K3 surfaces, assignment 7: Riemann-Hilbert correspondence

7.1 Derivations

Remark 7.1. All rings in these handouts are assumed to be commutative and with unit. Rings over a field k are rings containing a field k.

Definition 7.1. Let R be a ring over a field k. A k-linear map $D: R \longrightarrow R$ is called a derivation if it satisfies the Leibnitz equation $D(f g)=$ $D(f) g+g D(f)$. The space of derivations is denoted as $\operatorname{Der}_{k}(R)$.

Exercise 7.1. Let $D \in \operatorname{Der}_{k}(R)$. Prove that $\left.D\right|_{k}=0$.
Exercise 7.2. Let D_{1}, D_{2} be derivations. Prove that the commutator $\left[D_{1}, D_{2}\right]:=$ $D_{1} D_{2}-D_{2} D_{1}$ is also a derivation.

Exercise 7.3 (!). Let $K \supset k$ be a field which contains a field k of characteristic 0 , and is finite-dimensional over k (such fields K are called finite extensions of k). Prove that $\operatorname{Der}_{k}(K)=0$.

Exercise $7.4 \mathbf{(*)}^{*}$. Is it true if char $k=p$?
Exercise 7.5. Consider a ring $k[\varepsilon]$, given by a relation $\varepsilon^{2}=0$. Find $\operatorname{Der}_{k}(k[\varepsilon])$.

Exercise 7.6 (*). Find all rings R over \mathbb{C} such that R is finite-dimensional over \mathbb{C}, and $\operatorname{Der}_{\mathbb{C}}(R)=0$.

Exercise 7.7 (*) *. Consider the polynomial ring $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ as a subring of $C^{\infty}\left(\mathbb{R}^{n}\right)$. Prove that any derivation of $C^{\infty}\left(\mathbb{R}^{n}\right)$ is uniquely determined by its restriction to $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$. Prove that any $C^{\infty}\left(\mathbb{R}^{n}\right)$-valued derivation on $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ defines a derivation of $C^{\infty}\left(\mathbb{R}^{n}\right)$.

7.2 Curvature of a vector bundle

Exercise 7.8. For any vector field X on M, denote by Lie_{X} the corresponding derivation on $C^{\infty} M$.
a. Prove that for any vector fields $X, Y \in T M$, there exists a vector field Z which satisfies $\operatorname{Lie}_{Z}=\left[\operatorname{Lie}_{X}, \operatorname{Lie}_{Y}\right]$.
b. Prove that Z is determined uniquely from this relation.

Definition 7.2. The vector field Z constructed as above is called the commutator of X and Y, denoted $[X, Y]$.

Exercise 7.9. Let (B, ∇) be a vector bundle with connection on a manifold M, b its section, and $X, Y \in T M$ two vector fields. Prove that $\nabla_{X} \nabla_{Y} b-$ $\nabla_{Y} \nabla_{X} b-\nabla_{[X, Y]} b$ is linear in X, Y, b.

Definition 7.3. Let (B, ∇) be a vector bundle with connection on a manifold M. The curvature of ∇ is an $\operatorname{End}(B)$-valued 2-form which is given by $\Theta(X, Y)(b)=\nabla_{X} \nabla_{Y} b-\nabla_{Y} \nabla_{X} b-\nabla_{[X, Y]} b$. A bundle is called flat if its curvature vanishes.

Definition 7.4. Let B be a vector bundle, and Ψ a section of its tensor power. We say that connection ∇ preserves Ψ if $\nabla(\Psi)=0$. In this case, we also say that the tensor Ψ is parallel with respect to the connection.

Remark 7.2. $\nabla(\Psi)=0$ is equivalent to Ψ being a solution of $\nabla(\Psi)=0$ on each path γ. This means that the parallel transport preserves Ψ.

Exercise 7.10. Let (B, ∇) be a bundle which is locally generated by parallel sections. Prove that ∇ is flat.

