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Bialgegras (reminder)

DEFINITION: Let A•, B• be graded commutative algebras The tensor prod-

uct algebra is A• ⊗B• with the product a⊗ b · a′ ⊗ b′ = (−1)b̃ã
′
aa′ ⊗ bb′.

REMARK: By Künneth formula, H•(X × Y ) is isomorphic to H•(X)⊗H•(Y )

as an algebra.

DEFINITION: Let A• be a graded commutative algebra over a field k. We

say that A• is a bialgebra if it is equipped with a homomorphism of algebras

A
∆−→ A⊗A, called comultiplication which is coassociative, that is, satisfies

∆ ◦∆⊗ IdA = ∆ ◦ IdA⊗∆ : A−→A⊗k A⊗k A.

Counit of a bialgebra is an algebra homomorphism A
ε−→ k which satisfies

∆ ◦ (ε⊗ IdA) = ∆ ◦ (IdA⊗ε) = IdA In the sequel, we shall tacitly assume that

all bialgebras have counit.

REMARK: Coassociative comultiplication means that the dual space

(A•)∗ is equipped with an algebra structure. Compatibility of comultipli-

cation with the multiplication in A• means that this algebra structure on

(A•)∗ is given by a morphism of A-modules.
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Bialgebras of finite type (reminder)

Let V • be a graded vector space. Denote by Symgr(V
•) the tensor product

Sym∗(V even)⊗Λ∗(V odd) with a natural grading. On Sym∗(V even)⊗Λ∗(V odd)
one has a natural structure of an algebra.

DEFINITION: Free commutative algebra is a polynomial algebra. Free
graded commutative algebra is Symgr(V

•), where V • is a graded vector
space.

DEFINITION: A graded algebra of finite type is an algebra graded by
i ⩾ 0, with all graded components finitely-dimensional.

THEOREM: (Hopf theorem) Let A• be a graded bialgebra of finite type
over a field k of characteristic 0. Then A• is a free graded commutative
k-algebra.

REMARK: This allows one to compute the multiplicative structure on all
Lie groups and on all loop spaces of finite CW-spaces.

REMARK: For any Lie group H∗(G) is finite-dimensional, hence H∗(G) is
isomorphic to a Grassmann algebra. In particular, dimH∗(G) = 2n.
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Heinz Hopf (1894-1971)

Heinz Hopf (1894-1971)
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Hopf algebras

DEFINITION: A bialgebra is called a Hopf algebra if it is equipped with a
homomorphism A

S−→ A (”the antipode map”), and the following diagram
is commutative:

A⊗A S⊗Id //A⊗A
mult

##
A

∆
;;

∆ ##

ε //k 1 //A

A⊗A
Id⊗S

//A⊗A
mult

;;

REMARK: The antipode condition is self-dual: if A is a Hopf algebra, the
dual space A∗ is also a Hopf algebra, multiplication goes to comultiplication.

EXAMPLE: Let N be a group, and C(N) the space of functions on N

equipped with the bialgebra structure Then the map n−→ n−1 defines an
antipode structure on C(N). We obtain that the algebra C(N) of functions
on a group is a Hopf algebra (check this).

EXAMPLE: Let G be a topological group, and H∗(G) its cohomology al-

gebra. Consider the map H∗(G)
S−→ H∗(G), induced by x−→ x−1. Then

H∗(G) is a Hopf algebra (check this).
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Primitive elements in a bialgebra

DEFINITION: An element x of a bialgebra is called primitive if ∆(x) =

x⊗ 1+ 1⊗ x.

REMARK: First, the Hopf theorem is proven for all bialgebras, generated

(multiplicatively) by the primitive elements, and then we prove that finite type

bialgebras are generated by primitive elements.

DEFINITION: Let A be a bialgebra, and P ⊂ A the space of primitive

elements. Consider the natural homomorphism Symgr(P )
ψ−→ A. We say

that A is free up to degree k if
⊕i⩽k Symi

gr(P )
ψ−→ A is an embedding.

REMARK: The following lemma immediately implies Hopf theorem for

all bialgebras generated by primitive elements.

