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Chern classes (reminder)

DEFINITION: Chern classes are classes ci(B) ∈ H2i(X), i = 0,1,2, ...,
defined for each complex vector bundle B on a cellular space X and satisfying
the following acioms.

1. c0(B) = 1.

2. functoriality: for each continuous map f : X −→ Y we have f∗ci(B) =
ci(f

∗B).

3. Whitney formula: c∗(B ⊕ B′) = c∗(B)c∗(B′), where c∗(B) =
∑

i ci(B)
(“full Chern class”).

4. normalization: Let O(i) be the standard bundle on a complex projec-
tive space. Then c1(O(1)) = [H], where [H] is the fundamental class of a
hyperplane section. For all i > i, we have ci(O(1)) = 0.

REMARK: From functoriality it follows that ci(B) = 0 when B is trivial
and i > 0.

THEOREM: Chern classes exist and are determined by these axioms.
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The K-group

DEFINITION: Let M be a topological space, and V the abelian group,
freely generated by the isomorphic classes of vector bundles on M . The
the K-group is the quotient of V by its subgroup generated by relations
[F1] + [F3] = [F2] for all exact sequences of 0−→ F1 −→ F2 −→ F3 −→ 0.

REMARK: The H-group structure on BU defines a group structure on the
homotopy classes of maps X −→BU . By construction of the H-structure,
[φ1]+[φ3] = [φ2], where φi : X −→BU is the map associated with the bundle
Fi on X, and [φi] their homotopy classes. This implies the claim

CLAIM: K-group of X is naturally isomorphic with the set of homotopy
classes of maps φ : X −→BU , equipped with a group structure induced
by the H-group structure on BU.

COROLLARY: Chern classes are well defined on elements of the K-
group, and satisfy the Whitney formula.

Proof: Let C∗ ∈ H∗(BU) be the total Chern class of the fundamental bundle
on BU . Then c∗(F ) := φ∗(C∗), for any F in K-group associated with
φ : X −→BU. For Chern classes defined this way for the maps φ : X −→BU

the Whitney relations are already proven (Lecture 4).
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Coherent sheaves

DEFINITION: Let M be a complex manifold, and OM its structure sheav

(the sheaf of holomorphic functions). Coherent sheaf is a sheaf of OM-

modules, locally isomorphic to a quotient of a free sheaf On
M by a finitely

generated OM-invariant subsheaf.

REMARK: In algebraic category, the definition is the same, but “locally”

means “locally in Zariski topology”. Serre’s GAGA principle implies that on

a projective manifolds these two definitions are equivalent.

EXERCISE: Let M be a projective manifold. Prove that any coherent

sheaf F has a resolution 0−→Bn −→Bn−1 −→ ...−→B0 −→ F −→ 0, where

Bi are vector bundles.

DEFINITION: Such a resolution is called a syzygy of the sheaf F . Clearly,

[F ] =
∑

i(−1)i[Bi] in the K-group of coherent sheaves.
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Coherent sheaves and their Chern classes

REMARK: After this is done, it is possible to prove that the K-group of

coherent sheaves on a projective manifold is equal to the K-group

generated by holomorphic vector bundles.

DEFINITION: The Chern class of a coherent sheaf is the Chern class of

the corresponding element of the K-group.

REMARK: In complex analytic category, we have to blow up the manifold

to resolve the singularities of the coherent sheaf, take the Chern class

of its resolution, and apply the pushforward in cohomology. However,

for most practical purposes, this is not necessary, because the syzygy can be

constructed explicitly.
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Euler characteristic of a coherent sheaf

DEFINITION: Let F be a coherent sheaf. Its Euler characteristic χ(F ) is

the number χ(F ) :=
∑

i(−1)i dimHi(F )..

CLAIM: For any exact sequence 0−→ F1 −→ F2 −→ F3 −→ 0 of coherent sheaves,

we have χ(F2) = χ(F1) + χ(F3).

Proof: Left as an exercise.

REMARK: This implies that χ defines a homomorphism K(M)
χ−→ Z,

where K(M) denotes the K-group.
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Chern character

Let φ : BU(1)−→BU be the standard map, and Chi ∈ H2i(BU) the primitive

generators of H∗(BU,Z) defined in such a way that c1(O(1)) = φ∗ (
∑

iChi) =

log(1 + [H]). Since Chi are primitive, the map φ 7→ φ∗(Chi) defines a

homomorphism from K(X) to H∗(X), where φ is a map X → BU interpreted

as an element of the K-group.

