K3 surfaces

lecture 6: Teichmüller spaces and the local Torelli theorem

Misha Verbitsky

IMPA, sala 236

September 18, 2024, 17:00

Exponential exact sequence

The exponential exact sequence

$$0 \longrightarrow \mathbb{Z}_M \longrightarrow \mathcal{O}_M \longrightarrow \mathcal{O}_M^* \longrightarrow 0,$$

gives a long exact sequence

$$H^1(\mathcal{O}_M) \longrightarrow H^1(\mathcal{O}_M^*) \longrightarrow H^2(M,\mathbb{Z}) \stackrel{\alpha}{\longrightarrow} H^2(\mathcal{O}_M).$$

The group $H^2(\mathcal{O}_M)$ is identified with $H^{0,2}(M)$, hence the kernel of α is $H^2(M,\mathbb{Z})\cap H^{1,1}(M)$.

This gives

PROPOSITION: The set of first Chern classes of holomorphic line bundles on a Kähler manifold is $H^{1,1}(M) \cap H^2(M,\mathbb{Z})$.

K3 surfaces are holomorphically symplectic

DEFINITION: A complex surface is a compact, complex manifold of complex dimension 2.

DEFINITION: A K3 surface is a Kähler complex surface M with $b_1 = 0$ and $c_1(M, \mathbb{Z}) = 0$.

REMARK: All surfaces with b_1 **even are Kähler** (Kodaira, Buchdahl-Lamari).

REMARK: Since $b_1(M)=0$, for a K3 we have $H^1(\mathcal{O}_M)=0$ (follows from Hodge theory). The canonical bundle of a K3 surface is trivial. This follows from the exponential exact sequence $0=H^1(\mathcal{O}_M)\longrightarrow \operatorname{Pic}^1(M)\stackrel{c_1}{\longrightarrow} H^2(M,\mathbb{Z})$

COROLLARY: A K3 surface is holomorphically symplectic.

Hodge diamond of a K3 surface

REMARK: By Serre's duality (and from the triviality of K_M) we have $H^2(\Theta_M) = H^0(K_M)^* = \mathbb{C}$. Since $H^1(\Theta_M) = 0$, this gives $\chi(\Theta_M) = 2$. Riemann-Roch-Hirzebruch formula gives $2 = \chi(\Theta_M) = \frac{c_2(M)}{12}$, hence $c_2(M) = 0$. Since $c_2(M)$ is equal to the topological Euler characteristic of M, this implies $b_2(M) = 22$.

The Hodge diamond for a K3 surface:

Geometric structures

DEFINITION: "Geometric structure" on a manifold M is a reduction of its structure group $GL(n,\mathbb{R})$ to a subgroup $G\subset GL(n,\mathbb{R})$. However, it is easier to define it by a collection of tensors $\Psi_1,...,\Psi_n$ such that the stabilizer $\operatorname{St}_{\langle \Psi_1,...,\Psi_n\rangle}\subset GL(T_xM)$ of $\Psi_1,...,\Psi_n$ at each point $x\in M$ is conjugate to the same group $G\subset GL(n,\mathbb{R})$. Usually, in addition to this algebraic condition, people ask for some differential conditions to hold, such as the integrability for almost complex structures.

DEFINITION: Let M be a smooth manifold. An almost complex structure is an operator $I: TM \longrightarrow TM$ which satisfies $I^2 = -\operatorname{Id}_{TM}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $TM \otimes \mathbb{C} = T^{0,1}M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is **integrable** if $[T^{0,1}M, T^{0,1}M] \subset T^{0,1}M$.

DEFINITION: Symplectic form on a manifold is a non-degenerate differential 2-form ω satisfying $d\omega=0$.

Today I would define the Techmüller space of geometric structures and describe it for some examples.

Fréchet spaces

DEFINITION: A seminorm on a vector space V is a function $\nu:V\longrightarrow\mathbb{R}^{\geqslant 0}$ satisfying

- 1. $\nu(\lambda x) = |\lambda|\nu(x)$ for each $\lambda \in \mathbb{R}$ and all $x \in V$
- 2. $\nu(x+y) \leq \nu(x) + \nu(y)$.

DEFINITION: We say that **topology on a vector space** V **is defined by a family of seminorms** $\{\nu_{\alpha}\}$ if the base of this topology is given by the finite intersections of the sets

$$B_{\nu_{\alpha},\varepsilon}(x) := \{ y \in V \mid \nu_{\alpha}(x-y) < \varepsilon \}$$

("open balls with respect to the seminorm"). It is **complete** if each sequence $x_i \in V$ which is Cauchy with respect to each of the seminorms converges.