Remark 7.3. One of the main purposes of the present assignment is to prove the converse statement: a flat bundle is locally generated by parallel sections.

7.3 Curvature of an Ehresmann connection

Definition 7.5. A vector field v on \mathbb{R}^{n} is called linear if it satisfies $\left.v\right|_{x+y}=$ $\left.v\right|_{x}+\left.v\right|_{y}$ and $\left.v\right|_{\lambda x}=\left.\lambda v\right|_{x}$ for any $x, y \in \mathbb{R}^{n}$.

Exercise 7.11. Prove that a vector field $v \in T \mathbb{R}^{n}$ is linear of and only if for any affine function v on \mathbb{R}^{n}, the derivative $\operatorname{Lie}_{v} f$ is affine.

Exercise 7.12. Prove that a commutator of linear vector fields is linear.
Exercise 7.13. Let \mathfrak{g} be the space of linear vector fields on $V=\mathbb{R}^{n}$, and W the space of affine functions on \mathbb{R}^{n}.
a. Prove that the derivations along linear vector fields preserve W and act trivially on constants.
b. Use this observation to construct a homomorphism from the Lie algebra \mathfrak{g} to $\operatorname{End}\left(V^{*}\right)$.

Exercise 7.14. Let \mathfrak{g} be the space of linear vector fields on \mathbb{R}^{n}. Construct a bijective correspondence between \mathfrak{g} and $\operatorname{End}\left(\mathbb{R}^{n}\right)$ which is compatible with commutators.

Hint. Use the previous exercise.
Definition 7.6. Let π : $\operatorname{Tot} B \longrightarrow M$ be a total space of a vector bundle. A vertical vector field $v \in T_{\pi} \operatorname{Tot}(B)$ is called fiberwise linear if it is linear on all fibers.

Remark 7.4. From Exercise 7.14, we obtain that the fiberwise linear vector fields are in bijective correspondence with sections of $\operatorname{End}(B)$. For any $E \in \operatorname{End}(B)$, the corresponding vector field v associates to $x \in \operatorname{Tot}(B)$ the vector $\left.E(v) \in B\right|_{x} \subset T_{x} \operatorname{Tot}(B)$.

Exercise 7.15. Let $M=\mathbb{R}^{n}$ and $X \in T M$ a vector field such that for any linear vector field, the commutator $[X, Y]$ is linear. Prove that X is also linear.

Exercise 7.16. Let $\pi: ~ P \longrightarrow M$ be a smooth submersion. A lift of a vector field $X \in T M$ is a vector field \tilde{X} on P such that for all $x \in P$ the differential $d \pi$ takes $\left.\tilde{X}\right|_{x} \in T_{x} P$ to $\left.X\right|_{\pi(x)} \in T_{\pi(x)} M$.
a. Consider a $C^{\infty}(M)$-linear map $l: \Gamma(T M) \longrightarrow \Gamma(T P)$ which maps each vector field to its lift. Prove that $\operatorname{im} l$ is a sub-bundle in $T P$.
b. Prove that $T P=T_{\pi} P \oplus \operatorname{im}(l)$.
c. Prove that for every Ehresmann connection $T P=T_{\pi} P \oplus T_{\mathrm{hor}} P$, and any vector field $X \in T M$ there exists a unique lift $\tilde{X} \in T_{\mathrm{hor}} P$.

Definition 7.7. Let $T P=T_{\pi} P \oplus T_{\text {hor }} P$ be an Ehresmann connection on a smooth fibration $\pi: P \longrightarrow M$. The horizontal lift of a vector field $X \in T M$ is its lift $\tilde{X} \in T_{\text {hor }} P$. It exists and is unique by Exercise 7.16.

