# K3 surfaces

lecture 4: Chern classes

Misha Verbitsky

IMPA, sala 236

September 11, 2024, 17:00

K3 surfaces, 2024, lecture 4 M. Verbitsky

### Grassmannian  $Gr(n) := Gr(n, \infty)$  as a classifying space (reminder)

DEFINITION: Consider the natural embeddings

 $Gr(n, m) \hookrightarrow Gr(n, m + 1) \hookrightarrow Gr(n, m + 2) \hookrightarrow ...$ 

associated with the maps  $\mathbb{K}^m \hookrightarrow \mathbb{K}^{m+1} \hookrightarrow \mathbb{K}^{m+2} \hookrightarrow \dots$  and let  $Gr(n) :=$  $Gr(n,\infty)$  denote the union of all these spaces (that is, the inductive limit of cellular complexes). By definition,  $Gr(n)$  is the space of *n*-dimensional subspaces in  $\mathbb K^{\infty}$ , where  $\mathbb K^{\infty}$  denotes.  $\bigoplus_{i=0}^{\infty}\mathbb K.$ 

**DEFINITION: The fundamental bundle** on  $Gr(n)$  is the vector bundle with fiber W at a point  $W \subset \mathbb{K}^{\infty}$ .

**THEOREM:** Let B be a vector bundle of rank n on a cellular space X. Then there exists a continuous map  $\varphi : X \longrightarrow Gr(n)$  such that B is isomorphic to the pullback  $\varphi^*B_{\mathsf{fun}}$  of the fundamental bundle. Proof: Last lecture. ■

**REMARK:** In fact,  $Gr(n)$  is the classifying space of vector bundles of rank  $n$ , in the sense that isomorphism classes of vector bundles on  $X$ are in bijective correspondence with homotopy classes of maps  $\varphi$  :  $X \longrightarrow Gr(n)$ .

## The infinite Grassmannian (reminder)

**DEFINITION:** Choose a basis  $x_0, x_1, ...,$  in  $\mathbb{C}^{\infty}$  or  $\mathbb{R}^{\infty}$ , and let  $R: \mathbb{C}^{\infty} \longrightarrow \mathbb{C}^{\infty}$ be defined as above,  $R(x_i) = x_{i+1}$ . Consider the embedding  $Gr(n, \infty) \hookrightarrow$  $Gr(n + 1, \infty)$ , taking the space  $L \subset \mathbb{C}^{\infty}$  to  $\langle x_0, R(L) \rangle$ . The union (inductive limit)  $\bigcup_n Gr(n,\infty)$  is called the infinite Grassmannian, and is denoted as BU.

**DEFINITION:** Vector bundles  $B_1, B_2$  are called **stably equivalent** if  $B_1 \oplus$  $U_1 \cong B_2 \oplus U_2$ , where  $U_i$  are trivial vector bundles.

**THEOREM:** Let  $X$  be a finite cellular space. Then **homotopy classes of** maps  $X \longrightarrow BU$  are in bijective correspondence with classes of stable equivalence of vector bundles.

**Proof:** Left as an exercise.

### BU as an H-space (reminder)

Bott periodicity identifies the space of loops on  $U$  and  $BU$ ; this implies that BU is an H-space (loop spaces are H-spaces). However, the H-structure on *BU* can be constructed explicitly.

**PROPOSITION:** Consider a map  $S: \mathbb{C}^{\infty} \times \mathbb{C}^{\infty} \longrightarrow \mathbb{C}^{\infty}$  taking the basis vectors  $x_i$  of the first space to  $x_{2i}$  and the basis vectors of the second space to  $x_{2i+1}$ . Then  $L, L' \longrightarrow S(L, L')$  defines a structure of an H-space on the infinite Grassmannian BU.

**Proof:** We need to show H-associativity, which would follow if we prove that any permutation of basis elements is homotopic to identity. This is left as an exercise. ■

## COROLLARY:  $H^*(BU, \mathbb{Q})$  is a free supercommutative algebra.

**Proof:** Follows from Hopf theorem.  $\blacksquare$ 

REMARK: It is not hard to write a celular decomposition for the Grassmannian ("Schubert cells"); all cells are even-dimensional, which gives the dimensions of the groups  $H^{i}(BU)$ . Then the Hopf theorem can be used to compute the cohomology algebra. This also implies that **the algebra**  $H^*(BU)$ is commutative (and therefore, free polynomial).

## Cohomology of BU (reminder)

CLAIM:  $H^*(BU, \mathbb{Q})$  is a free polynomial algebra generated by classes  $c_1, c_2, ...$  in all even degrees.

