K3 surfaces, assignment 6: Local systems

6.1 Sheaves and vector bundles

Definition 6.1. Let M be a topological space. A sheaf \mathcal{F} on M is a collection of sets, abelian groups or vector spaces $\mathcal{F}(U)$ defined for each open subset $U \subset M$, with the **restriction maps**, which are linear homomorphisms $\mathcal{F}(U) \xrightarrow{\phi_{U,U'}} \mathcal{F}(U')$, defined for each $U' \subset U$, and satisfying the following conditions.

(A) Composition of restrictions is again a restriction: for any open subsets $U_3 \subset U_2 \subset U_1$, the corresponding restriction maps

$$\mathcal{F}(U_1) \stackrel{\phi_{U_1,U_2}}{\longrightarrow} \mathcal{F}(U_2) \stackrel{\phi_{U_2,U_3}}{\longrightarrow} \mathcal{F}(U_3)$$

give $\phi_{U_1,U_2} \circ \phi_{U_2,U_3} = \phi_{U_1,U_3}$.¹

- (B) Let $U \subset M$ be an open subset, and $\{U_i\}$ a cover of U. For any $f \in \mathcal{F}(U)$ such that all restrictions of f to U_i vanish, one has f = 0.
- (C) Let $U \subset M$ be an open subset, and $\{U_i\}$ a cover of U. Consider a collection $f_i \in \mathcal{F}(U_i)$ of sections, defined for each U_i , and satisfying

$$f_i\Big|_{U_i\cap U_j} = f_j\Big|_{U_i\cap U_j}$$

for each U_i, U_j . Then there exists $f \in \mathcal{F}(U)$ such that the restriction of f to U_i is f_i .

The space $\mathcal{F}(U)$ is called **the space of sections of the sheaf** \mathcal{F} on U. The restriction maps are often denoted $f \longrightarrow f\Big|_{U}$.

Exercise 6.1. Let C be the category of open subsets of a topological space M, with morphisms given by embeddings of a open subset $U \subset M$ to an open subset containing U. Prove that a presheaf is a functor from C to the category of vector spaces.

Issued 11.10.2022

¹If (A) is satisfied, \mathcal{F} is called **a presheaf**. Morphism of presheaves $\mathcal{F} \longrightarrow \mathcal{G}$ is a collection of maps $\mathcal{F}(U) \longrightarrow \mathcal{G}(U)$, defined for all open subsets $U \subset M$, which commute with the restriction maps.

Exercise 6.2. Let M be a topological space equipped with a presheaf of abelian groups \mathcal{F} . Prove that the conditions (B) an (C) are equivalent to exactness of the following sequence

$$0 \longrightarrow \mathcal{F}(U) \longrightarrow \prod_{i} \mathcal{F}(U_i) \xrightarrow{\Psi} \prod_{i \neq j} \mathcal{F}(U_i \cap U_j)$$

for any open $U \subset M$, and any cover $\{U_i\}$ of U. Here the map Ψ takes $\prod_i f_i$, $f_i \in \mathcal{F}(U_i)$ to $\prod_{i \neq j} \left[\psi_j(f_i) - \psi_i(f_j) \right]$, where $\psi_j : \mathcal{F}(U_i) \longrightarrow \mathcal{F}(U_i \cap U_j)$ denotes the restriction map.

Definition 6.2. A sheaf homomorphism ψ : $\mathcal{F}_1 \longrightarrow \mathcal{F}_2$ is a collection of homomorphisms

$$\psi_U: \mathcal{F}_1(U) \longrightarrow \mathcal{F}_2(U),$$

defined for each $U \subset M$, and commuting with the restriction maps. A sheaf isomorphism is a homomorphism $\Psi : \mathcal{F}_1 \longrightarrow \mathcal{F}_2$, for which there exists an homomorphism $\Phi : \mathcal{F}_2 \longrightarrow \mathcal{F}_1$, such that $\Phi \circ \Psi = \mathsf{Id}$ and $\Psi \circ \Phi = \mathsf{Id}$.

Exercise 6.3. Let ψ : $\mathcal{F}_1 \longrightarrow \mathcal{F}_2$ be a sheaf homomorphism.

