
K3 surfaces, 2024, lecture 2 M. Verbitsky

K3 surfaces
lecture 2: Classifying spaces

Misha Verbitsky

IMPA, sala 236

September 4, 2024, 17:00

1



K3 surfaces, 2024, lecture 2 M. Verbitsky

Bialgegras

DEFINITION: Let A•, B• be graded commutative algebras The tensor prod-

uct algebra is A• ⊗B• with the product a⊗ b · a′ ⊗ b′ = (−1)b̃ã
′
aa′ ⊗ bb′.

REMARK: By Künneth formula, H•(X × Y ) is isomorphic to H•(X)⊗H•(Y )

as an algebra.

DEFINITION: Let A• be a graded commutative algebra over a field K. We

say that A• is a bialgebra if it is equipped with a homomorphism of algebras

A
∆−→ A⊗A, called comultiplication which is coassociative, that is, satisfies

∆ ◦∆⊗ IdA = ∆ ◦ IdA⊗∆ : A−→A⊗K A⊗K A.

Counit of a bialgebra is an algebra homomorphism A
ε−→ K which satisfies

∆ ◦ (ε⊗ IdA) = ∆ ◦ (IdA⊗ε) = IdA In the sequel, we shall tacitly assume that

all bialgebras have counit.

REMARK: Coassociative comultiplication means that the dual space

(A•)∗ is equipped with an algebra structure. Compatibility of comultipli-

cation with the multiplication in A• means that this algebra structure on

(A•)∗ is a morphism of A-modules.
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Examples of bialgebras

EXAMPLE: Let N be a set equipped with an associative operation N×N
m−→

N with unit e (such a structure is called the structure of a monoid, or

semigroup with unit Then the ring of K-valued functions C(N) is a

bialgebra, with comultiplication morphism given by m∗ : C(N)−→ C(N ×
N) = C(N)⊗K C(N), and counit ε(v) = v(e).

REMARK: The notion of a bialgebra is an abstraction of this observation:

heuristically speaking, bialgebras are alrebras of functions on semigroups.

EXAMPLE: Let N be a topological space equipped with a continuous map

N ×N
m−→ N inducing the structure of a monoid. Consider the comultiplica-

tion on the cohomology algebra H•(N), given by m∗ : H•(N)−→H•(N×N) =

H•(N) ⊗K H•(N). Then H•(N) is a bialgebra. Indeed, coassociativity of

m∗ follows from associativity of N , and counit is given by the pullback to

H•(e) = H0(e) = K.
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H-spaces

DEFINITION: An H-space is a topological space M equipped with a con-

tinuous map M×M
µ−→ M (“the multiplication map”) and an element e ∈ M

(“the unit”) which satisfy “semigroup conditions up to homotopy”, namely

the following.

* Homotopy associativity: the maps µ × Id ◦mu : M × M × M −→M and

Id×µ ◦ µ : M ×M ×M −→M are homotopic.

* Homotopy unit: the map µ : M × {e} −→M is homotopic to identity.

EXAMPLE: Clearly, any toplogical group is an H-space.

CLAIM: Let M be an H-space. Then the cohomology algebra H•(M) is

a bialgebra.

Proof: The comultiplication map H∗(M)−→H∗(M)⊗H∗(M) = H∗(M ×M)

is induced by the multiplication M ×M
µ−→ M .
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Loop spaces as H-spaces

EXAMPLE: Let Ω(M,x) be the space of loops, that is, paths γ : [0,1]−→M

starting and ending in x. We can multiply loops by mapping a pair γ1, γ2 :

[0,1]−→M to a loop γ1γ2 [0,1]−→M equal to γ1(2t) on [0,1/2] and to

γ2(2t− 1) on [1/2,1]. The homotopy unit is the constant loop. This defines

the structure of an H-group on the loop space.

REMARK: The topology on the loop space Ω(M,x) can be defined, for

example, by assuming that M is a metric space, and consider the uniform

topology on the maps γ : [0,1]−→M. In more generality, we take the

compact-open topology, with the base sets consisting of all loops which

map a given compact K ⊂ [0,1] to an open set U ⊂ M .
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Bialgebras of finite type

Let V • be a graded vector space. Denote by Symgr(V
•) the tensor product

Sym∗(V even)⊗Λ∗(V odd) with a natural grading. On Sym∗(V even)⊗Λ∗(V odd)

one has a natural structure of an algebra.

DEFINITION: Free commutative algebra is a polynomial algebra. Free

graded commutative algebra is Symgr(V
•), where V • is a graded vector

space.

DEFINITION: A graded algebra of finite type is an algebra graded by

i ⩾ 0, with all graded components finitely-dimensional.

THEOREM: (Hopf theorem) Let A• be a graded bialgebra of finite type

over a field K of characteristic 0. Then A• is a free graded commutative

K-algebra.

Proof: Next lecture.

