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Bialgegras

DEFINITION: Let A®, B* be graded commutative algebras ‘I:he tensor prod-
uct algebra is A°® B* with the product a®b-a’ @ b = (—1)"aa’ @ bb'.

REMARK: By Kiinneth formula, H*(X x Y) is isomorphic to H*(X) ® H*(Y)
as an algebra.

DEFINITION: Let A® be a graded commutative algebra over a field K. We
say that A* is a bialgebra if it is equipped with a homomorphism of algebras

A 2y A®A. called comultiplication which is coassociative, that is, satisfies

AOA@IdAZAOIdA@)A: A—>A®KA®KA

Counit of a bialgebra is an algebra homomorphism A —— K which satisfies
Ao(e®Idy) = Ao (ldgy®e) =1d4 In the sequel, we shall tacitly assume that
all bialgebras have counit.

REMARK: Coassociative comultiplication means that the dual space
(A*)* is equipped with an algebra structure. Compatibility of comultipli-
cation with the multiplication in A* means that this algebra structure on

(A°)* is a morphism of A-modules.
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Examples of bialgebras

EXAMPLE: Let N be a set equipped with an associative operation N x N LN
N with unit e (such a structure is called the structure of a monoid, or
semigroup with unit Then the ring of K-valued functions C(N) is a
bialgebra, with comultiplication morphism given by m* : C(N) — C(N x
N)=C(N) ®g C(N), and counit e(v) = v(e).

REMARK: The notion of a bialgebra is an abstraction of this observation:
heuristically speaking, bialgebras are alrebras of functions on semigroups.

EXAMPLE: Let N be a topological space equipped with a continuous map
N x N 25 N inducing the structure of a monoid. Consider the comultiplica-
tion on the cohomology algebra H*(N), given by m*: H'(N) — H'(N xN) =
H'(N) g H'(N). Then H°'(N) is a bialgebra. Indeed, coassociativity of
m* follows from associativity of N, and counit is given by the pullback to
H*(e) = HOe) = K.



K3 surfaces, 2024, lecture 2 M. Verbitsky
H-spaces

DEFINITION: An H-space is a topological space M equipped with a con-
tinuous map M x M -5 M (“the multiplication map”) and an element e € M

(“the unit”) which satisfy “semigroup conditions up to homotopy”, namely
the following.

* Homotopy associativity: the maps u x Idomu : M x M x M — M and
Idxpou: M x M x M — M are homotopic.

* Homotopy unit: the map pu: M x {e} — M is homotopic to identity.
EXAMPLE: Clearly, any toplogical group is an H-space.

CLAIM: Let M be an H-space. Then the cohomology algebra H*(M) is
a bialgebra.

Proof: The comultiplication map H*(M) — H*(M) @ H*(M) = H*(M x M)
is induced by the multiplication M x M -2 M. m

4
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Loop spaces as H-spaces

EXAMPLE: Let Q(M, x) be the space of loops, that is, paths~y: [0,1] — M
starting and ending in . We can multiply loops by mapping a pair ~v1,7vo :
[0,1] — M to a loop ~17vo [0,1] — M equal to v1(2t) on [0,1/2] and to
v>(2t — 1) on [1/2,1]. The homotopy unit is the constant loop. This defines
the structure of an H-group on the loop space.

REMARK: The topology on the loop space Q2(M,z) can be defined, for
example, by assuming that M is a metric space, and consider the uniform
topology on the maps ~ : [0,1] — M. In more generality, we take the
compact-open topology, with the base sets consisting of all loops which
map a given compact K C [0,1] to an open set U C M.
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Bialgebras of finite type

Let V* be a graded vector space. Denote by SymgT(V‘) the tensor product
Sym*(Veven) g A*(V°dd) with a natural grading. On Sym*(Veven) g Ax(10dd)
one has a natural structure of an algebra.

DEFINITION: Free commutative algebra is a polynomial algebra. Free
graded commutative algebra is Symg-(V*), where V* is a graded vector
space.

DEFINITION: A graded algebra of finite type is an algebra graded by
1 > 0, with all graded components finitely-dimensional.

THEOREM: (Hopf theorem) Let A® be a graded bialgebra of finite type
over a field K of characteristic 0. Then A° is a free graded commutative
K-algebra.

Proof: Next lecture. =
COROLLARY: For any Lie group H*(G) is finite-dimensional, hence H*(G)

Is isomorphic to a Grassmann algebra. In particular, dm H*(G) =2". =
§)
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Heinz Hopf (1894-1971)
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Cohomology algebra of U(n)

CLAIM: The cohomology algebra of H*(U(n),Q) — is a free graded com-
mutative algebra with generators in degrees 1,3,5,...,2n — 1.

