K3 surfaces

lecture 2: Classifying spaces

Misha Verbitsky

IMPA, sala 236

September 4, 2024, 17:00

Bialgegras

DEFINITION: Let A^{\bullet} , B^{\bullet} be graded commutative algebras The **tensor prod**uct algebra is $A^{\bullet} \otimes B^{\bullet}$ with the product $a \otimes b \cdot a' \otimes b' = (-1)^{\tilde{b}\tilde{a}'}aa' \otimes bb'$.

REMARK: By Künneth formula, $H^{\bullet}(X \times Y)$ is isomorphic to $H^{\bullet}(X) \otimes H^{\bullet}(Y)$ as an algebra.

DEFINITION: Let A^{\bullet} be a graded commutative algebra over a field \mathbb{K} . We say that A^{\bullet} is a **bialgebra** if it is equipped with a homomorphism of algebras $A \xrightarrow{\Delta} A \otimes A$, called **comultiplication** which is **coassociative**, that is, satisfies

$$\Delta \circ \Delta \otimes \operatorname{Id}_A = \Delta \circ \operatorname{Id}_A \otimes \Delta : A \longrightarrow A \otimes_{\mathbb{K}} A \otimes_{\mathbb{K}} A.$$

Counit of a bialgebra is an algebra homomorphism $A \xrightarrow{\varepsilon} \mathbb{K}$ which satisfies $\Delta \circ (\varepsilon \otimes \mathrm{Id}_A) = \Delta \circ (\mathrm{Id}_A \otimes \varepsilon) = \mathrm{Id}_A$ In the sequel, we shall tacitly assume that all bialgebras have counit.

REMARK: Coassociative comultiplication means that the dual space $(A^{\bullet})^{*}$ is equipped with an algebra structure. Compatibility of comultiplication with the multiplication in A^{\bullet} means that this algebra structure on $(A^{\bullet})^{*}$ is a morphism of A-modules.

Examples of bialgebras

EXAMPLE: Let *N* be a set equipped with an associative operation $N \times N \xrightarrow{m} N$ *N* with unit *e* (such a structure is called **the structure of a monoid**, or **semigroup with unit** Then **the ring of** K-valued functions C(N) is a **bialgebra**, with comultiplication morphism given by m^* : $C(N) \longrightarrow C(N \times N) = C(N) \otimes_{\mathbb{K}} C(N)$, and counit $\varepsilon(v) = v(e)$.

REMARK: The notion of a bialgebra is an abstraction of this observation: heuristically speaking, **bialgebras are alrebras of functions on semigroups**.

EXAMPLE: Let N be a topological space equipped with a continuous map $N \times N \xrightarrow{m} N$ inducing the structure of a monoid. Consider the comultiplication on the cohomology algebra $H^{\bullet}(N)$, given by $m^* \colon H^{\bullet}(N) \longrightarrow H^{\bullet}(N \times N) = H^{\bullet}(N) \otimes_{\mathbb{K}} H^{\bullet}(N)$. Then $H^{\bullet}(N)$ is a bialgebra. Indeed, coassociativity of m^* follows from associativity of N, and counit is given by the pullback to $H^{\bullet}(e) = H^{0}(e) = \mathbb{K}$.

H-spaces

DEFINITION: An *H*-space is a topological space *M* equipped with a continuous map $M \times M \xrightarrow{\mu} M$ ("the multiplication map") and an element $e \in M$ ("the unit") which satisfy "semigroup conditions up to homotopy", namely the following.

* Homotopy associativity: the maps $\mu \times \operatorname{Id} \circ mu : M \times M \times M \longrightarrow M$ and $\operatorname{Id} \times \mu \circ \mu : M \times M \times M \longrightarrow M$ are homotopic.

* Homotopy unit: the map $\mu : M \times \{e\} \longrightarrow M$ is homotopic to identity.

EXAMPLE: Clearly, any toplogical group is an *H*-space.

CLAIM: Let M be an H-space. Then the cohomology algebra $H^{\bullet}(M)$ is a bialgebra.

Proof: The comultiplication map $H^*(M) \longrightarrow H^*(M) \otimes H^*(M) = H^*(M \times M)$ is induced by the multiplication $M \times M \xrightarrow{\mu} M$.

Loop spaces as *H*-spaces

EXAMPLE: Let $\Omega(M, x)$ be the space of loops, that is, paths $\gamma : [0, 1] \longrightarrow M$ starting and ending in x. We can multiply loops by mapping a pair $\gamma_1, \gamma_2 : [0, 1] \longrightarrow M$ to a loop $\gamma_1 \gamma_2 [0, 1] \longrightarrow M$ equal to $\gamma_1(2t)$ on [0, 1/2] and to $\gamma_2(2t-1)$ on [1/2, 1]. The homotopy unit is the constant loop. This defines **the structure of an** *H*-group on the loop space.

