K3 surfaces, assignment 10: Lie superalgebras

Definition 10.1. Let A^{*} be a graded commutative algebra, and $D: A^{*} \longrightarrow A^{*+i}$ a map which shifts the grading by i. It is called a graded derivation, or superderivation, if $D(a b)=D(a) b+(-1)^{i j} a D(b)$, for each $a \in A^{j}$.

Exercise 10.1. Prove that a supercommutator of superderivations is again a superderivation.

Exercise 10.2. Let $\tau: \Lambda^{*}(M) \longrightarrow \Lambda^{*-1}(M)$ be an odd derivation shifting the grading by -1 . Prove that there exists a vector field $v \in T M$ such that $\tau=i_{v}$ (convolution with a vector field), or find a counterexample.

Exercise 10.3. Let $\tau: \Lambda^{*}(M) \longrightarrow \Lambda^{*-2}(M)$ be a derivation shifting the grading by -2 . Prove that $\tau=0$.

Definition 10.2. Let A^{*} be a graded commutative algebra over a field k. Differential operators on A^{*} are k-linear operators $D: A^{*} \longrightarrow A^{*}$ (even or odd), defined inductively as follows. Differential operators of order 0 are maps $L_{a}(x)=a x$, where $a \in A^{*}$ (also even or odd). Differential operators of order p are maps $u: A^{*} \longrightarrow A^{*}$ such that $\left\{L_{a}, u\right\}$ is a differential operator of order $p-1$ for all $a \in A^{*}$.

Exercise 10.4. Let $D: A^{*} \longrightarrow A^{*}$ be a differential operator of order 1 , and $a=D(1)$. Prove that $D-L_{a}$ is a super-derivation of A^{*}.

Exercise 10.5. Let $\omega \in \Lambda^{2} V^{*}$ be a 2 -form on a vector space $V, \nu \in \Lambda^{2} V$ a bivector, $L_{\omega}(\eta):=\omega \wedge \eta$ and $\Lambda_{\nu}: \Lambda^{i}\left(V^{*}\right) \longrightarrow \Lambda^{i-2}\left(V^{*}\right)$ the convolution of a differential form and a bivector. Let $A \in \operatorname{End}\left(\Lambda^{*}\left(V^{*}\right)\right)$ be the multiplication by a constant $-\Lambda_{\nu}(\omega)$. Prove that $\left[L_{\omega}, \Lambda_{\nu}\right]-A$ is an even derivation of $\Lambda^{*}\left(V^{*}\right)$.

Exercise 10.6. Let $\omega \in \Lambda^{2} V^{*}$ be a Hermitian 2-form on a n-dimensional complex vector space V, and L, Λ the corresponding Lefschetz operators (Lecture 5).
a. Prove that $\left.[L, \Lambda]\right|_{\Lambda^{1} V^{*}}=\alpha$ Id for some scalar α.
b. Prove that $\Lambda(\omega)=n$. Deduce from this that $[L, \Lambda]+n$ is a derivation of $\Lambda^{*}\left(V^{*}\right)$.
c. Deduce that $n+[L, \Lambda]$ acts on k-forms as a multiplication by $k \alpha$, where α is a constant given by $\left.[L, \Lambda]\right|_{\Lambda^{1} V^{*}}+n=\alpha \mathrm{Id}$.
d. Prove that $\left.[L, \Lambda]\right|_{\Lambda^{2 n} V^{*}}=n$ Id.
e. Deduce that $\left.[L, \Lambda]\right|_{\Lambda^{k} V^{*}}=(k \alpha-n)$ Id, where $\alpha=1$.

Remark 10.1. This gives another proof of the identity $\left.[L, \Lambda]\right|_{\Lambda^{k} V^{*}}=(n-k) \mathrm{Id}$