**Proof:** Consider the principal U-bundle  $E \longrightarrow BU$ . Cohomology of U is a free graded commutative algebra with one generator in each odd degree, as shown earlier today.

 $E_2^{p,q}$  $_2^{p,q}\text{-term}$  of the Leray-Serre spectral sequence is  $H^p(BU) \otimes H^q(U).$  Since this sequence converges to 0, every generator of  $H^*(U)$  has to go to a generator of  $H^*(BU)$ .

For each generator of  $H^*(U)$  of degree  $2n + 1$ , the corresponding generator has degree  $2n + 2$ , hence there is one generator in each even degree.  $\blacksquare$ 

#### Chern classes: axiomatic definition

**DEFINITION: Chern classes** are classes  $c_i(B) \in H^{2i}(X)$ ,  $i = 0, 1, 2, ...$ defined for each complex vector bundle  $B$  on a cellular space  $X$  and satisfying the following acioms.

1.  $c_0(B) = 1$ .

2. **functoriality:** for each continuous map  $f : X \longrightarrow Y$  we have  $f^*c_i(B) =$  $c_i(f^*B)$ .

3. Whitney formula:  $c_*(B \oplus B') = c_*(B)c_*(B')$ , where  $c_*(B) = \sum_i c_i(B)$ ("full Chern class").

4. **normalization:** Let  $\Theta(i)$  be the standard bundle on a complex projective space. Then  $c_1(\Theta(1)) = [H]$ , where  $[H]$  is the fundamental class of a hyperplane section. For all  $i > i$ , we have  $c_i(\Theta(1)) = 0$ .

REMARK: From functoriality it follows that  $c_i(B) = 0$  when B is trivial and  $i > 0$ .

#### The splitting principle

## EXERCISE: Prove that  $BU(1) = \mathbb{C}P^{\infty}$ .

**DEFINITION: The fundamental bundle** on  $BU(1)^n$  is a rank n bundle on  $BU(1)^n = (CP^{\infty})^n$  obtained by taking a direct sum of the fundamental bundles pulled back from each  $BU(1)$ .

REMARK: The Chern classes of the fundamental bundle on  $BU(1)^n$  ate uniquely determined from the axioms. Indeed, the fundamental bundle on  $BU(1) = \mathbb{C}P^{\infty}$  is  $\mathcal{O}(1)$ , its Chern class is the generator of  $H^{*}(\mathbb{C}P^{\infty},\mathbb{Q}) =$  $\mathbb{Q}([H])$ , and the Chern classes of a direct sum are determined from the Whitney formula.

REMARK: The cohomology of  $BU(1)$  is the polynomial algebra, generated by  $[H] \in H^2(BU(1))$ . By Künnethe formula,  $H^*(BU(1)^n) = \mathbb{Z}[z_1, ..., z_n]$ , where  $z_i \in H^2(BU(1))$  is the generator in the *i*-th component of the product.

**THEOREM:** (Splitting principle): Let  $\varphi_{\text{fun}}$ :  $BU(1)^n \rightarrow BU$  be the map associated with the fundamental bundle composed with the embedding  $Gr(n) \longrightarrow BU$ . Then  $\varphi_{\text{fun}}$  induces an injective map in cohomology up to degree n. Moreover, the pullback of a primitive generator in  $H^{2k}(BU)$  is proportional to  $\sum_{i=1}^n z_i^k$  $i \atop i$ , if  $z_i \in H^2(BU(1)^n)$  is defined as above. **Proof:** Home assignment 3. ■

#### Chern classes: uniqueness

THEOREM: The Chern classes are uniquely determined from the axioms.

**Proof.** Step 1: Every bundle is a pullback of the fundamental bundle on  $BU(n) = Gr(n, \infty)$ . Therefore, the Chern classes of B are obtained as a pullbacks of the Chern classes of the fundamental bundle on  $BU(n)$ . Since  $c_i(B) = c_i(B \oplus \text{trivial bundle})$ , these classes are restrictions of classes in  $H^*(BU)$ .

**Step 2:** Consider the map  $BU(1)^n \longrightarrow BU(n)$  induced by the fundamental bundle. This map is injective on cohomology, as follows from the splitting principle. Since the Chern classes of the fundamental bundle on  $BU(1)^n$ are determined from the axioms, and  $H^*(BU(n)) \subset H^*(BU(1)^n)$ , the Chern classes of the fundamental bundle on  $BU(n)$  are determined from the axioms.

REMARK: We just proved uniqueness of Chern classes satisfying the axiomatic definition. The easiest way to show existence of Chern classes satisfying the axioms is to use the primitive generators of cohomology of **BU** obtained from the Hopf theorem.