COROLLARY: For any Lie group H∗(G) is finite-dimensional, hence H∗(G)

is isomorphic to a Grassmann algebra. In particular, dimH∗(G) = 2n.
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Heinz Hopf (1894-1971)

Heinz Hopf (1894-1971)
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Cohomology algebra of U(n)

CLAIM: The cohomology algebra of H∗(U(n),Q) – is a free graded com-

mutative algebra with generators in degrees 1,3,5, ...,2n− 1.

Proof. Step 1: Since U(n) is a Lie group, its cohomology is a Hopf algebra.

Therefore, H∗(U(n−1)) is a free graded commutative algebra with gen-

erators in odd degrees. Using induction, we can assume that H∗(U(n−1))

– is a free algebra with generators in degrees 1,3,5, ...,2n− 3.

Step 2: The group U(n) is fibered over S2n−1 with fiber U(n − 1). The

corresponding Leray-Serre spectral sequence has E
p,q
2 = Hp(S2n−1)⊗Hq(U(n−

1)). Generators of Hq(U(n − 1)) are of degree 1,3,5, ...,2n − 3, hence their

differential, which belongs to H>0(S2n−1) ⊗ Hq(U(n − 1)), vanishes. Then

H2n−1(S2n−1) is another generator of the free algebra H∗(U(n)), in addition

to the generators of H∗(U(n− 1)), which implies that the spectral sequence

Hp(S2n−1)⊗Hq(U(n− 1)) ⇒ Hp+q(U(n)) degenerates in E2.
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Grassmann manifolds

DEFINITION: Let Gr(n,m) be the Grassmann manifold, or Grassman-

nian, that is, the space of n-dimensional planes in V = Km, where K = R or

C. The fundamental bundle Bfun is a rank n vector bundle over Gr(n,m),

with the fiber W at each point W ∈ Gr(n,m).

REMARK: Let Btriv be the trivial rank m vector bundle over the Grassman-

nian Gr(n,m). Then Bfun is naturally embedded to Btriv. After equipping

Btriv with a (Hermitian if K = C or Euclidean when K = R) metric and taking

an orthogonal complement, we obtain a decomposition Btriv = Bfun⊕B⊥
fun.

REMARK: Let B be a rank n bundle on X, B′ a rank n−m bundle, such that

B ⊕ B′ is trivial. Identifying all fibers of B ⊕ B′ with a vector space V = Km,

we obtain that every x ∈ X defines a subspace B|x ⊂ (B ⊕B′)|x = V .

This proves the following claim.

Claim 1: Let B, B′ be a rank n and m − n vector bundles over a space X

such that B ⊕ B′ is trivial. Then there exists a map φ : X −→ Gr(n,m)

such that φ∗Bfun
∼= B.
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Grassmannian Gr(n,∞)

DEFINITION: Considrer the natural embeddings

Gr(n,m) ↪→ Gr(n,m+1) ↪→ Gr(n,m+2) ↪→ ...,

associated with the maps Km ↪→ Km+1 ↪→ Km+2 ↪→ ... and let Gr(n) :=
Gr(n,∞) denote the union of all these spaces (that is, the inductive limit
of cellular complexes). By definition, Gr(n) is the space of n-dimensional
subspaces in K∞, where K∞ denotes.

⊕∞
i=0K.

THEOREM: Let B be a vector bundle over a manifold M (paracompact
with countable base). Then B ⊕ B′ is trivial, for some vector bundle B′

over M.

EXERCISE: Prove this theorem (it is proven the same way as Whitney
embedding theorem, and for the same class of manifolds).

COROLLARY: Let B be a rank n vector bundle on a manifold M . Then
there exists a map φ : M −→ Gr(n) such that B = φ∗Bfun.

Proof: Using the previous theorem, we obtain a trivialization of a bundle
B ⊕ B′ for some vector bundle B′ on M . The corresponding map φ :
M −→ Gr(n,m) is constructed in Claim 1.
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Classifying spaces

DEFINITION: Let G be a topological group, and X a topological space. A
principal G-bundle is a topological space E equipped with a free action of G
such that E/G = X. In this case, X is called the total space of the principal
G-bundle E −→X.

DEFINITION: A classifying space for a topological group G is a topological
space BG, equipped with a principal G-bundle, such that its total space is
contractible.

DEFINITION: A G-space is a topological space equipped with a G-action.
Morphism of G-spaces is a continuous map compatible with G-action. Two
G-morphisms φ1, φ0 : A−→B are called G-homotopic if there exists a G-
morphism Φ : [0,1]×A−→B such Φ

∣∣∣{0}×A = φ0 and Φ
∣∣∣{1}×A = φ1. In other

words, a G-homotopy is a homotopy which is a G-morphism. A G-homotopy
equivalence is a homotopy equivalence which is a G-morphism.

THEOREM: (Atiyah, Bott)
A classifying space BG is unique up to homotopy equivalence.

Proof: This would follow if we prove that a contractible space with free
G-action is unique up to a G-homotopy equivalence; this is left as an
exercise.
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Classifying space and homotopy classes of G-bundles

DEFINITION: Let E be a contractible space with a free G-action, and

BG = E/G. The fundamental G-bundle over BG is E, considered as a

G-bundle.