DEFINITION: Let X be a CW-space. Chern character ch∗ : K(X)−→H∗(X,Q)

is a map which associates to each map φ : X −→BU the class φ∗(Ch∗) ∈
H∗(X,Q), where Ch∗ ∈ H∗(BU,Q) is the cohomology class defined above.

REMARK: An alternative way to define the Chern character is to define it

on line bundles as ch∗(L) := exp(c1(L)), and extend to a homomorphism

from the K-group using the splitting principle.

REMARK: The K-group is in fact a ring; the ring structure is defined on

its generators (the vector bundles) by taking the tensor product.

EXERCISE: Using the splitting principle, prove that the Chern character

ch∗ : K(X)−→H∗(X,Q) is a ring homomorphism.
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Riemann-Roch-Hirzebruch theorem

THEOREM: (Riemann-Roch-Hirzebruch)

Let F be a coherent sheaf on a compact complex manifold M . Then χ(F )

can be expressed through the Chern classes of F and M as follows:

χ(F ) =
∫
X
ch∗(F ) ∧ td∗(TM),

wheere td∗(TM) denotes the total Todd class of the tangent bundle TM ,

td∗ = 1+
c1
2

+
c21 + c2

12
+

c1c2
24

+
−c41 +4c21c2 + c1c3 +3c22 − c4

720
+ ...

REMARK: Formally, the Todd class can be defined using the splitting

principle as follows: it is a polynomial on Chern classes which satisfies the

Whitney formula td∗(B ⊕ B′) = td∗(B)td∗(B′), and for a line bundle L with

c1(L) = α, we have td∗(L) = α
1−e−α.

REMARK: We will prove the Riemann-Roch-Hirzebruch formula for several

special cases, and use it only in these cases; a general expression is here

for your enlightenment only.
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K-group for complex curves

LEMMA: Let M be a smooth compact complex curve. Then the K group

of M is generated by line bundles.

Proof. Step 1: Using Kodaira vanishing theorem, we obtain that there exists

a non-zero map from a line bundle to any coherent sheaf F of positive rank.

Indeed, F ⊗LN has a section, giving a non-zero monomorphism O ↪→ F ⊗LN ,

or, equivalently, L−N ↪→ F .

Step 2: This gives an exact sequence 0−→ F1 −→ F −→ F2 −→ 0, with rkF1 <

rkF , rkF2 < rkF . Using induction on rank, we reduce the main state-

ment to sheaves of rank 1 and 0.

Step 3: Also, a sheaf of rank 0 is a direct sum of sheaves Fi fitting into

the exact sequence 0−→ I −→O −→ Fi −→ 0, where I ⊂ O is an ideal sheaf.

(prove this). This implies that rank 0 coherent sheaves also belong to the

subgroup of the K group generated by line bundles.
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Riemann-Roch theorem for complex curves

THEOREM: (Riemann-Roch theorem for complex curves)

Let F be a coherent sheaf on a compact complex curve of genus g. Then

χ(F ) = c1(F ) + rk(F )(1− g). (∗)

Proof. Step 1: Both sides of the equation (*) define a homomorphism from

K(M) to Z. Therefore, it suffices to check (*) on any set of generators of

K(M). By the previous lemma, it is sufficient to prove that (*) holds for

line bundles.

Step 2: For F = O the statement is clear. When rkF = 0, we obtain F

as extension of sheaves of form kx := O/mx, where mx is a maximal ideal of

a point. From the exact sequence 0−→ mx −→O −→ kx −→ 0 we obtain that

c1(kx) = 1 (prove it). This proves the formula (*) for F = kx, and hence for

all coherent sheaves of rank 0.

