K3 surfaces, assignment 10: Lie superalgebras

Definition 10.1. Let A^* be a graded commutative algebra, and $D : A^* \longrightarrow A^{*+i}$ a map which shifts the grading by *i*. It is called a **graded derivation**, or **superderivation**, if $D(ab) = D(a)b + (-1)^{ij}aD(b)$, for each $a \in A^j$.

Exercise 10.1. Prove that a supercommutator of superderivations is again a superderivation.

Exercise 10.2. Let $\tau : \Lambda^*(M) \longrightarrow \Lambda^{*-1}(M)$ be an odd derivation shifting the grading by -1. Prove that there exists a vector field $v \in TM$ such that $\tau = i_v$ (convolution with a vector field), or find a counterexample.

Exercise 10.3. Let $\tau : \Lambda^*(M) \longrightarrow \Lambda^{*-2}(M)$ be a derivation shifting the grading by -2. Prove that $\tau = 0$.

Definition 10.2. Let A^* be a graded commutative algebra over a field k. **Differential operators** on A^* are k-linear operators $D : A^* \longrightarrow A^*$ (even or odd), defined inductively as follows. **Differential operators of order 0** are maps $L_a(x) = ax$, where $a \in A^*$ (also even or odd). **Differential operators of order p** are maps $u : A^* \longrightarrow A^*$ such that $\{L_a, u\}$ is a differential operator of order p - 1 for all $a \in A^*$.

Exercise 10.4. Let $D : A^* \longrightarrow A^*$ be a differential operator of order 1, and a = D(1). Prove that $D - L_a$ is a super-derivation of A^* .

Exercise 10.5. Let $\omega \in \Lambda^2 V^*$ be a 2-form on a vector space $V, \nu \in \Lambda^2 V$ a bivector, $L_{\omega}(\eta) := \omega \wedge \eta$ and $\Lambda_{\nu} : \Lambda^i(V^*) \longrightarrow \Lambda^{i-2}(V^*)$ the convolution of a differential form and a bivector. Let $A \in \text{End}(\Lambda^*(V^*))$ be the multiplication by a constant $-\Lambda_{\nu}(\omega)$. Prove that $[L_{\omega}, \Lambda_{\nu}] - A$ is an even derivation of $\Lambda^*(V^*)$.

Exercise 10.6. Let $\omega \in \Lambda^2 V^*$ be a Hermitian 2-form on a *n*-dimensional complex vector space V, and L, Λ the corresponding Lefschetz operators (Lecture 5).

- a. Prove that $[L, \Lambda]|_{\Lambda^{1}V^{*}} = \alpha \operatorname{\mathsf{Id}}$ for some scalar α .
- b. Prove that $\Lambda(\omega) = n$. Deduce from this that $[L, \Lambda] + n$ is a derivation of $\Lambda^*(V^*)$.
- c. Deduce that $n + [L, \Lambda]$ acts on k-forms as a multiplication by $k\alpha$, where α is a constant given by $[L, \Lambda]|_{_{\Lambda^1 V^*}} + n = \alpha \operatorname{\mathsf{Id}}$.
- d. Prove that $[L, \Lambda]|_{\Lambda^{2n_V*}} = n \operatorname{\mathsf{Id}}.$
- e. Deduce that $[L, \Lambda]|_{\Lambda^{k_{V^*}}} = (k\alpha n) \operatorname{\mathsf{Id}}$, where $\alpha = 1$.

Remark 10.1. This gives another proof of the identity $[L, \Lambda]|_{\Lambda^{k}V^{*}} = (n-k) \operatorname{Id}$

Issued 07.11.2022