LEMMA: Let A• be a bialgebra which is free up to degree k. Then A• is

free up to degree k+1.
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Hopf theorem for bialgebras generated by primitive elements

LEMMA: Let A• be a bialgebra which is free up to degree k. Then A• is

free up to degree k+1.

Proof. Step 1: Let {xi} be a basis in the space P of primitive elements.

Consider a polynomial relation of degree k + 1, say, Q(x1, ..., xn) = 0, and

represent it as a polynomial of x1 with coefficients which are polynomials of

x2, ..., xn: Q = Qmxm1 +Qm−1x
m−1
1 +...+Q0. Clearly, ∆(Q) = Q⊗1+1⊗Q+R,

where R ∈ A :=
(⊕i⩽k Symi

gr(P )
)
⊗

(⊕i⩽k Symi
gr(P )

)
.

Step 2: Since ψ :
⊕i⩽k Symi

gr(P )
ψ−→ A is an embedding, and elements of A

belong to imψ⊗ imψ, each element of A can be uniquely represented as a sum

of monomials λ ⊗ µ, where λ, µ are degree ⩽ k monomials on xi. Denote by

Π : A−→ x1⊗
(⊕i⩽k Symi

gr(P )
)
the projection to the sum of all monomials of

form x1⊗µ. Since ∆(xi) = xi⊗1+1⊗xi, one has ∆(xm1 ) = (x1⊗1+1⊗x1)m,

giving Π(∆(xm1 )) = mx1 ⊗ xm−1
1 .

Step 3: Let Π(R) := x1 ⊗ R0. Since Q = 0 in A, its component R0 is also

equal to 0. Then Step 2 gives 0 = x1 ⊗ R0 = x1 ⊗
∑m
i=1mx

m−1
1 Qm where Qi

are polynomials defined in Step 1. Then all Qi = 0.
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Algebras with filtration

REMARK: Step 3 of the proof of previous lemma uses char k = 0. Hopf

theorem is false for char k > 0.

DEFINITION: Filtration on an algebra A is a sequence of subspaces A0 ⊃
A1 ⊃ A2 ⊃ ... such that Ai ·Ai ⊂ Ai+j

EXAMPLE: Let I ⊂ A be an ideal. the I-adic filtration is the filtration by

the degrees of the ideal I: A ⊃ I ⊃ I2 ⊃ I3 ⊃ ....

DEFINITION: Let A0 ⊃ A1 ⊃ A2 ⊃ ... be a filtered algebra. The associated

graded algebra is Agr :=
⊕
iAi/Ai+1.

LEMMA: Let A ⊃ I ⊃ I2 ⊃ I3 ⊃ ... be an adic filtration, and Agr :=
⊕
i I
i/Ii+1

the associated graded algebra. Then Agr is generated by its first and

second graded components A/I ⊕ I/I2.

Proof: Indeed, Ik/Ik+1 is generated by products of k elements in (I/I2).
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The augmentation ideal

DEFINITION: Augmentation ideal in a bialgebra is the kernel of the counit

homomorphism ε : A−→ k.

CLAIM: Let Z ⊂ A be the augmentation ideal. Then

∆(x) = 1⊗ x+ x⊗ 1 mod (Z ⊗ Z). (∗∗)

for any x ∈ Z.

Proof: Indeed, Z⊗Z = ker(ε⊗ IdA)∩ker(IdA⊗ε). The counit condition gives

x = [ε⊗ IdA](∆(x)) and x = [IdA⊗ε](∆(x)), while

[ε⊗ IdA](1⊗ x+ x⊗ 1) = ε(x) + x = [IdA⊗ε](1⊗ x+ x⊗ 1).

Comparing these equations, we obtain

∆(x)− 1⊗ x− x⊗ 1 ∈ Z ⊗ Z.

when ε(x) = 0.
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Proof of Hopf theorem

THEOREM: (Hopf theorem) Let A be a graded bialgebra of finite type

over a field k of characteristic 0. Then A is a free graded commutative

k-algebra.

Proof. Step 1: Consider the filtration of A by the degrees of the augmen-

tation ideal Z, and let Agr :=
⊕
iZ

i/Zi+1 be the associated graded algebra.

