K3 surfaces, assignment 7: Riemann-Hilbert correspondence

7.1 Derivations

Remark 7.1. All rings in these handouts are assumed to be commutative and with unit. **Rings over a field** k are rings containing a field k.

Definition 7.1. Let R be a ring over a field k. A k-linear map $D : R \longrightarrow R$ is called a **derivation** if it satisfies **the Leibnitz equation** D(fg) = D(f)g + gD(f). The space of derivations is denoted as $\text{Der}_k(R)$.

Exercise 7.1. Let $D \in \text{Der}_k(R)$. Prove that $D\Big|_k = 0$.

Exercise 7.2. Let D_1, D_2 be derivations. Prove that the commutator $[D_1, D_2] := D_1D_2 - D_2D_1$ is also a derivation.

Exercise 7.3 (!). Let $K \supset k$ be a field which contains a field k of characteristic 0, and is finite-dimensional over k (such fields K are called **finite extensions** of k). Prove that $\text{Der}_k(K) = 0$.

Exercise 7.4 (*). Is it true if char k = p?

Exercise 7.5. Consider a ring $k[\varepsilon]$, given by a relation $\varepsilon^2 = 0$. Find $\text{Der}_k(k[\varepsilon])$.

Exercise 7.6 (*). Find all rings R over \mathbb{C} such that R is finite-dimensional over \mathbb{C} , and $\text{Der}_{\mathbb{C}}(R) = 0$.

Exercise 7.7 (*). Consider the polynomial ring $\mathbb{R}[x_1, ..., x_n]$ as a subring of $C^{\infty}(\mathbb{R}^n)$. Prove that any derivation of $C^{\infty}(\mathbb{R}^n)$ is uniquely determined by its restriction to $\mathbb{R}[x_1, ..., x_n]$. Prove that any $C^{\infty}(\mathbb{R}^n)$ -valued derivation on $\mathbb{R}[x_1, ..., x_n]$ defines a derivation of $C^{\infty}(\mathbb{R}^n)$.

7.2 Curvature of a vector bundle

Exercise 7.8. For any vector field X on M, denote by Lie_X the corresponding derivation on $C^{\infty}M$.

a. Prove that for any vector fields $X, Y \in TM$, there exists a vector field Z which satisfies $\text{Lie}_Z = [\text{Lie}_X, \text{Lie}_Y]$.

b. Prove that Z is determined uniquely from this relation.

Definition 7.2. The vector field Z constructed as above is called **the commutator** of X and Y, denoted [X, Y].

Exercise 7.9. Let (B, ∇) be a vector bundle with connection on a manifold M, b its section, and $X, Y \in TM$ two vector fields. Prove that $\nabla_X \nabla_Y b - \nabla_Y \nabla_X b - \nabla_{[X,Y]} b$ is linear in X, Y, b.

Definition 7.3. Let (B, ∇) be a vector bundle with connection on a manifold M. The curvature of ∇ is an End(B)-valued 2-form which is given by $\Theta(X, Y)(b) = \nabla_X \nabla_Y b - \nabla_Y \nabla_X b - \nabla_{[X,Y]} b$. A bundle is called **flat** if its curvature vanishes.

Definition 7.4. Let *B* be a vector bundle, and Ψ a section of its tensor power. We say that **connection** ∇ **preserves** Ψ if $\nabla(\Psi) = 0$. In this case, we also say that the tensor Ψ is **parallel** with respect to the connection.

Remark 7.2. $\nabla(\Psi) = 0$ is equivalent to Ψ being a solution of $\nabla(\Psi) = 0$ on each path γ . This means that the parallel transport preserves Ψ .

Exercise 7.10. Let (B, ∇) be a bundle which is locally generated by parallel sections. Prove that ∇ is flat.

Remark 7.3. One of the main purposes of the present assignment is to prove the converse statement: a flat bundle is locally generated by parallel sections.

7.3 Curvature of an Ehresmann connection

Definition 7.5. A vector field v on \mathbb{R}^n is called **linear** if it satisfies $v\Big|_{x+y} = v\Big|_x + v\Big|_y$ and $v\Big|_{\lambda x} = \lambda v\Big|_x$ for any $x, y \in \mathbb{R}^n$.

Exercise 7.11. Prove that a vector field $v \in T\mathbb{R}^n$ is linear of and only if for any affine function v on \mathbb{R}^n , the derivative $\operatorname{Lie}_v f$ is affine.

Exercise 7.12. Prove that a commutator of linear vector fields is linear.

Exercise 7.13. Let \mathfrak{g} be the space of linear vector fields on $V = \mathbb{R}^n$, and W the space of affine functions on \mathbb{R}^n .

Issued 17.10.2022

-2-

Handouts VERSION 1.0, 14.10.2022

- a. Prove that the derivations along linear vector fields preserve W and act trivially on constants.
- b. Use this observation to construct a homomorphism from the Lie algebra \mathfrak{g} to $\operatorname{End}(V^*)$.