CLAIM: A topology on V defined by a family of seminorms $\{\nu_{\alpha}\}$ is Hausdorff if and only if for each $v \in V$ there exists a seminorm $\nu \in \{\nu_{\alpha}\}$ such that $\nu(v) \neq 0$.

Fréchet spaces and translation-invariant metrics

DEFINITION: A **Fréchet space** is a Hausdorff second countable topological vector space V with the topology which can be defined by a countable family of seminorms, complete with respect to this family of seminorms.

DEFINITION: Equivalent definition: let V be a vector space equipped with a collection of norms (or seminorms) $|\cdot|_i$, i=0,1,2,... and a topology which is given by the metric $d(x,y)=\sum_{i=0}^{\infty}2^{-i}\min(|x-y|_i,1)$, assumed to be non-degenerate. The space V is called a **Fréchet space** if this metric is complete.

REMARK: Completeness is equivalent to convergence of any sequence $\{a_i\}$ which is fundamental with respect to all the (semi-)norms $|\cdot|_i$.

REMARK: A sequence converges in the Fréchet topology given by $d \Leftrightarrow it$ converges in any of the (semi-)norms $|\cdot|_i$.

EXERCISE: Let V be a vector space, equipped with a translation-invariant metric d. Assume that the open balls are convex, and V is complete and second countable with respect to d. Prove that V is Fréchet, and all Fréchet spaces can be obtained this way.

C^{∞} -topology

DEFINITION: Let M be a Riemannian manifold, and $\nabla^i: C^\infty(M) \longrightarrow \Lambda^1(M)^{\otimes i}$ the iterated connection. Topology C^k on the space $C_c^\infty(M)$ of functions with compact support is defined by the norm

$$|\varphi|_{C^k} := \sup_{M} \sum_{i=0}^k |\nabla^i \varphi|.$$

EXERCISE: Prove that the space $C_c^{\infty}M$ of functions with compact support is a Fréchet space with respect to C^{∞} -topology.

REMARK: This topology is independent from the choice of the connection. This is an exercise.

REMARK: A tensor on a manifold is a section of the tensor bundle $TM^{\otimes i} \otimes T^*M^{\otimes j}$. The same way one defines the C^{∞} -topology on the space of tensors with compact support on M.

EXERCISE: Prove that the space of tensors with compact support is a **Fréchet space**, with the C^{∞} -topology defined as above.

C^0 -topology on the group of diffeomorphisms

DEFINITION: Let M be a compact Riemannian manifold. The C^0 -topology on the space of diffeomorphisms is defined by the metric $d(\tau_1, \tau_2) := \sup_{x \in M} d(\tau_1(x), \tau_2(x))$.

EXERCISE: Prove that this topology is independent from the choice of Riemannian structure.

EXERCISE: Prove that the group of homeomorphisms is complete with respect to d.

REMARK: This topology is not enough for many purposes, for example, the map $\tau \longrightarrow D_x \tau$ is not continuous in C^0 -topology, because it depends on the derivative of the diffeomorphism.

C^{∞} -topology on the group of diffeomorphisms

We define C^{∞} -topology on diffeomorphisms; it is strictly stronger (has more open sets) than the C^{0} -topology. We define it in such a way that the group structure on Diff(M) is compatible with the C^{∞} -topology. Then it would suffice to define topology on a sufficiently small C^{0} -neighbourhood of $Id \in Diff(M)$.

DEFINITION: Choose two atlases $\{U_i\}$ and $\{V_i\}$ on M, with the closure of each U_i compact in V_i . Then there exists a C^0 -neighbourhood \mathcal{U} of $\mathrm{Id} \in \mathrm{Diff}(M)$ such that for all $\tau \in \mathcal{U}$ we have $\tau(U_i) \subset V_i$. We define the C^∞ -topology on \mathcal{U} and expand it to $\mathrm{Diff}(M)$ using the group structure. For each $\tau \in \mathcal{U}$, we can interpret τ as a map from U_i to V_i , that is, as a collection of smooth functions. The C^∞ -topology on U is defined by uniform convergence of these functions with all their derivatives, that is, by C^∞ -topology on $\prod_i C^\infty(U_i, V_i)$.

THEOREM: The C^{∞} -topology on diffeomorphisms is independent from the choices we made. The diffeomorphism group with respect to this topology is a Fréchet-Lie group.

Proof: Left as an exercise.

Teichmüller space of geometric structures

Let \mathcal{C} be the set of all geometric structures of a given type, say, complex, or symplectic. We put C^{∞} -topology (the topology of uniform convergence with all derivatives) on \mathcal{C} . Let $\mathsf{Diff}_0(M)$ be the connected component of its diffeomorphism group $\mathsf{Diff}(M)$ (the group of isotopies).