Since ∆(Z) = 1⊗ x+ x⊗ 1 mod (Z ⊗Z), one has ∆(Zp) ⊂
⊕
i+j=pZ

i⊗Zj.

Step 2: Consider the filtration on A ⊗ A by the powers of the ideal Z̃ :=

Z ⊗ 1+ 1⊗ Z. The natural map

⊕
p+q=n

Zp

Zp+1
⊗

Zq

Zq+1
−→

⊕
n

Z̃n

Z̃n+1

is by construction surjective, and takes graded components to graded com-

ponents of the same dimension, hence Agr ⊗ Agr is isomorphic to
⊕
n

Z̃n

Z̃n+1

(these components are finite dimension because A∗ is of finite type). Step 1

implies that ∆(Zn) ⊂ Z̃n, hence the comultiplication ∆ : Agr −→Agr ⊗ Agr

induces a bialgebra structure on Agr.
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Proof of Hopf theorem (2)

Step 3: The algebra Agr is multiplicatively generated by Z1/Z2. Since
∆(x) = 1⊗x+x⊗1 mod (Z⊗Z), all elements of Z1/Z2 are primitive in Agr.
Therefore, the algebra Agr is generated by primitive elements. This implies
that Agr is a free algebra generated by its space of primitive elements.

Step 4: Let xi be a basis in the space of primitive elements of Agr, and
let x̃i be a representative of each of xi ∈ Zk/Zk+1 in Zk, of the same parity
as xi. Since there is no non-trivial relations between xi, there are no
non-trivial relations between x̃i. It remains to show that x̃i generate A.

Step 5: Return to the grading originally given on A. Since ε is compatible
with grading, the ideal Z is a direct sum of its graded components, and the
algebra Agr is equipped with a grading induced from A. Dimensions of the
graded components Ap and A

p
gr of A and Agr are equal, because any filtered

space is isomorphic as a vector space to its associated graded space. Let {yi}
be a set of monomials of xi ∈ Abr giving a basis in the graded component
A
p
gr, and {ỹi} the corresponding monomials in Ap. Since {yi} are linearly

independent, the monomials {ỹi} are linearly independent, and since
dimAp = dimA

p
gr, these monomials generate Ap. We have shown that A•

is freely generated by the vectors {ỹi}.
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Grassmannian Gr(n) := Gr(n,∞) as a classifying space (reminder)

DEFINITION: Consider the natural embeddings

Gr(n,m) ↪→ Gr(n,m+1) ↪→ Gr(n,m+2) ↪→ ...,

associated with the maps Km ↪→ Km+1 ↪→ Km+2 ↪→ ... and let Gr(n) :=
Gr(n,∞) denote the union of all these spaces (that is, the inductive limit
of cellular complexes). By definition, Gr(n) is the space of n-dimensional
subspaces in K∞, where K∞ denotes.

⊕∞
i=0K.

DEFINITION: The fundamental bundle on Gr(n) is the vector bundle with
fiber W at a point W ⊂ K∞.

THEOREM: Let B be a vector bundle of rank n on a cellular space X. Then
there exists a continuous map φ : X −→ Gr(n) such that B is isomorphic to

the pullback φ∗Bfun of the fundamental bundle.

Proof: Last lecture.

REMARK: In fact, Gr(n) is the classifying space of vector bundles of

rank n, in the sense that isomorphism classes of vector bundles on X

are in bijective correspondence with homotopy classes of maps φ :
X −→ Gr(n).
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The infinite Grassmannian (reminder)

DEFINITION: Choose a basis x0, x1, ..., in C∞ or R∞, and let R : C∞ −→ C∞

be defined as above, R(xi) = xi+1. Consider the embedding Gr(n,∞) ↪→
Gr(n+ 1,∞), taking the space L ⊂ C∞ to ⟨x0, R(L)⟩. The union (inductive

limit)
⋃
nGr(n,∞) is called the infinite Grassmannian, and is denoted as

BU .

DEFINITION: Vector bundles B1, B2 are called stably equivalent if B1 ⊕
U1

∼= B2 ⊕ U2, where Ui are trivial vector bundles.

THEOREM: Let X be a finite cellular space. Then homotopy classes of

maps X −→BG are in bijective correspondence with classes of stable

equivalence of vector bundles.