Step 3: Let L be a line bundle. Any holomorphic section of L defines an

exact sequence 0−→O −→ L−→ F −→ 0 where F is a torsion sheaf. For F

and O the Riemann-Roch formula (*) is already proven, and this implies

that (*) holds for L.
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Riemann-Roch theorem for complex curves (2)

Step 4: The Riemann-Roch formula (*) is also true for any bundle L

such that its dual L∗ has non-zero holomorphic sections. Indeed, the

section gives a sheaf monomorphism O −→ L∗; tensoring with L, we obtain

a monomorphism L−→O, giving an exact sequence 0−→ L−→O −→ F −→ 0

with rkF = 0. Since the Riemann-Roch formula (*) is already proven

for two terms of this exact sequence, it is true for the third.

Step 5: Now we can prove (*) for any line bundle L on M . Let L1 be a very

ample bundle on M . Since L1 admits holomorphic sections, the Riemann-

Roch formula (*) is true for L1 and its powers. Replacing L1 for a sufficiently

big power and applying Kodaira vanishing, we obtain that L⊗L1 has sections,

giving an embedding O ↪→ L ⊗ L1. Tensoring with L∗
1, we obtain a sheaf

monomorphism which leads to an exact sequence 0−→ L−1
1 −→ L−→ F −→ 0,

where F is a rank 1 sheaf. Again, since the Riemann-Roch formula (*) is

already proven for two terms of this exact sequence, and therefore it

is also true for the third.
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Riemann-Roch-Hirzebruch for line bundles on complex surfaces

DEFINITION: A complex surface is a compact complex manifold of di-

mension 2.

REMARK: In the sequel, we will sometimes write L to denote c1(L) for a

line bundle L. The fundamental class [D] of a divisor D is sometimes denoted

D. Note that c1(O(D)) = [D] (prove this); this implies that this set of

conventions is consistent.

We prove the following weaker version of Riemann-Roch-Hirzebruch formula

on surfaces.

THEOREM: (Riemann-Roch-Hirzebruch formula on surfaces)

Let L be a line bundle on a complex surface X, and KX := Ω2X its canpnical

bundle. Then

χ(L) = χ(OX) +
(L−KX , L)

2
, (∗∗)

where (A,B) denotes the intersection form applied to cohomology

classes on X.
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Riemann-Roch-Hirzebruch for line bundles on complex surfaces (2)

THEOREM: (Riemann-Roch-Hirzebruch formula on surfaces)

Let L be a line bundle on a complex surface X, and KX := Ω2X its canpnical

bundle. Then

χ(L) = χ(OX) +
(L−KX , L)

2
, (∗∗)

where (A,B) denotes the intersection form applied to cohomology

classes on X.

Proof. Step 1: Let 0−→ L1 −→ L2 −→ L2|D −→ 0 be an exact sequence,

where Li are line bundles and D a smooth curve of genus g. The Riemann-

Roch formula for curves gives χ(L1) = χ(L2) + (L2, D) + (1 − g), indeed,

c1(L2|D) = degD L2 = (L2, D).

Step 2: Let ND denote the normal bundle of D. The adjunction formula gives

KD = KX |D⊗ND. Since g−1 = degKD/2, we obtain 1−g = −(KX+D,D)/2.
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Riemann-Roch-Hirzebruch for line bundles on complex surfaces (3)

Step 3: Let χ′(L) be the RHS of (**), χ′(L) := χ(OX) + (L − KX , L)/2. In

assumptions of Step 1, we have c1(L2) = c1(L1) +D, giving

χ′(L2)−χ′(L1) =
1

2

[
(L2−KX , L2)−(L2−KX−D,L2−D)

]
= (L2, D)−(KX+D,D)/2.

Step 4: Comparing the statements of step 2 and step 3, we obtain χ′(L2)−
χ′(L1) = χ(L2) − χ(L1). Therefore, (**) for L2 is equivalent to (**) for

L1.

Step 5: For any ample bundle L, the bundle L⊗A⊗N has smooth sections N ≫
0 by Bertini theorem, giving an exact sequence 0−→ L−→ L⊗A⊗N+1 −→ L⊗
A⊗N+1|D −→ 0. By Step 4, it remains to prove (**) for the line bundle

L⊗A⊗N+1, which can be chosen very ample.

Step 6: For a very ample bundle L, we have an exact sequence

0−→OX −→ L−→ L|D −→ 0,

where D is the zero set of a general section ν ∈ H0(X,L). Since D is smooth,

and (*) is trivially true for L = OX, this proves (**) for L.
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