- a. Show that $U \longrightarrow \ker \psi_U$ and $U \longrightarrow \operatorname{coker} \psi_U$ are presheaves.
- b. Prove that $U \longrightarrow \ker \psi_U$ is a sheaf (it is called **the kernel** of a homomorphism ψ).
- c. (*) Prove that $U \longrightarrow \operatorname{coker} \psi_U$ is not always a sheaf (find a counterexample).

Definition 6.3. A subsheaf $\mathcal{F}' \subset \mathcal{F}$ is a sheaf associating to each $U \subset M$ a subspace $\mathcal{F}'(U) \subset \mathcal{F}(U)$.

Exercise 6.4. Find a non-zero sheaf \mathcal{F} on M such that $\mathcal{F}(M) = 0$.

- **Exercise 6.5.** a. Given a covering $\{U_i\}$ of U and a presheaf \mathcal{F} on U, denote by $\mathcal{F}(\{U_i\})$ the kernel of the map $\prod_i \mathcal{F}(U_i) \xrightarrow{\Psi} \prod_{i \neq j} \mathcal{F}(U_i \cap U_j)$ (Exercise 6.2). Prove that for any refinement $\{V_j\}$ of the covering $\{U_i\}$, there is a functorial map $\mathcal{F}(\{U_i\}) \longrightarrow \mathcal{F}(\{V_j\})$.
 - b. Let \mathcal{F} be a presheaf on M. Denote by $\mathcal{F}_1(U)$ the direct limit of $\mathcal{F}(\{U_i\})$ taken over all sequences of successive refinements of the coverings of U. Prove that this limit is well defined. Prove that $U \mapsto \mathcal{F}_1(U)$ defines a presheaf on M.

Issued 11.10.2022

– 2 –

- c. Prove that $\mathcal{F}_1(U)$ satisfies the axiom C of the definition of sheaves (Definition 6.1).
- d. Denote by $\mathcal{F}_2(U)$ the quotient of $\mathcal{F}_1(U)$ by the union K_U of the kernels of the map $\mathcal{F}_1(U) \longrightarrow \prod_i \mathcal{F}_1(U_i)$ for all open coverings $\{U_i\}$ of U. Prove that the restriction map takes K_U to K_V for any open set $V \subset U$, Deduce that the restriction maps $\frac{\mathcal{F}_1(U)}{K_U} \longrightarrow \frac{\mathcal{F}_1(V)}{K_V}$ define a structure of presheaf on $U \mapsto \mathcal{F}_2(U)$
- e. Prove that \mathcal{F}_2 is a sheaf.

Definition 6.4. The sheaf \mathcal{F}_2 obtained from the presheaf \mathcal{F} as above is called **the sheafification** of \mathcal{F} .

Exercise 6.6. Let \mathcal{F} be a sheaf, \mathcal{F}_2 its sheafification.

- a. Prove that the natural maps $\mathcal{F}(U) \longrightarrow \mathcal{F}_1(U) \longrightarrow \mathcal{F}_2(U)$ define a morphism of the presheaf \mathcal{F} to its sheafification.
- b. Prove that for any presheaf morphism $\phi : \mathcal{F} \longrightarrow \mathcal{G}$ to a sheaf \mathcal{G} , the morphism ϕ factorizes through the sheafification \mathcal{F}_2 .

Remark 6.1. Let $A \xrightarrow{\phi} B$ be a ring homomorphism, and V a *B*-module. Then V is equipped with a natural *A*-module structure: $av := \phi(a)v$.

Definition 6.5. A sheaf of rings on a manifold M is a sheaf \mathcal{F} with all the spaces $\mathcal{F}(U)$ equipped with a ring structure, and all restriction maps ring homomorphisms.

Definition 6.6. Let \mathcal{F} be a sheaf of rings on a topological space M, and \mathcal{B} another sheaf. It is called **a sheaf of** \mathcal{F} -modules if for all $U \subset M$ the space of sections $\mathcal{B}(U)$ is equipped with a structure of $\mathcal{F}(U)$ -module, and for all $U' \subset U$, the restriction map $\mathcal{B}(U) \xrightarrow{\phi_{U,U'}} \mathcal{B}(U')$ is a homomorphism of $\mathcal{F}(U)$ -modules (use Remark 6.1 to obtain a structure of $\mathcal{F}(U)$ -module on $\mathcal{B}(U')$).

Exercise 6.7. Let \mathcal{F}_1 be a sheaf of rings and \mathcal{F} its subsheaf, closed under multiplication (that is, \mathcal{F} is a ring subsheaf). Prove that \mathcal{F}_1 is a sheaf of modules over \mathcal{F} .