Exercise 7.14. Let \mathfrak{g} be the space of linear vector fields on \mathbb{R}^n . Construct a bijective correspondence between \mathfrak{g} and $\operatorname{End}(\mathbb{R}^n)$ which is compatible with commutators.

Hint. Use the previous exercise.

Definition 7.6. Let π : Tot $B \longrightarrow M$ be a total space of a vector bundle. A vertical vector field $v \in T_{\pi} \operatorname{Tot}(B)$ is called **fiberwise linear** if it is linear on all fibers.

Remark 7.4. From Exercise 7.14, we obtain that the fiberwise linear vector fields are in bijective correspondence with sections of $\operatorname{End}(B)$. For any $E \in \operatorname{End}(B)$, the corresponding vector field v associates to $x \in \operatorname{Tot}(B)$ the vector $E(v) \in B|_x \subset T_x \operatorname{Tot}(B)$.

Exercise 7.15. Let $M = \mathbb{R}^n$ and $X \in TM$ a vector field such that for any linear vector field, the commutator [X, Y] is linear. Prove that X is also linear.

Exercise 7.16. Let $\pi : P \longrightarrow M$ be a smooth submersion. A lift of a vector field $X \in TM$ is a vector field \tilde{X} on P such that for all $x \in P$ the differential $d\pi$ takes $\tilde{X}\Big|_x \in T_x P$ to $X\Big|_{\pi(x)} \in T_{\pi(x)}M$.

- a. Consider a $C^{\infty}(M)$ -linear map $l : \Gamma(TM) \longrightarrow \Gamma(TP)$ which maps each vector field to its lift. Prove that im l is a sub-bundle in TP.
- b. Prove that $TP = T_{\pi}P \oplus im(l)$.
- c. Prove that for every Ehresmann connection $TP = T_{\pi}P \oplus T_{hor}P$, and any vector field $X \in TM$ there exists a unique lift $\tilde{X} \in T_{hor}P$.

Definition 7.7. Let $TP = T_{\pi}P \oplus T_{hor}P$ be an Ehresmann connection on a smooth fibration $\pi : P \longrightarrow M$. The horizontal lift of a vector field $X \in TM$ is its lift $\tilde{X} \in T_{hor}P$. It exists and is unique by Exercise 7.16.

Issued 17.10.2022

– 3 –

Exercise 7.17. Let $TP = T_{\pi}P \oplus T_{\text{hor}}P$ be an Ehresmann connection on a smooth fibration $\pi : P \longrightarrow M, X, Y \in TM$ vector fields, and \tilde{X}, \tilde{X} their horizontal lift. Denote by [X, Y] the horizontal lift of [X, Y]. Prove that $[\tilde{X}, \tilde{Y}] - [X, Y]$ is a vertical vector field.

Definition 7.8. In these assumptions, the map taking $X, Y \in TM$ to $[\tilde{X}, \tilde{Y}] - [\tilde{X}, Y] \in T_{\pi}P$ is called **the curvature of the Ehresmann connection on** π .

Exercise 7.18. Consider a smooth fibration π over a 1-dimensional manifold. Prove that the curvature of any Ehresmann connection in π vanishes.

Exercise 7.19. Let *B* be a vector bundle on M, π : Tot $B \longrightarrow M$ its total space, and T Tot $B = T_{\pi}$ Tot $B \oplus T_{hor}$ Tot B an Ehresmann connection on Tot *B*.

- a. Prove that this connection is linear if and only if for any fiberwise linear function $\lambda \in C^{\infty}(\text{Tot }B)$, and any vector field $X \in TM$, which is horizontally lifted to \tilde{X} , the function $\text{Lie}_{\tilde{X}} \lambda$ is fiberwise linear.
- b. Prove that $\nabla_X(\lambda) := \operatorname{Lie}_{\tilde{X}} \lambda$ defines a connection ∇^* on the bundle B^* of fiberwise smooth functions on Tot B.
- c. In Assignment 5, it was shown that the linear Ehresmann connections on π : Tot $B \longrightarrow M$ are in bijective correspondence with connections ∇ on B. Show that the connection ∇^* satisfies

$$\operatorname{Lie}_X\langle\lambda,b\rangle = \langle \nabla_X^*\lambda,b\rangle + \langle\lambda,\nabla_Xb\rangle,$$

where $\langle \cdot, \cdot \rangle$ denotes the pairing between *B* and *B*^{*}, λ is a section of *B*^{*} and *b* a section of *B*.

Remark 7.5. The following exercise shows that the curvature of a connection on a vector bundle B is equal to the curvature of the corresponding Ehresmann connection on Tot B.