Proof: Left as an exercise.
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BU as an H-space (reminder)

Bott periodicity identifies the space of loops on U and BU; this implies
that BU is an H-space (loop spaces are H-spaces). However, the H-structure
on BU can be constructed explicitly.

PROPOSITION: Consider a map S : C∞ × C∞ −→ C∞ taking the basis
vectors xi of the first space to x2i and the basis vectors of the second space
to x2i+1. Then L,L′ −→ S(L,L′) defines a structure of an H-space on the
infinite Grassmannian BU.

Proof: We need to show H-associativity, which would follow if we prove that
any permutation of basis elements is homotopic to identity. This is left as an
exercise.

COROLLARY: H∗(BU,Q) is a free supercommutative algebra.

Proof: Follows from Hopf theorem.

REMARK: It is not hard to write a celular decomposition for the Grass-
mannian (“Schubert cells”); all cells are even-dimensional, which gives the
dimensions of the groups Hi(BG). Then the Hopf theorem can be used to
compute the cohomology algebra. This also implies that the algebra H∗(BG)
is commutative (and therefore, free polynomial).

14



K3 surfaces, 2024, lecture 3 M. Verbitsky

Cohomology of BU (reminder)

CLAIM: H∗(BU,Q) is a free polynomial algebra generated by classes

c1, c2, ... in all even degrees.

Proof: Consider the principal U-bundle E −→BU . Cohomology of U is a free

graded commutative algebra with one generator in each odd degree, as shown

earlier today.

E
p,q
2 -term of the Leray-Serre spectral sequence is Hp(BU)⊗Hq(U). Since this

sequence converges to 0, every generator of H∗(U) has to go to a generator

of H∗(BU).

For each generator of H∗(U) of degree 2n+ 1, the corresponding generator

has degree 2n+2, hence there is one generator in each even degree.
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Chern classes: axiomatic definition

DEFINITION: Chern classes are classes ci(B) ∈ H2i(X), i = 0,1,2, ...,

defined for each complex vector bundle B on a cellular space X and satisfying

the following acioms.

1. c0(B) = 1.

2. functoriality: for each continuous map f : X −→ Y we have f∗ci(B) =

ci(f
∗B).

3. Whitney formula: c∗(B ⊕ B′) = c∗(B)c∗(B′), where c∗(B) =
∑
i ci(B)

(“full Chern class”).

4. normalization: Let O(i) be the standard bundle on a complex projec-

tive space. Then c1(O(1)) = [H], where [H] is the fundamental class of a

hyperplane section. For all i > i, we have ci(O(1)) = 0.

REMARK: From functoriality it follows that ci(B) = 0 when B is trivial

and i > 0.
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Chern classes on BU(1)n

To prove the uniqueness of Chern classes, we start with the following exercise.

EXERCISE: Prove that BU(1) = CP∞.

DEFINITION: The fundamental bundle on BU(1)n is a rank n bundle
on BU(1)n = (CP∞)n obtained by taking a direct sum of the fundamental
bundles pulled back from each BU(1).

REMARK: The Chern classes of the fundamental bundle on BU(1)n ate
uniquely determined from the axioms. Indeed, the fundamental bundle on
BU(1) = CP∞ is O(1), its Chern class is the generator of H∗(CP∞,Q) =
Q([H]), and the Chern classes of a direct sum are determined from the Whit-
ney formula.

THEOREM: (Splitting principle): Let φfun : BU(1)n −→BU be the map
associated with the fundamental bundle composed with the embedding Gr(n)−→BU .
Then φfun induces an injective map on cohomology up to degree n, and
takes the primitive generator χd ∈ H2d(BU) to the class λ

∑n
i=1 z

d
i in the

polynomial algebra H∗(BU(1)n) = Q[z1, ..., zn].

Proof: Next lecture, if there is demand.
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Chern classes: uniqueness

THEOREM: The Chern classes are uniquely determined from the ax-

ioms.

Proof. Step 1: Every bundle is a pullback of the fundamental bundle on

BU(n) = Gr(n,∞). Therefore, the Chern classes are obtained as a pullbacks

of the Chern classes of the fundamental bundle on BU(n). Since ci(B) =

ci(B ⊕ trivial bundle), these classes are restrictions of classes in H∗(BU).