REMARK: The topology on the loop space $\Omega(M, x)$ can be defined, for example, by assuming that M is a metric space, and consider the uniform topology on the maps $\gamma : [0, 1] \longrightarrow M$. In more generality, we take the compact-open topology, with the base sets consisting of all loops which map a given compact $K \subset [0, 1]$ to an open set $U \subset M$.

K3 surfaces, 2024, lecture 2

M. Verbitsky

Bialgebras of finite type

Let V^{\bullet} be a graded vector space. Denote by $\operatorname{Sym}_{gr}(V^{\bullet})$ the tensor product $\operatorname{Sym}^*(V^{\operatorname{even}}) \otimes \Lambda^*(V^{\operatorname{odd}})$ with a natural grading. On $\operatorname{Sym}^*(V^{\operatorname{even}}) \otimes \Lambda^*(V^{\operatorname{odd}})$ one has a natural structure of an algebra.

DEFINITION: Free commutative algebra is a polynomial algebra. Free graded commutative algebra is $Sym_{gr}(V^{\bullet})$, where V^{\bullet} is a graded vector space.

DEFINITION: A graded algebra of finite type is an algebra graded by $i \ge 0$, with all graded components finitely-dimensional.

THEOREM: (Hopf theorem) Let A^{\bullet} be a graded bialgebra of finite type over a field \mathbb{K} of characteristic 0. Then A^{\bullet} is a free graded commutative \mathbb{K} -algebra.

Proof: Next lecture. ■

COROLLARY: For any Lie group $H^*(G)$ is finite-dimensional, hence $H^*(G)$ is isomorphic to a Grassmann algebra. In particular, dim $H^*(G) = 2^n$.

Heinz Hopf (1894-1971)

Heinz Hopf (1894-1971)

Cohomology algebra of U(n)

CLAIM: The cohomology algebra of $H^*(U(n), \mathbb{Q})$ – is a free graded commutative algebra with generators in degrees 1, 3, 5, ..., 2n - 1.

Proof. Step 1: Since U(n) is a Lie group, its cohomology is a Hopf algebra. Therefore, $H^*(U(n-1))$ is a free graded commutative algebra with generators in odd degrees. Using induction, we can assume that $H^*(U(n-1))$ – is a free algebra with generators in degrees 1, 3, 5, ..., 2n - 3.

Step 2: The group U(n) is fibered over S^{2n-1} with fiber U(n-1). The corresponding Leray-Serre spectral sequence has $E_2^{p,q} = H^p(S^{2n-1}) \otimes H^q(U(n-1))$. Generators of $H^q(U(n-1))$ are of degree 1,3,5,...,2n-3, hence their differential, which belongs to $H^{>0}(S^{2n-1}) \otimes H^q(U(n-1))$, vanishes. Then $H^{2n-1}(S^{2n-1})$ is another generator of the free algebra $H^*(U(n))$, in addition to the generators of $H^*(U(n-1))$, which implies that the spectral sequence $H^p(S^{2n-1}) \otimes H^q(U(n-1)) \Rightarrow H^{p+q}(U(n))$ degenerates in E^2 .

M. Verbitsky

Grassmann manifolds

DEFINITION: Let Gr(n,m) be the **Grassmann manifold**, or **Grassmannian**, that is, the space of *n*-dimensional planes in $V = \mathbb{K}^m$, where $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . The **fundamental bundle** B_{fun} is a rank *n* vector bundle over Gr(n,m), with the fiber *W* at each point $W \in Gr(n,m)$.

REMARK: Let B_{triv} be the trivial rank m vector bundle over the Grassmannian Gr(n,m). Then B_{fun} is naturally embedded to B_{triv} . After equipping B_{triv} with a (Hermitian if $\mathbb{K} = \mathbb{C}$ or Euclidean when $\mathbb{K} = \mathbb{R}$) metric and taking an orthogonal complement, we obtain a decomposition $B_{triv} = B_{fun} \oplus B_{fun}^{\perp}$.

REMARK: Let *B* be a rank *n* bundle on *X*, *B'* a rank n-m bundle, such that $B \oplus B'$ is trivial. Identifying all fibers of $B \oplus B'$ with a vector space $V = \mathbb{K}^m$, we obtain that every $x \in X$ defines a subspace $B|_x \subset (B \oplus B')|_x = V$.

This proves the following claim.

Claim 1: Let B, B' be a rank n and m - n vector bundles over a space X such that $B \oplus B'$ is trivial. **Then there exists a map** $\varphi : X \longrightarrow Gr(n,m)$ **such that** $\varphi^*B_{fun} \cong B$.