Exercise 7.20. Let *B* be a vector bundle with connection ∇, π : Tot $B \longrightarrow M$ its total space, equipped with the linear Ehresmann connection induced by ∇ , and λ a fiberwise linear function on Tot *B*, considered as a section of B^* . Consider commuting vector fields $X, Y \in TM$, and let \tilde{X}, \tilde{Y} be their horizontal lifts.

Issued 17.10.2022

– 4 –

- a. Prove that $[\nabla_X, \nabla_Y](\lambda) = \operatorname{Lie}_{[\tilde{X}, \tilde{Y}]} \lambda$.
- b. Prove that the vector field $[\tilde{X}, \tilde{Y}]$ is fiberwise linear.
- c. Let $\Theta \in \Lambda^2(M) \otimes \operatorname{End}(B)$ be the curvature of B. Identifying $\operatorname{End}(B)$ and fiberwise linear vector fields, we may consider Θ as a map taking $X, Y \in TM$ to a fiberwise linear vector field $\Theta(X, Y) \in T_{\pi} \operatorname{Tot} B$. Prove that $\Theta(X, Y) = [\tilde{X}, \tilde{Y}]$

Hint. Use Exercise 7.19 to relate the connection in B and the Ehresmann connection in Tot B and apply the relation $[\nabla_X, \nabla_Y](\lambda) = \operatorname{Lie}_{[\tilde{X}, \tilde{Y}]} \lambda$ to relate the curvature of ∇ and the curvature of the Ehresmann connection.

7.4 Riemann-Hilbert correspondence

Exercise 7.21. Let *B* be a vector bundle with connection ∇ , and π : Tot $B \longrightarrow M$ its total space, equipped with the linear Ehresmann connection T Tot $B = T_{\pi}$ Tot $B \oplus T_{hor}$ Tot *B* induced by ∇ .

- a. Prove that a section of π , considered as a submanifold in Tot(B), is tangent to T_{hor} Tot B if and only if it is parallel.
- b. Prove that the Frobenius form of the distribution T_{hor} Tot $B \subset T$ Tot B vanishes if and only if the curvature of ∇ vanishes.
- c. Suppose that ∇ is flat. Prove that for every point $x \in \text{Tot } B$ there exists a neighbourhood $U \subset M$ of $\pi(x)$ and a parallel section of $B\Big|_U$ passing through x.

Hint. For the last statement, use the Frobenius theorem.

Exercise 7.22. Let (B, ∇) be a flat vector bundle on M

- a. Prove that any point $x \in M$ has a neighbourhood U such that the restriction $B\Big|_{U}$ has a basis $b_1, ..., b_n$ such that $\nabla(b_i) = 0$.
- b. Suppose that $b_1, ..., b_n$ and $b'_1, ..., b'_n$ are such bases, satisfying $\nabla(b_i) = \nabla(b'_i) = 0$. Prove that there exists a matrix $(a_{ij}) \in GL(n, \mathbb{R})$ such that $b_j = \sum_{j=1}^n b'_i a_{ij}$.

Exercise 7.23 (!). Let (B, ∇) be a flat vector bundle on M, and \mathbb{B} the sheaf of all parallel sections of B. Prove that the sheaf \mathbb{B} is locally constant.

– 5 –

Exercise 7.24. Let (B, ∇_0) be a trivial line bundle with the standard connection on $M := \mathbb{C} \setminus 0$, and $\nabla := \nabla_0 + \frac{dz}{z}$. Denote by \mathbb{B} the corresponding locally constant sheaf. Prove that \mathbb{B} is non-trivial, and find its monodromy.

Exercise 7.25. Let \mathbb{B} be a locally constant sheaf of vector spaces on a manifold M, considered as a sheaf of modules over a constant sheaf \mathbb{R}_M

- a. Prove that the sheaf $B := \mathbb{B} \otimes_{\mathbb{R}_M} C^{\infty} M$ is a locally free sheaf of $C^{\infty} M$ -modules, that is, a vector bundle.
- b. Let $U \subset M$ be an open set such that the restriction $\mathbb{B}\Big|_U$ is trivial, and $b_1, ..., b_n$ a basis in $\mathbb{B}(U)$. A general section of $B\Big|_U$ can be written as $\sum_{i=1}^n f_i b_i$, where $f_i \in C^{\infty}U$. Define the connection $\nabla : B \longrightarrow B \otimes \Lambda^1 U$ in $B\Big|_U$ by $\nabla (\sum_{i=1}^n f_i b_i) = \sum b_i \otimes df_i$. Prove that this connection is flat and independent from the choice of an open set and the basis $b_1, ..., b_n$.

Exercise 7.26. (Riemann-Hilbert correspondence)

Prove that the functors constructed earlier in this subsection define an equivalence between the category of flat vector bundles¹ and the category of locally constant sheaves of vector spaces.

¹The objects of this category are pairs (B, ∇) , where ∇ is a flat connection on a vector bundle B; morphisms are sheaf morphisms compatible with the connections.