Step 2: Consider the map BU(1)n −→BU(n) induced by the fundamental

bundle. This map is injective on cohomology, as follows from the splitting

principle. Since the Chern classes of the fundamental bundle on BU(1)n

are determined from the axioms, and H∗(BU(n)) ⊂ H∗(BU(1)n), the Chern

classes of the fundamental bundle on BU(n) are determined from the

axioms.

REMARK: We just proved uniqueness of Chern classes satisfying the

axiomatic definition. The easiest way to show existence of Chern classes

satisfying the axioms is to prove the Hopf theorem and use its proof.
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Primitive generators of H∗(BU)

REMARK: Any class a ∈ Hi(BU) can be evaluated on a bundle B over
X, producing a class a(B) ∈ Hi(X). Indeed, B is the pullback of the fun-
damental bundle Bfun on Gr(n), giving a map φB : X −→BU , and we set
a(B) = φ∗B(a).
REMARK: Historically, this was done by using invariant polynomials on cur-
vature, for some Hermitian connection on B.

REMARK: Consider a map φ = (φ1, φ2) : X −→BU × BU , associated to
bundles B1, B2. Composition of φ and the H-multiplication map µ : BU ×
BU −→BU produces a map φ ◦µ : X −→BU associated with the bundle B1⊕
B2. Therefore, the comultiplication map ∆ : H∗(BU)−→H∗(BU)⊗H∗(BU)
takes φ∗ : H∗(BU) ⊗ H∗(BU)−→H∗(X) to ∆ ◦ φ∗ : H∗(BU)−→H∗(X)
mapping a class in Map(X,BU × BU) associated with the pair B1, B2,
to the class in Map(X,BU) associated with B1 ⊕B2.

COROLLARY: Let x ∈ H∗(BU). Then x(B1 ⊕B2) = ∆(x)(B1, B2).

COROLLARY: Let x ∈ H∗(BU) be a primitive class. Then x(B1 ⊕ B2) =
x(B1) + x(B2).

Proof: Since ∆(x) = x ⊗ 1 + 1 ⊗ x, the class ∆(x) evaluated on B1, B2 is
equal to x(B1) + x(B2).
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Classes satisfying the Whitney formula

REMARK: We will construct the full Chern class as c∗(B), where c∗ ∈
H∗(BU) is a certain cohomology class.

REMARK: Let χi ∈ H2i(BU) be a primitive generator; by Hopf theorem,

this class is unique up to a constant. Since χi(B1 ⊕ B2) = χi(B1) + χi(B2),

the class C := e
∑
i aiχi satisfies the Whitney formula C(B1 ⊕ B2) =

C(B1)C(B2), for any collection of coefficients ai ∈ Q. To construct Chern

classes satisfying the axioms above, it remains to arrange the coefficients

ai in such a way that C(O(1)) = 1+ [H].

LEMMA: Consider the natural map φ : BU(1)−→BU associated with the

fundamental bundle on BU(1). Then φ∗(χi) ̸= 0.

Proof: Follows immediately from the splitting principle, because φ∗(χi) =

λ
∑
j z
n
j , and the map BU(1)−→BU(1)n takes

∑
j z
n
j ∈ H∗(BU(1)n) to zn1 ∈

H∗(BU(1)).
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Construction of Chern classes

Existence of Chern classes is given by the following easy corollary.

THEOREM: Let φ : BU(1)−→BU be the standard map associated with the

fundamental bundle. Choose the generators χi ∈ H2i(BU) in such a way that

φ∗(χi) = log(1+ [H]), and let c∗(B) := exp (
∑
i χi). Then c∗(O(1)) = 1+ [H]

and c∗(B1 ⊕B2) = c∗(B1)c∗(B2).

Proof: c∗(O(1)) = 1+[H] because φ∗(χi) = log(1+[H]), hence exp (φ∗(
∑
i χi)) =

1 + [H]. Whitney formula c∗(B1 ⊕ B2) = c∗(B1)c∗(B2) is true when c∗ is an

exponent of any sum of primitive elements.
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