooth embedding.

a. Prove that for a sufficiently small neighbourhood U of im γ, the re-

striction F

∣∣∣
U

is a constant sheaf.

b. Prove that an isomorphism of the germ spaces Fγ(0)→̃Fγ(1) induced

by the trivialization of F
∣∣∣
U

is independent from the choice of U .

Exercise 6.33. Let γ, γ′ : [0, 1]−→M be smooth embeddings which sat-
isfy γ(0) = γ′(0) and γ(1) = γ′(1). Assume that these paths are homotopic.
Applying Exercise 6.32 to γ and γ′, we obtain two isomorphisms of germ
spaces Fγ(0)→̃Fγ(1). Prove that these isomorphisms are equal.

Exercise 6.34. Let M be a connected, simply connected manifold. Prove
that any locally constant sheaf on M is constant.

Hint. Use the previous exercise.

Exercise 6.35 (!). Let γ : S1 −→M be a loop taking 0 to x, F a local sys-
tem on M , and Fx its germ space. Denote by χγ ∈ Aut(Fx) the monodromy
of the pullback γ∗(F), considered as a locally constant sheaf on S1.

a. Prove that the map χγ is uniquely determined by the homotopy class
of γ.

b. Prove that χγ defines a homomorphism from π1(M,x) to Aut(Fx),
that is, satisfies χγγ′ = χγ ◦ χγ′ .

Definition 6.16. The homomorphism π1(M,x)→ Aut(Fx), defined in the
previous exercise, is called the monodromy of the local system F.

Exercise 6.36 (*). Prove that the monodromy defines an equivalence be-
tween the category of local systems and the category of representations of
π1(M,x).

Issued 11.10.2022 – 8 – Handouts version 3.0, 21.11.2022