Definition 6.7. A free sheaf of modules \mathcal{F}^n over a ring sheaf \mathcal{F} maps an open set U to the space $\mathcal{F}(U)^n$. A sheaf of \mathcal{F} -modules is **non-free** if it is not isomorphic to a free sheaf.

Issued 11.10.2022

Exercise 6.8 (!). Find a subsheaf of modules in $C^{\infty}M$ which is non-free in the sense of this definition.

Definition 6.8. Locally free sheaf of modules over a sheaf of rings \mathcal{F} is a sheaf of modules \mathcal{B} satisfying the following condition. For each $x \in M$ there exists a neighbourhood $U \ni x$ such that the restriction $\mathcal{B}|_{U}$ is free.

Definition 6.9. A smooth vector bundle on a smooth manifold M is a locally free sheaf of $C^{\infty}M$ -modules.

Exercise 6.9. Let B be a vector bundle on M. Prove that B can be always equipped with a smooth Euclidean metric.

Exercise 6.10. Let M be a compact smooth manifold.

- a. Prove that M admits an embedding to \mathbb{R}^n .
- b. Prove that its tangent bundle can be obtained as a direct summand of a trivial vector bundle.

Hint. Prove that TM is embedded to $T\mathbb{R}^n\Big|_M$ and use the previous exercise.

Exercise 6.11. Let *B* be a vector bundle on *M*, $B_1 := B \oplus C^{\infty}M$, and $M_1 := \mathbb{P}B_1$ its projectivization. Consider an embedding $\tau : M \longrightarrow M_1$ taking $x \in M$ to a point (0:1) of the fiber $\mathbb{P}\left(B \oplus C^{\infty}M\Big|_{\tau}\right)$.

- a. Prove that $\tau^*(TM_1) \cong B \oplus TM$.
- b. Prove that any vector bundle on a compact smooth manifold can be obtained as a direct summand of a trivial vector bundle.

Hint. Apply Whitney embedding theorem to M_1 and use the previous exercise.

Exercise 6.12 (**). Let M be a smooth compact manifold. Recall that a module over a ring R is called **projective** if it is a direct summand of a free module $R^I = \bigoplus_{i \in I} R$. Let $\Gamma(C^{\infty}M)$ be the ring of smooth functions on M. Serre-Swann theorem claims that the category of vector bundles on M is equivalent to the category of projective $\Gamma(C^{\infty}M)$ -modules. Define the morphisms in both categories so that this statement makes sense, and prove it.

– 4 –

6.2 Germs and pullbacks

Definition 6.10. Let $Z \subset M$ be a subset of a topological space (not necessarily open or closed), and \mathcal{F} a sheaf on M. Two sections f_1, f_2 of \mathcal{F} defined in two open neighbourhoods U_1, U_2 of Z have equivalent germs in Z if for a sufficiently small neighbourhood U of Z, with $U \subset U_1 \cap U_2$, one has $f_1\Big|_U = f_2\Big|_U$. The set of such equivalence classes is called **the space** of germs of sections of \mathcal{F} in Z; it is equipped with a natural group structure.

Exercise 6.13. Let \mathcal{B} be a sheaf on M such that the space of germs of \mathcal{B} in all points of M is equal 0. Prove that $\mathcal{B} = 0$.

Exercise 6.14. Find a sheaf \mathcal{F} on M with the space of germs in all points of M non-zero, and $\mathcal{F}(M)$ zero.

Definition 6.11. A sheaf \mathcal{F} on M is called **soft** if for any closed subset $X \subset M$, the natural map from the space of global sections $\mathcal{F}(M)$ to the space of germs $\mathcal{F}_{g}(X)$ is surjective.

Exercise 6.15. Show that the sheaf of real analytic functions on \mathbb{R}^n is not soft.

Exercise 6.16. Show that a constant sheaf on a manifold of positive dimension is not soft.

Exercise 6.17. Find a topological space M and a functions \mathcal{F} on it such that the restriction map from $\mathcal{F}(M)$ to the space of germs of \mathcal{F} in a point is always surjective, but the sheaf \mathcal{F} is not soft.

Exercise 6.18. Let $N, N' \subset M$ be two closed subsets of a metric space, $N \cap N' = \emptyset$. Prove that there exist non-intersecting neighbourhoods $U \supset N$, $U' \supset N'$.