DEFINITION: The quotient $C/Diff_0$ is called **Teichmüller space** of geometric strictures of this type.

DEFINITION: The group $\Gamma := Diff(M)/Diff_0(M)$ is called **the mapping** class group of M. It acts on Teich by homeomorphisms.

DEFINITION: The orbit space $C/Diff = Teich/\Gamma$ is called **the moduli** space of geometric structure of this type.

Today I will describe Teich in some interesting cases.

Teichmüller space for symplectic structures

DEFINITION: Let $\Gamma(\Lambda^2 M)$ be the space of all 2-forms on a manifold M, and $\operatorname{Symp} \subset \Gamma(\Lambda^2 M)$ the space of all symplectic 2-forms. We equip $\Gamma(\Lambda^2 M)$ with C^{∞} -topology of uniform convergence on compacts with all derivatives. Then $\Gamma(\Lambda^2 M)$ is a Frechet vector space, and Symp a Frechet manifold.

DEFINITION: Consider the group of diffeomorphisms, denoted Diff or Diff(M), as a Frechet Lie group, and denote its connected component ("group of isotopies") by Diff₀. The quotient group $\Gamma := \text{Diff} / \text{Diff}_0$ is called **the mapping** class group of M.

DEFINITION: Teichmüller space of symplectic structures on M is defined as a quotient Teich_s := Symp / Diff₀. The quotient Teich_s / Γ = Symp / Diff, is called the moduli space of symplectic structures.

REMARK: In many cases Γ acts on Teich_s with dense orbits, hence the moduli space is not always well defined.

DEFINITION: Two symplectic structures are called **isotopic** if they lie in the same orbit of $Diff_0$.

Moser's theorem

DEFINITION: Define the period map $Per: Teich_s \longrightarrow H^2(M,\mathbb{R})$ mapping a symplectic structure to its cohomology class.

THEOREM: (Moser, 1965)

The **Teichmüler space** Teich_s is a manifold (possibly, non-Hausdorff), and the **period map** Per: Teich_s $\longrightarrow H^2(M,\mathbb{R})$ is locally a diffeomorphism.

The proof is based on another theorem of Moser.

Theorem 1: (Moser)

Let ω_t , $t \in S$ be a smooth family of symplectic structures, parametrized by a connected manifold S. Assume that the cohomology class $[\omega_t] \in H^2(M)$ is constant in t. Then all ω_t are isotopic.

Proof of Moser theorem: The period map P: Symp $\longrightarrow H^2(M,\mathbb{R})$ is a smooth submersion. By Theorem 1, the conneced components of the fibers of P are orbits of $\mathsf{Diff}_0(M)$. Therefore, Per is locally a diffeomorphism. \blacksquare

Symplectic structures on a compact torus

DEFINITION: A symplectic structure ω on a torus is called **standard** if there exists a flat torsion-free connection preserving ω .

REMARK: Moser's theorem immediately implies that the set $Teich_{st}$ of standard symplectic structures is open in the Teichmüller space. Indeed, the period map from $Teich_{st}$ to $H^2(M)$ is also locally a diffeomorphism.

REMARK: It is not known if any non-standard symplectic structures exist (even in dimension =4).

THEOREM: Let $\Lambda_{nd}^2(H_1(T)) \subset H^2(T)$ be the space of symplectic forms on $H_1(T)$, where T is an even-dimensional torus. Consider the period map $\operatorname{Per}: \operatorname{Teich}_{st} \longrightarrow \Lambda_{nd}^2(H_1(T)) \subset H^2(T)$, where $\operatorname{Teich}_{st}$ is the $\operatorname{Teichmüller}$ space of standard symplectic structures on T. **Then** Per is a diffeomorphism on each connected component of $\operatorname{Teich}_{st}$.

Proof: Left as an exercise.

The kernel of a differential form

DEFINITION: Let Ω be a differential form on M. The **kernel**, or **the null-space** $\ker(\Omega) \subset TM$ of Ω is the space of all vector fields $X \in TM$ such that the contraction $i_X(\Omega)$ vanishes.

Proposition 1: Let Ω be a closed form on a manifold, and $B \subset TM$ its null-space. Then $[B,B] \subset B$.

Proof. Step 1: Let $X, X_1 \in \ker(\Omega)$, and $X_2, ..., X_p$ any vector fields. Cartan's formula implies that $\text{Lie}_X(\Omega) = d(i_X(\Omega)) + i_X(d\Omega) = 0$, hence $\text{Lie}_X(\Omega) = 0$.