Grassmannian $Gr(n,\infty)$

DEFINITION: Considrer the natural embeddings

$$\operatorname{Gr}(n,m) \hookrightarrow \operatorname{Gr}(n,m+1) \hookrightarrow \operatorname{Gr}(n,m+2) \hookrightarrow ...,$$

associated with the maps $\mathbb{K}^m \hookrightarrow \mathbb{K}^{m+1} \hookrightarrow \mathbb{K}^{m+2} \hookrightarrow ...$ and let $Gr(n) := Gr(n, \infty)$ denote the union of all these spaces (that is, the inductive limit of cellular complexes). By definition, Gr(n) is the space of *n*-dimensional subspaces in \mathbb{K}^∞ , where \mathbb{K}^∞ denotes. $\bigoplus_{i=0}^{\infty} \mathbb{K}$.

THEOREM: Let *B* be a vector bundle over a manifold *M* (paracompact with countable base). Then $B \oplus B'$ is trivial, for some vector bundle *B'* over *M*.

EXERCISE: Prove this theorem (it is proven the same way as Whitney embedding theorem, and for the same class of manifolds).

COROLLARY: Let *B* be a rank *n* vector bundle on a manifold *M*. Then there exists a map $\varphi : M \longrightarrow Gr(n)$ such that $B = \varphi^* B_{fun}$.

Proof: Using the previous theorem, we obtain a trivialization of a bundle $B \oplus B'$ for some vector bundle B' on M. The corresponding map φ : $M \longrightarrow Gr(n,m)$ is constructed in Claim 1.

Classifying spaces

DEFINITION: Let G be a topological group, and X a topological space. A principal G-bundle is a topological space E equipped with a free action of G such that E/G = X. In this case, X is called the total space of the principal G-bundle $E \longrightarrow X$.

DEFINITION: A classifying space for a topological group G is a topological space BG, equipped with a principal G-bundle, such that its total space is contractible.

DEFINITION: A *G*-space is a topological space equipped with a *G*-action. **Morphism** of *G*-spaces is a continuous map compatible with *G*-action. Two *G*-morphisms $\varphi_1, \varphi_0 : A \longrightarrow B$ are called *G*-homotopic if there exists a *G*morphism $\Phi : [0,1] \times A \longrightarrow B$ such $\Phi|_{\{0\} \times A} = \varphi_0$ and $\Phi|_{\{1\} \times A} = \varphi_1$. In other words, a *G*-homotopy is a homotopy which is a *G*-morphism. A *G*-homotopy **equivalence** is a homotopy equivalence which is a *G*-morphism.

THEOREM: (Atiyah, Bott)

A classifying space BG is unique up to homotopy equivalence.

Proof: This would follow if we prove that a contractible space with free *G*-action is unique up to a *G*-homotopy equivalence; this is left as an exercise. ■

Classifying space and homotopy classes of *G*-bundles

DEFINITION: Let *E* be a contractible space with a free *G*-action, and BG = E/G. The **fundamental** *G*-bundle over *BG* is *E*, considered as a *G*-bundle.

THEOREM: Let X be a cellular space. Then the homotopy classes of maps $X \longrightarrow BG$ are in bijective correspondence with the isomorphism classes of principal G-bundles over X: for each G-bundle Y there exists a map $X \xrightarrow{\varphi} BG$ such that $\varphi^*G_{\text{fun}} \cong Y$.

Proof: Left as an exercise. We will prove this result when G = U(n) or G = O(n) and $BG = Gr(n, \infty)$.

REMARK: For Grassmannian this is actually already proven. As we have shown, the vector bundles, or, equivalently, principal frame bundles are all induced by the maps $X \longrightarrow Gr(n, \infty)$. However, we did not prove yet that $BU(n) = Gr_{\mathbb{C}}(n, \infty)$ and $BO(n) = Gr_{\mathbb{R}}(n, \infty)$.

Stiefel spaces

DEFINITION: Fix a Hermitian or Euclidean metric on \mathbb{K}^{∞} . Let $Gr(n, \infty)$ be the Grassmannian, B_{fun} its fundamental bundle, and $St(n, \infty)$ the space of orthonormal frames in B_{fun} . It is called the $GL(n, \mathbb{K})$ -Stiefel space.

REMARK: Clearly, there is a free $GL(n, \mathbb{K})$ -action on $St(n, \infty)$, and the quotient is $Gr(n, \infty)$. In other words, the Stiefel space is the total space of a principal $U(n, \mathbb{C})$ -bundle or $O(n, \mathbb{R})$ -bundle over $Gr_{\mathbb{K}}(n, \infty)$.

EXERCISE: Prove that $St(n,\infty)$ is contractible.

This implies that $Gr(n,\infty)$ is the classifying space for G = U(n) or G = O(n).