THEOREM: Let X be a cellular space. Then the homotopy classes of

maps X −→BG are in bijective correspondence with the isomorphism

classes of principal G-bundles over X: for each G-bundle Y there exists a

map X
φ−→ BG such that φ∗Gfun

∼= Y .

Proof: Left as an exercise. We will prove this result when G = U(n) or

G = O(n) and BG = Gr(n,∞).

REMARK: For Grassmannian this is actually already proven. As we have

shown, the vector bundles, or, equivalently, principal frame bundles are all

induced by the maps X −→ Gr(n,∞). However, we did not prove yet that

BU(n) = GrC(n,∞) and BO(n) = GrR(n,∞).
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Stiefel spaces

DEFINITION: Fix a Hermitian or Euclidean metric on K∞. Let Gr(n,∞) be

the Grassmannian, Bfun its fundamental bundle, and St(n,∞) the space of

orthonormal frames in Bfun. It is called the GL(n,K)-Stiefel space.

REMARK: Clearly, there is a free GL(n,K)-action on St(n,∞), and the

quotient is Gr(n,∞). In other words, the Stiefel space is the total space

of a principal U(n,C)-bundle or O(n,R)-bundle over GrK(n,∞).

EXERCISE: Prove that St(n,∞) is contractible.

This implies that Gr(n,∞) is the classifying space for G = U(n) or

G = O(n).
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Stiefel spaces are contractible

THEOREM: The Stiefel space St(n,∞) is contractible, and therefore
the Grassmanian Gr(n,∞) is the classifying space for G = U(n) or G = O(n).

Proof. Step 1: Let Y −→X be a locally trivial fibration such that its fiber
is contractible and the base is also contractible. Then Y is contractible.
Prove this!

Step 2: Let S∞ ⊂ K∞ be a unit sphere in K∞, where K = C or R. Then
St(n,∞) is fibered over St(n − 1,∞) with the fiber S∞. To prove that
St(n,∞) is contractible, it remains to show that S∞ is contractible and use
induction in n. The induction base is clear because St(1,∞) = S∞.

Step 3: Choose a basis {zi} in R∞ numbered by Z⩾0, and let R : R∞ −→ R∞

take zi to zi+1, and Rt := t Id+(1 − t)R. Then z 7→ Rt(z)
|Rt(z)|

takes S∞ to itself
for all t ∈ R, hence R is homotopic to identity.

Step 4: This gives a homotopy between identity and a map which takes a
sphere to a sphere without a point. However, the sphere without a point is
contractible, hence the identity is homotopic to a map contracting the
sphere to a point.
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The infinite Grassmannian

EXERCISE: Let X∞ =
⋃
Xi be an inductive limit of contractible cellular

spaces. Prove that X∞ is also contractible.

DEFINITION: Choose a basis x0, x1, ..., in C∞ or R∞, and let R : C∞ −→ C∞

be defined as above, R(xi) = xi+1. Consider the embedding Gr(n,∞) ↪→
Gr(n + 1,∞), taking the space L ⊂ C∞ to ⟨x0, R(L)⟩. The union (inductive

limit)
⋃
nGr(n,∞) is called the infinite Grassmannian, and is denoted as

BU .

THEOREM: BU is the classifying space for U =
⋃
nU(n).

Proof: Consider the embeddings St(1,∞) ↪→ St(2,∞) ↪→ ... where an or-

thonormal frame {ζ1, ..., ζm} ∈ C∞ is mapped to {x0, R(ζ1), ..., R(ζm)}, and let

St(∞,∞) be their union. By construction, BU = St(∞,∞)/U(∞), hence it

is sufficient to prove that St(∞,∞) is contractible. This follows from the

previous exercise.
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Stable equivalence

DEFINITION: Vector bundles B1, B2 are called stably equivalent if B1 ⊕
U1

∼= B2 ⊕ U2, where Ui are trivial vector bundles.

THEOREM: Let X be a finite cellular space. Then homotopy classes of

maps X −→BU are in bijective correspondence with classes of stable

equivalence of vector bundles.

Proof: Left as an exercise.
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BU as an H-space

Bott periodicity identifies the space of loops on U and BU; this implies
that BU is an H-space (loop spaces are H-spaces). However, the H-structure
on BU can be constructed explicitly.

PROPOSITION: Consider a map S : C∞ × C∞ −→ C∞ taking the basis
vectors xi of the first space to x2i and the basis vectors of the second space
to x2i+1. Then L,L′ −→ S(L,L′) defines a structure of an H-space on the
infinite Grassmannian BU.

Proof: We need to show H-associativity, which would follow if we prove that
any permutation of basis elements is homotopic to identity. This is left as an
exercise.

COROLLARY: H∗(BU,Q) is a free supercommutative algebra.

Proof: Follows from Hopf theorem.

REMARK: It is not hard to write a celular decomposition for the Grass-
mannian (“Schubert cells”); all cells are even-dimensional, which gives the
dimensions of the groups Hi(BU). Then the Hopf theorem can be used to
compute the cohomology algebra. This also implies that the algebra H∗(BU)
is commutative (and therefore, free polynomial).
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