#### Primitive generators of  $H^*(BU)$

REMARK: Any class  $a \in H^i(BU)$  can be evaluated on a bundle B over X, producing a class  $a(B) \in H^i(X)$ . Indeed, B is the pullback of the fundamental bundle  $B_{\text{fun}}$  on Gr(n), giving a map  $\varphi_B: X \longrightarrow BU$ , and we set  $a(B) = \varphi^*_{\mathcal{F}}$  $_B^*(a)$ .

REMARK: Historically, this was done by using invariant polynomials on curvature, for some Hermitian connection on B.

**REMARK:** Consider a map  $\varphi = (\varphi_1, \varphi_2) : X \longrightarrow BU \times BU$ , associated to bundles  $B_1, B_2$ . Composition of  $\varphi$  and the H-multiplication map  $\mu$  : BU  $\times$  $BU \longrightarrow BU$  produces a map  $\varphi \circ \mu : X \longrightarrow BU$  associated with the bundle  $B_1 \oplus$ B<sub>2</sub>. Therefore, the comultiplication map  $\Delta$  :  $H^*(BU) \longrightarrow H^*(BU) \otimes H^*(BU)$ takes  $\varphi^*$  :  $H^*(BU) \otimes H^*(BU) \longrightarrow H^*(X)$  to  $\Delta \circ \varphi^*$  :  $H^*(BU) \longrightarrow H^*(X)$ mapping a class in Map(X, BU  $\times$  BU) associated with the pair  $B_1, B_2$ , to the class in Map(X, BU) associated with  $B_1 \oplus B_2$ .

COROLLARY: Let  $x \in H^*(BU)$ . Then  $x(B_1 \oplus B_2) = \Delta(x)(B_1, B_2)$ . ■

**COROLLARY:** Let  $x \in H^*(BU)$  be a primitive class. Then  $x(B_1 \oplus B_2)$  =  $x(B_1) + x(B_2)$ .

**Proof:** Since  $\Delta(x) = x \otimes 1 + 1 \otimes x$ , the class  $\Delta(x)$  evaluated on  $B_1, B_2$  is equal to  $x(B_1) + x(B_2)$ .

#### Classes satisfying the Whitney formula

REMARK: We will construct the full Chern class  $c_*(B)$  as a pullback of a class  $C \in H^*(BU)$ .

**REMARK:** Let  $Ch_i \in H^{2i}(BU)$  be a primitive generator; by Hopf theorem, this class is unique up to a constant. Since  $Ch_i(B_1\oplus B_2)=Ch_i(B_1)+Ch_i(B_2)$ , the class  $C$   $:=$   $e^{\sum_i a_i C h_i}$  satisfies the Whitney formula  $C(B_1 \oplus B_2)$   $=$  $C(B_1)C(B_2)$ , for any collection of coefficients  $a_i \in \mathbb{Q}$ . To construct Chern classes satisfying the axioms above, it remains to arrange the coefficients  $a_i$  in such a way that  $C(\mathcal{O}(1)) = 1 + [H]$ .

**LEMMA:** Consider the natural map  $\varphi$  :  $BU(1) \longrightarrow BU$  associated with the fundamental bundle on  $BU(1)$ . Then  $\varphi^*(Ch_i) \neq 0$ .

**Proof:** Follows immediately from the splitting principle, because  $\varphi^*(Ch_i)$  =  $\lambda \sum_j z_j^n$  $j^n_j$ , and the map  $BU(1) \longrightarrow BU(1)^n$  takes  $\sum_j z_j^n \in H^*(BU(1)^n)$  to  $z_1^n \in$  $H^*(BU(1))$ .

## Construction of Chern classes

Existence of Chern classes is given by the following easy corollary.

**THEOREM:** Let  $\varphi$  :  $BU(1) \longrightarrow BU$  be the standard map associated with the fundamental bundle. Choose the generators  $Ch_i \in H^{2i}(BU)$  in such a way that  $\varphi^*(\sum_i Ch_i) = \log(1+[H]),$  and let  $c_*(B) := \exp{(\sum_i Ch_i)}.$  Then  $c_*(\Theta(1)) = 1 + [H]$  and  $c_*(B_1 \oplus B_2) = c_*(B_1)c_*(B_2)$ .

**Proof:**  $c_*(\Theta(1)) = 1+[H]$  because  $\varphi^*(Ch_i) = \log(1+[H])$ , hence  $\exp(\varphi^*(\sum_i Ch_i)) =$ 1 + [H]. Whitney formula  $c_*(B_1 \oplus B_2) = c_*(B_1)c_*(B_2)$  is true when  $c_*$  is an exponent of any sum of primitive elements.