Stiefel spaces are contractible

THEOREM: The Stiefel space $St(n,\infty)$ is contractible, and therefore the Grassmanian $Gr(n,\infty)$ is the classifying space for G = U(n) or G = O(n).

Proof. Step 1: Let $Y \longrightarrow X$ be a locally trivial fibration such that its fiber is contractible and the base is also contractible. Then Y is contractible. **Prove this!**

Step 2: Let $S^{\infty} \subset \mathbb{K}^{\infty}$ be a unit sphere in \mathbb{K}^{∞} , where $\mathbb{K} = \mathbb{C}$ or \mathbb{R} . Then $St(n,\infty)$ is fibered over $St(n-1,\infty)$ with the fiber S^{∞} . To prove that $St(n,\infty)$ is contractible, it remains to show that S^{∞} is contractible and use induction in n. The induction base is clear because $St(1,\infty) = S^{\infty}$.

Step 3: Choose a basis $\{z_i\}$ in \mathbb{R}^{∞} numbered by $\mathbb{Z}^{\geq 0}$, and let $R : \mathbb{R}^{\infty} \longrightarrow \mathbb{R}^{\infty}$ take z_i to z_{i+1} , and $R_t := t \operatorname{Id} + (1-t)R$. Then $z \mapsto \frac{R_t(z)}{|R_t(z)|}$ takes S^{∞} to itself for all $t \in \mathbb{R}$, hence R is homotopic to identity.

Step 4: This gives a homotopy between identity and a map which takes a sphere to a sphere without a point. However, the sphere without a point is contractible, **hence the identity is homotopic to a map contracting the sphere to a point.** ■

The infinite Grassmannian

EXERCISE: Let $X_{\infty} = \bigcup X_i$ be an inductive limit of contractible cellular spaces. Prove that X_{∞} is also contractible.

DEFINITION: Choose a basis $x_0, x_1, ..., \text{ in } \mathbb{C}^{\infty}$ or \mathbb{R}^{∞} , and let $R : \mathbb{C}^{\infty} \to \mathbb{C}^{\infty}$ be defined as above, $R(x_i) = x_{i+1}$. Consider the embedding $Gr(n, \infty) \hookrightarrow Gr(n+1,\infty)$, taking the space $L \subset \mathbb{C}^{\infty}$ to $\langle x_0, R(L) \rangle$. The union (inductive limit) $\bigcup_n Gr(n,\infty)$ is called the infinite Grassmannian, and is denoted as BU.

THEOREM: BU is the classifying space for $U = \bigcup_n U(n)$.

Proof: Consider the embeddings $St(1,\infty) \hookrightarrow St(2,\infty) \hookrightarrow ...$ where an orthonormal frame $\{\zeta_1,...,\zeta_m\} \in \mathbb{C}^{\infty}$ is mapped to $\{x_0, R(\zeta_1), ..., R(\zeta_m)\}$, and let $St(\infty,\infty)$ be their union. By construction, $BU = St(\infty,\infty)/U(\infty)$, hence it is sufficient to prove that $St(\infty,\infty)$ is contractible. This follows from the previous exercise.

Stable equivalence

DEFINITION: Vector bundles B_1, B_2 are called **stably equivalent** if $B_1 \oplus U_1 \cong B_2 \oplus U_2$, where U_i are trivial vector bundles.

THEOREM: Let X be a finite cellular space. Then homotopy classes of maps $X \longrightarrow BU$ are in bijective correspondence with classes of stable equivalence of vector bundles.

Proof: Left as an exercise.

BU as an H-space

Bott periodicity identifies the space of loops on U and BU; this implies that BU is an H-space (loop spaces are H-spaces). However, the H-structure on BU can be constructed explicitly.

PROPOSITION: Consider a map $S : \mathbb{C}^{\infty} \times \mathbb{C}^{\infty} \longrightarrow \mathbb{C}^{\infty}$ taking the basis vectors x_i of the first space to x_{2i} and the basis vectors of the second space to x_{2i+1} . Then $L, L' \longrightarrow S(L, L')$ defines a structure of an *H*-space on the infinite Grassmannian *BU*.

Proof: We need to show H-associativity, which would follow if we prove that any permutation of basis elements is homotopic to identity. This is left as an exercise. ■

COROLLARY: $H^*(BU, \mathbb{Q})$ is a free supercommutative algebra.

Proof: Follows from Hopf theorem.

REMARK: It is not hard to write a celular decomposition for the Grassmannian ("Schubert cells"); all cells are even-dimensional, which gives the dimensions of the groups $H^i(BU)$. Then the Hopf theorem can be used to compute the cohomology algebra. This also implies that **the algebra** $H^*(BU)$ **is commutative (and therefore, free polynomial).**