Instituto Nacional de Matemática Pura e Aplicada
K3 surfaces
Announcement
and literature
Slides:
- Lecture 1:
Topology of 4-dimensional manifolds, 02.09.2024
- Lecture 2:
Classifying spaces, 04.09.2024
- Lecture 3:
Hopf theorem, 09.09.2024
- Lecture 4:
Chern classes, 11.09.2024
- Lecture 5:
Riemann-Roch formula, 16.09.2024
- Lecture 6:
Teichmuller spaces and local Torelli theorem, 18.09.2024
- Lecture 7: Intersection
form of a K3 surface, 23.09.2024
- Lecture 8: Smooth quartics, 25.09.2024
- Lecture 9: Nakai-Moishezon theorem, 30.09.2024
- Lecture 10: K3 surfaces with
Picard rank 1, 02.10.2024
- Lecture 11:
Density of quartics deduced from Ratner theory, 07.10.2024
- Lecture 12:
Density of quartics: more elementary proof,
09.10.2024
- Lecture 13:
Quadratic lattices and Pelle's equation, 14.10.2024
- Lecture 14:
Limit points of orbits of SOℤ(p,q), 16.10.2024
- Lecture 15:
Lefschetz hyperplane section theorem, 21.10.2024
- Lecture 16:
Moser lemma and the local Torelli theorem, 23.10.2024
- Lecture 17:
$dd^c$-lemma and the local surjectivity of the period map, 28.10.2024
- Lecture 18:
Kummer surfaces, 30.10.2024
- Lecture 19:
(-2)-curves, 04.11.2024
- Lecture 20:
Calabi-Yau theorem and hyperkähler structures, 06.11.2024
- Lecture 21:
The Kähler cone of a K3 surface, 11.11.2024
- Lecture 22:
The hyperkähler period space, 13.11.2024
- Lecture 23:
Metric structures associated with twistor families, 18.11.2024
- Lecture 24:
Covering maps, the path lifting
property, and the Torelli theorem for hyperkähler structures, 25.11.2024
- Lecture 25:
The global Torelli theorem for Teichmüller spaces, 27.11.2024
- Lecture 26:
The Hodhe-theoretic global Torelli theorem and the automorphism group, 02.12.2024
Other materials