Proof. Step 1: Since U(n) is a Lie group, its cohomology is a Hopf algebra.
Therefore, H*(U(n—1)) is a free graded commutative algebra with gen-
erators in odd degrees. Using induction, we can assume that H*(U(n—1))
— is a free algebra with generators in degrees 1,3,5,...,2n — 3.

Step 2: The group U(n) is fibered over S2"—1 with fiber U(n — 1). The
corresponding Leray-Serre spectral sequence has E5? = HP(S?n V)Y HI(U(n—
1)). Generators of HI(U(n — 1)) are of degree 1,3,5,...,2n — 3, hence their
differential, which belongs to H>9(52"~1) @ H4(U(n — 1)), vanishes. Then
H?2n=1(52n=1Y i5 another generator of the free algebra H*(U(n)), in addition
to the generators of H*(U(n — 1)), which implies that the spectral sequence
HP(S?2"=1) @ HI(U(n — 1)) = HPT4(U(n)) degenerates in E2. =
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Grassmann manifolds

DEFINITION: Let Gr(n,m) be the Grassmann manifold, or Grassman-
nian, that is, the space of n-dimensional planes in V = K™, where K =R or
C. The fundamental bundle Bs,, is a rank n vector bundle over Gr(n,m),
with the fiber W at each point W € Gr(n,m).

REMARK: Let By, be the trivial rank m vector bundle over the Grassman-
nian Gr(n,m). Then Bs,, iS naturally embedded to By,;,. After equipping
Birip With @ (Hermitian if K = C or Euclidean when K = R) metric and taking
an orthogonal complement, we obtain a decomposition By,.;, = Bfun@ben.

REMARK: Let B be a rank n bundle on X, B’ a rank n—m bundle, such that
B @ B’ is trivial. Identifying all fibers of B @& B’ with a vector space V = K™,
we obtain that every x € X defines a subspace B|, C (B® B)|, = V.

This proves the following claim.

Claim 1: Let B, B’ be a rank n and m — n vector bundles over a space X
such that B @ B’ is trivial. Then there exists a map ¢ : X — Gr(n,m)

such that ¢*Bfyn = B. =
9
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Grassmannian Gr(n, co)

DEFINITION: Considrer the natural embeddings

Gr(n,m) — Gr(n,m—+1) = Gr(n,m+ 2) — ...,

associated with the maps K™ — Kmtl <y Km+t2 <y | and let Gr(n) =
Gr(n,o0) denote the union of all these spaces (that is, the inductive limit
of cellular complexes). By definition, Gr(n) is the space of n-dimensional
subspaces in K*°, where K denotes. EBZ@’;O K.

THEOREM: Let B be a vector bundle over a manifold M (paracompact
with countable base). Then B @ B’ is trivial, for some vector bundle B’
over M.

EXERCISE: Prove this theorem (it is proven the same way as Whitney
embedding theorem, and for the same class of manifolds).

COROLLARY: Let B be a rank n vector bundle on a manifold M. Then
there exists a map ¢ : M — Gr(n) such that B = ¢*Byfp-

Proof: Using the previous theorem, we obtain a trivialization of a bundle
B @ B’ for some vector bundle B’ on M. The corresponding map ¢ :
M — Gr(n,m) is constructed in Claim 1. =

10
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Classifying spaces

DEFINITION: Let G be a topological group, and X a topological space. A
principal G-bundle is a topological space E equipped with a free action of G
such that F/G = X. In this case, X is called the total space of the principal
G-bundle E — X.

DEFINITION: A classifying space for a topological group GG is a topological
space BG, equipped with a principal G-bundle, such that its total space is
contractible.

DEFINITION: A G-space is a topological space equipped with a G-action.
Morphism of G-spaces is a continuous map compatible with G-action. Two
G-morphisms ¢q1,p9 . A — B are called G-homotopic if there exists a G-
morphism & : [0,1] x A — B such CD‘{O}XA = o and P|q1 4 = 1. In other
words, a G-homotopy is a homotopy which is a G-morphism. A G-homotopy
equivalence is a homotopy equivalence which is a G-morphism.

THEOREM: (Atiyah, Bott)
A classifying space BG is unique up to homotopy equivalence.

Proof: This would follow if we prove that a contractible space with free
G-action is unique up to a G-homotopy equivalence; this is left as an
exercise. m

11
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Classifying space and homotopy classes of GG-bundles

DEFINITION: Let E be a contractible space with a free G-action, and
BG = FE/G. The fundamental G-bundle over BG is E, considered as a
G-bundle.

THEOREM: Let X be a cellular space. Then the homotopy classes of
maps X — BG are in bijective correspondence with the isomorphism
classes of principal G-bundles over X: for each G-bundle Y there exists a
map X -2 BG such that ©*Grun = Y.