Exercise 7.17. Let $T P=T_{\pi} P \oplus T_{\text {hor }} P$ be an Ehresmann connection on a smooth fibration $\pi: P \longrightarrow M, X, Y \in T M$ vector fields, and \tilde{X}, \tilde{X} their horizontal lift. Denote by $[X, Y]$ the horizontal lift of $[X, Y]$. Prove that $[\tilde{X}, \tilde{Y}]-\widetilde{[X, Y]}$ is a vertical vector field.

Definition 7.8. In these assumptions, the map taking $X, Y \in T M$ to $[\tilde{X}, \tilde{Y}]-\widetilde{[X, Y}] \in T_{\pi} P$ is called the curvature of the Ehresmann connection on π.

Exercise 7.18. Consider a smooth fibration π over a 1-dimensional manifold. Prove that the curvature of any Ehresmann connection in π vanishes.

Exercise 7.19. Let B be a vector bundle on $M, \pi: \operatorname{Tot} B \longrightarrow M$ its total space, and $T \operatorname{Tot} B=T_{\pi} \operatorname{Tot} B \oplus T_{\text {hor }} \operatorname{Tot} B$ an Ehresmann connection on Tot B.
a. Prove that this connection is linear if and only if for any fiberwise linear function $\lambda \in C^{\infty}(\operatorname{Tot} B)$, and any vector field $X \in T M$, which is horizontally lifted to \tilde{X}, the function $\operatorname{Lie}_{\tilde{X}} \lambda$ is fiberwise linear.
b. Prove that $\nabla_{X}(\lambda):=\operatorname{Lie}_{\tilde{X}} \lambda$ defines a connection ∇^{*} on the bundle B^{*} of fiberwise smooth functions on $\operatorname{Tot} B$.
c. In Assignment 5, it was shown that the linear Ehresmann connections on $\pi: \operatorname{Tot} B \longrightarrow M$ are in bijective correspondence with connections ∇ on B. Show that the connection ∇^{*} satisfies

$$
\operatorname{Lie}_{X}\langle\lambda, b\rangle=\left\langle\nabla_{X}^{*} \lambda, b\right\rangle+\left\langle\lambda, \nabla_{X} b\right\rangle,
$$

where $\langle\cdot, \cdot\rangle$ denotes the pairing between B and B^{*}, λ is a section of B^{*} and b a section of B.

Remark 7.5. The following exercise shows that the curvature of a connection on a vector bundle B is equal to the curvature of the corresponding Ehresmann connection on Tot B.

Exercise 7.20. Let B be a vector bundle with connection ∇, π : $\operatorname{Tot} B \longrightarrow M$ its total space, equipped with the linear Ehresmann connection induced by ∇, and λ a fiberwise linear function on $\operatorname{Tot} B$, considered as a section of B^{*}. Consider commuting vector fields $X, Y \in T M$, and let \tilde{X}, \tilde{Y} be their horizontal lifts.
a. Prove that $\left[\nabla_{X}, \nabla_{Y}\right](\lambda)=\operatorname{Lie}_{[\tilde{X}, \tilde{Y}]} \lambda$.
b. Prove that the vector field $[\tilde{X}, \tilde{Y}]$ is fiberwise linear.
c. Let $\Theta \in \Lambda^{2}(M) \otimes \operatorname{End}(B)$ be the curvature of B. Identifying $\operatorname{End}(B)$ and fiberwise linear vector fields, we may consider Θ as a map taking $X, Y \in T M$ to a fiberwise linear vector field $\Theta(X, Y) \in T_{\pi} \operatorname{Tot} B$. Prove that $\Theta(X, Y)=[\tilde{X}, \tilde{Y}]$

Hint. Use Exercise 7.19 to relate the connection in B and the Ehresmann connection in Tot B and apply the relation $\left[\nabla_{X}, \nabla_{Y}\right](\lambda)=\operatorname{Lie}_{[\tilde{X}, \tilde{Y}]} \lambda$ to relate the curvature of ∇ and the curvature of the Ehresmann connection.