Exercise 6.19. Let M be a manifold admitting a partition of unity, $N \subset M$ a closed subset, and $U \supset N$ its neighbourhood. Prove that M has a locally finite cover $\{U_i\}$, such that all U_i which intersect N have compact closures and satisfy $\overline{U}_i \subset U$.

Hint. Prove that M admits a metric, and use the previous exercise.

Issued 11.10.2022

Definition 6.12. Support of a function f is the set of all points where $f \neq 0$. A function is called **supported in** U if its support is contained in U.

Exercise 6.20. Let $U \subset M$ be an open subset of a manifold, $U' \subset M$ an open subset with compact closure satisfying $\overline{U}' \subset U$, and f a smooth function on U with support in U'. Prove that f can be extended to a smooth function on M.

Exercise 6.21 (*). Let M be a manifold admitting a partition of unity. Prove that the sheaf of smooth functions on M is soft.

Hint. Given a smooth function f on $U \supset N$, find a cover $\{U_i\}, i \in I$ as in Exercise 6.19, and let $\{\psi_i\}$ be a subordinate partition of unity. Let $A \subset I$ be the set of indices $\alpha \in I$ such that $U_{\alpha} \cap N \neq 0$. Prove that the function $f' := \sum_{\alpha \in A} \psi_{\alpha} f$ is supported in $U' \Subset U$, can be extended smoothly to the whole M, and equal f on N.

Definition 6.13. Let \mathcal{F} be a sheaf on X, and $f : Y \longrightarrow X$ a continuous map. Let $\mathcal{F}_g(Z)$ denote the space of germs of \mathcal{F} in $Z \subset X$. Define **the pullback presheaf** $f^*(\mathcal{F})$ as $f^*(\mathcal{F})(U) := \mathcal{F}_g(f(U))$. Since $\mathcal{F}_g(Z)$ is equipped with a natural restriction map $\mathcal{F}_g(Z) \longrightarrow \mathcal{F}_g(Z')$ for any $Z' \subset Z$, compatible with successive embeddings $Z'' \subset Z' \subset Z$, the map $U \longrightarrow f^*(\mathcal{F})(U)$ defines a presheaf. We define **the pullback sheaf** as the sheafification of this presheaf.

Exercise 6.22. Find an example when the pullback presheaf is not a sheaf.

Exercise 6.23. Let $f: Y \longrightarrow X$ be a continuous map, and \mathcal{F} a sheaf on X. Prove that the germ space of $f^*\mathcal{F}$ in $y \in Y$ is equal to the germ space of \mathcal{F} in f(y).

Exercise 6.24. Prove that the functor $\mathcal{F} \to f^*(\mathcal{F})$ is exact, that is, takes an exact sequence

 $0 \longrightarrow \mathcal{F}_1 \longrightarrow \mathcal{F}_2 \longrightarrow \mathcal{F}_3 \longrightarrow 0$

to an exact sequence

$$0 \longrightarrow f^* \mathcal{F}_1 \longrightarrow f^* \mathcal{F}_2 \longrightarrow f^* \mathcal{F}_3 \longrightarrow 0.$$

Issued 11.10.2022

– 6 –

Handouts VERSION 3.0, 21.11.2022

6.3 Local systems

Definition 6.14. A constant sheaf on a on a topological space M is a sheaf \mathcal{F} such that for any connected open set, $\mathcal{F}(U) = A$, where A is a fixed vector space, and the corresponding restriction maps are isomorphisms. A locally constant sheaf is a sheaf \mathcal{F} such that for each $x \in M$ there exists a neighbourhood $U \ni x$ such that the restriction $\mathcal{F}|_U$ is a constant sheaf. A local system is a locally constant sheaf of abelian groups or vector spaces.

Exercise 6.25. Let M be a manifold, and $\mathfrak{O}(U)$ takes U to the set of all orientations on U. Prove that $\mathfrak{O}(M)$ is a locally constant sheaf of sets. Prove that this sheaf is constant when M is orientable and non-constant when M is not orientable.

Exercise 6.26. Let \mathcal{F} be a locally constant sheaf on $M, x \in M$ a point, and \mathcal{F}_x the space of germs of \mathcal{F} in x. Prove that $\mathcal{F}_x = \mathcal{F}(U)$ for any sufficiently small connected neighbourhood containing x.