Proof: Left as an exercise. We will prove this result when G = U(n) or
G =0(n) and BG = Gr(n,o00). =

REMARK: For Grassmannian this is actually already proven. As we have
shown, the vector bundles, or, equivalently, principal frame bundles are all
induced by the maps X — Gr(n,o0). However, we did not prove yet that
BU(n) = Gre(n,o00) and BO(n) = Grr(n, co).

12
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Stiefel spaces

DEFINITION: Fix a Hermitian or Euclidean metric on K. Let Gr(n,oc0) be
the Grassmannian, Bsy, its fundamental bundle, and St(n,oc0) the space of
orthonormal frames in Bg,. It is called the GL(n,K)-Stiefel space.

REMARK: Clearly, there is a free GL(n,K)-action on St(n,c0), and the
quotient is Gr(n,o0). In other words, the Stiefel space is the total space
of a principal U(n,C)-bundle or O(n,R)-bundle over Gryg(n, o).

EXERCISE: Prove that St(n,~) is contractible.

This implies that Gr(n,o0) is the classifying space for G = U(n) or
G = 0O(n).

13
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Stiefel spaces are contractible

THEOREM: The Stiefel space St(n,oo) is contractible, and therefore
the Grassmanian Gr(n,oo) is the classifying space for G = U(n) or G = O(n).

Proof. Step 1: Let Y — X be a locally trivial fibration such that its fiber
is contractible and the base is also contractible. Then Y is contractible.
Prove this!

Step 2: Let S C K° be a unit sphere in K, where K = C or R. Then
St(n,>) Is fibered over St(n — 1,00) with the fiber S°°. To prove that
St(n,o0) is contractible, it remains to show that S°° is contractible and use
induction in n. The induction base is clear because St(1,0c0) = S°°.

Step 3: Choose a basis {z;} in R™® numbered by Z=9, and let R: R® — R
take z; to z;41, and Ry :=tId+(1 —t)R. Then z — éﬁ%i% takes S°° to itself
for all ¢t € R, hence R is homotopic to identity.

Step 4: This gives a homotopy between identity and a map which takes a
sphere to a sphere without a point. However, the sphere without a point is
contractible, hence the identity is homotopic to a map contracting the

sphere to a point. =
14
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The infinite Grassmannian

EXERCISE: Let X = UX; be an inductive limit of contractible cellular
spaces. Prove that X Is also contractible.

DEFINITION: Choose a basis zg,z1,..., in C>° or R*, and let R : C*° — C*°
be defined as above, R(x;) = z;4;. Consider the embedding Gr(n,c0) —
Gr(n + 1,00), taking the space L C C* to (xg, R(L)). The union (inductive
limit) U,, Gr(n,o0) is called the infinite Grassmannian, and is denoted as
BU.

THEOREM: BU is the classifying space for U = |J,, U(n).

Proof: Consider the embeddings St(1,00) «— St(2,00) < ... where an or-
thonormal frame {(1,...,{m} € C°° is mapped to {xg, R({1),..., R({(m)}, and let
St(oco,00) be their union. By construction, BU = St(oco,00)/U(0), hence it
Is sufficient to prove that St(co,c0) is contractible. This follows from the
previous exercise. m

15
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Stable equivalence

DEFINITION: Vector bundles Bq, B, are called stably equivalent if B1 &
Uy = B> ® Uy, where U; are trivial vector bundles.

THEOREM: Let X be a finite cellular space. Then homotopy classes of
maps X — BU are in bijective correspondence with classes of stable
equivalence of vector bundles.

Proof: Left as an exercise. =

16
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BU as an H-space

Bott periodicity identifies the space of loops on U and BU; this implies
that BU is an H-space (loop spaces are H-spaces). However, the H-structure
on BU can be constructed explicitly.

PROPOSITION: Consider a map S : C* x C*° — C*° taking the basis
vectors x; of the first space to xo; and the basis vectors of the second space
to x5;41. Then L, L' — S(L, L") defines a structure of an H-space on the
infinite Grassmannian BU.

Proof: We need to show H-associativity, which would follow if we prove that
any permutation of basis elements is homotopic to identity. This is left as an
exercise. m

COROLLARY: H*(BU,Q) is a free supercommutative algebra.
Proof: Follows from Hopf theorem. =

REMARK: It is not hard to write a celular decomposition for the Grass-
mannian (“Schubert cells”); all cells are even-dimensional, which gives the
dimensions of the groups H*(BU). Then the Hopf theorem can be used to
compute the cohomology algebra. This also implies that the algebra H*(BU)
iIs commutative (and therefore, free polynomial).
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