7.4 Riemann-Hilbert correspondence

Exercise 7.21. Let B be a vector bundle with connection ∇, and π : Tot $B \longrightarrow M$ its total space, equipped with the linear Ehresmann connection $T \operatorname{Tot} B=T_{\pi} \operatorname{Tot} B \oplus T_{\text {hor }} \operatorname{Tot} B$ induced by ∇.
a. Prove that a section of π, considered as a submanifold in $\operatorname{Tot}(B)$, is tangent to $T_{\text {hor }}$ Tot B if and only if it is parallel.
b. Prove that the Frobenius form of the distribution $T_{\text {hor }} \operatorname{Tot} B \subset T \operatorname{Tot} B$ vanishes if and only if the curvature of ∇ vanishes.
c. Suppose that ∇ is flat. Prove that for every point $x \in \operatorname{Tot} B$ there exists a neighbourhood $U \subset M$ of $\pi(x)$ and a parallel section of $\left.B\right|_{U}$ passing through x.

Hint. For the last statement, use the Frobenius theorem.
Exercise 7.22. Let (B, ∇) be a flat vector bundle on M
a. Prove that any point $x \in M$ has a neighbourhood U such that the restriction $\left.B\right|_{U}$ has a basis b_{1}, \ldots, b_{n} such that $\nabla\left(b_{i}\right)=0$.
b. Suppose that b_{1}, \ldots, b_{n} and $b_{1}^{\prime}, \ldots, b_{n}^{\prime}$ are such bases, satisfying $\nabla\left(b_{i}\right)=$ $\nabla\left(b_{i}^{\prime}\right)=0$. Prove that there exists a matrix $\left(a_{i j}\right) \in G L(n, \mathbb{R})$ such that $b_{j}=\sum_{j=1}^{n} b_{i}^{\prime} a_{i j}$.

Exercise $7.23(!)$. Let (B, ∇) be a flat vector bundle on M, and \mathbb{B} the sheaf of all parallel sections of B. Prove that the sheaf \mathbb{B} is locally constant.

Exercise 7.24. Let $\left(B, \nabla_{0}\right)$ be a trivial line bundle with the standard connection on $M:=\mathbb{C} \backslash 0$, and $\nabla:=\nabla_{0}+\frac{d z}{z}$. Denote by \mathbb{B} the corresponding locally constant sheaf. Prove that \mathbb{B} is non-trivial, and find its monodromy.

Exercise 7.25. Let \mathbb{B} be a locally constant sheaf of vector spaces on a manifold M, considered as a sheaf of modules over a constant sheaf \mathbb{R}_{M}
a. Prove that the sheaf $B:=\mathbb{B} \otimes_{\mathbb{R}_{M}} C^{\infty} M$ is a locally free sheaf of $C^{\infty} M$-modules, that is, a vector bundle.
b. Let $U \subset M$ be an open set such that the restriction $\left.\mathbb{B}\right|_{U}$ is trivial, and b_{1}, \ldots, b_{n} a basis in $\mathbb{B}(U)$. A general section of $\left.B\right|_{U}$ can be written as $\sum_{i=1}^{n} f_{i} b_{i}$, where $f_{i} \in C^{\infty} U$. Define the connection $\nabla: B \longrightarrow B \otimes \Lambda^{1} U$ in $\left.B\right|_{U}$ by $\nabla\left(\sum_{i=1}^{n} f_{i} b_{i}\right)=\sum b_{i} \otimes d f_{i}$. Prove that this connection is flat and independent from the choice of an open set and the basis b_{1}, \ldots, b_{n}.

Exercise 7.26. (Riemann-Hilbert correspondence)
Prove that the functors constructed earlier in this subsection define an equivalence between the category of flat vector bundles ${ }^{1}$ and the category of locally constant sheaves of vector spaces.

[^0]
[^0]: ${ }^{1}$ The objects of this category are pairs (B, ∇), where ∇ is a flat connection on a vector bundle B; morphisms are sheaf morphisms compatible with the connections.