Exercise 6.27. Conversely, let \mathcal{F} be a sheaf such that the natural map $\mathcal{F}(U) \longrightarrow \mathcal{F}_x$ is an isomorphism for any sufficiently small neighbourhood of x. Prove that \mathcal{F} is locally constant.

Exercise 6.28. Prove that a pullback of a locally constant sheaf is locally constant.

Exercise 6.29. Prove that any locally constant sheaf on an interval [0, 1] is constant.

Exercise 6.30. Prove that any locally constant sheaf on an the square $[0,1] \times [0,1]$ is constant.

Definition 6.15. Let \mathcal{F} be a locally constant sheaf on S^1 , and $[0,1] \xrightarrow{\tau} S^1$ the map gluing the ends together. Since the sheaf $\tau^*\mathcal{F}$ is locally constant on [0,1], it is constant (Exercise 6.29). This can be used to construct an isomorphism of the germ spaces $\Psi : \tau^*\mathcal{F}_0 \longrightarrow \tau^*\mathcal{F}_1$. Another isomorphism, denoted by Φ , is produced by identifying $\tau^*\mathcal{F}_1$, $\tau^*\mathcal{F}_0$ and \mathcal{F}_0 . The composition $\Psi \otimes \Phi^{-1} : \mathcal{F}_0 \to \mathcal{F}_0$ is called **the monodromy of the local system on** S^1 . It is obtained by taking a section of $\mathcal{F}(\tau(]0, \varepsilon[))$, moving it along S^1 by identifying naturally $\mathcal{F}(]x, y[)$ and $\mathcal{F}(]x + \delta, y + \delta[)$ for $\delta < |x - y|$, and going the full circle.

Issued 11.10.2022

-7-

Exercise 6.31 (!). Let \mathcal{R} be the functor taking a local system \mathcal{F} on S^1 to a representation of \mathbb{Z} on \mathcal{F}_0 defined by the monodromy. Prove that this functor defines an equivalence of categories between the local systems on S^1 and representations of \mathbb{Z} .

Exercise 6.32. Let \mathcal{F} be a local system on a manifold M, and $\gamma : [0, 1] \longrightarrow M$ a smooth embedding.

- a. Prove that for a sufficiently small neighbourhood U of $\operatorname{im} \gamma$, the restriction $\mathcal{F}\Big|_U$ is a constant sheaf.
- b. Prove that an isomorphism of the germ spaces $\mathscr{F}_{\gamma(0)} \to \mathscr{F}_{\gamma(1)}$ induced by the trivialization of $\mathscr{F}|_U$ is independent from the choice of U.

Exercise 6.33. Let $\gamma, \gamma' : [0,1] \longrightarrow M$ be smooth embeddings which satisfy $\gamma(0) = \gamma'(0)$ and $\gamma(1) = \gamma'(1)$. Assume that these paths are homotopic. Applying Exercise 6.32 to γ and γ' , we obtain two isomorphisms of germ spaces $\mathcal{F}_{\gamma(0)} \xrightarrow{\sim} \mathcal{F}_{\gamma(1)}$. Prove that these isomorphisms are equal.

Exercise 6.34. Let M be a connected, simply connected manifold. Prove that any locally constant sheaf on M is constant.

Hint. Use the previous exercise.

Exercise 6.35 (!). Let $\gamma : S^1 \longrightarrow M$ be a loop taking 0 to x, \mathcal{F} a local system on M, and \mathcal{F}_x its germ space. Denote by $\chi_{\gamma} \in \operatorname{Aut}(\mathcal{F}_x)$ the monodromy of the pullback $\gamma^*(\mathcal{F})$, considered as a locally constant sheaf on S^1 .

- a. Prove that the map χ_{γ} is uniquely determined by the homotopy class of γ .
- b. Prove that χ_{γ} defines a homomorphism from $\pi_1(M, x)$ to Aut (\mathcal{F}_x) , that is, satisfies $\chi_{\gamma\gamma'} = \chi_{\gamma} \circ \chi_{\gamma'}$.

Definition 6.16. The homomorphism $\pi_1(M, x) \to \operatorname{Aut}(\mathcal{F}_x)$, defined in the previous exercise, is called **the monodromy of the local system** \mathcal{F} .

Exercise 6.36 (*). Prove that the monodromy defines an equivalence between the category of local systems and the category of representations of $\pi_1(M, x)$.

– 8 –