Step 2: $\operatorname{Lie}_X(\Omega)(X_1,...,X_p) = \operatorname{Lie}_X(\Omega(X_1,...,X_p)) - \sum_{i=1}^p \Omega(X_1,...,[X,X_i],...X_p).$ All terms of this sum, except $\Omega([X,X_1],X_2,...,X_p)$, vanish, because $X_1 \in \ker(\Omega)$. Since $\operatorname{Lie}_X(\Omega) = 0$, we have $\Omega([X,X_1],X_2,...,X_p) = 0$ for all $X_2,...,X_p$. Therefore, $[X,X_1] \in \ker(\Omega)$.

Holomorphic symplectic form

DEFINITION: Holomorphic symplectic form on an almost complex manifold (M,I) is a non-degenerate closed differential 2-form $\Omega \in \Lambda^2(M,\mathbb{C})$ satisfying $d\Omega = 0$ and $\Omega(Ix,y) = \sqrt{-1} \Omega(x,y)$.

REMARK: Consider the Hodge decomposition $T_{\mathbb{C}}M=T^{1,0}M\oplus T^{0,1}M$ (decomposition according to eigenvalues of I). Since $\Omega(IX,Y)=\sqrt{-1}\ \Omega(X,Y)$ and $I(Z)=-\sqrt{-1}\ Z$ for any $Z\in T^{0,1}(M)$, we have $\ker(\Omega)\supset T^{0,1}(M)$. Since $\ker\Omega\cap T_{\mathbb{R}}M=0$, real dimension of its kernel is at most $\dim_{\mathbb{R}}M$, giving $\dim_{\mathbb{R}}\ker\Omega=\dim M$. **Therefore,** $\ker(\Omega)=T^{0,1}M$.

COROLLARY: Let (M, I) be an almost complex manifold admitting a holomorphic symplectic form. Then I is integrable (Proposition 1.)

COROLLARY: Let Ω be a holomorphically symplectic form on a complex manifold (M, I). Then I is determined by Ω uniquely.

C-symplectic structures

DEFINITION: Let M be a smooth 4n-dimensional manifold. A closed complex-valued form Ω on M is called **C-symplectic** if $\Omega^{n+1} = 0$ and $\Omega^n \wedge \overline{\Omega}^n$ is a non-degenerate volume form.

THEOREM: Let $\Omega \in \Lambda^2(M,\mathbb{C})$ be a C-symplectic form, and $T^{0,1}_{\Omega}(M)$ be equal to $\ker \Omega$, where

$$\ker \Omega := \{ v \in TM \otimes \mathbb{C} \mid \Omega \lrcorner v = 0 \}.$$

Then $T_{\Omega}^{0,1}(M) \oplus \overline{T_{\Omega}^{0,1}(M)} = TM \otimes_{\mathbb{R}} \mathbb{C}$, hence the sub-bundle $T_{\Omega}^{0,1}(M)$ defines an almost complex structure I_{Ω} on M. If, in addition, Ω is closed, I_{Ω} is integrable, and Ω is holomorphically symplectic on (M, I_{Ω}) .

Proof: Rank of Ω is 2n because $\Omega^{n+1}=0$ and $\Omega^n\wedge\overline{\Omega}^n$ is non-degenerate. Therefore, $\operatorname{rk} T^{0,1}_\Omega(M)=2n$. For any $v\in T^{0,1}_\Omega(M)\cap T^{0,1}_\Omega(M)$, the real part $\operatorname{Re} v$ of v belongs to $\operatorname{ker} \Omega$. This would imply that $\operatorname{Re} v\in\operatorname{Im}(\Omega^n\wedge\overline{\Omega}^n)$, which is impossible, because $\Omega^n\wedge\overline{\Omega}^n$ is non-degenerate. Then $T^{0,1}_\Omega(M)\oplus T^{0,1}_\Omega(M)=TM\otimes_{\mathbb{R}}\mathbb{C}$, defining an almost complex structure I_Ω . Its integrability immediately follows from Proposition 1. \blacksquare

C-symplectic structures on a K3 surface

C-symplectic structures on surfaces

CLAIM: In real dimension 4, a C-symplectic structure is determined by a pair $\omega_1 = \text{Re }\Omega, \omega_2 = \text{Im }\Omega$ of symplectic forms which satisfy $\omega_1^2 = \omega_2^2$ and $\omega_1 \wedge \omega_2 = 0$.

Proof: Let Ω be a C-symplectic form, $\omega_1=\text{Re}\,\Omega$ and $\omega_2=\text{Im}\,\Omega$. Then $\Omega \wedge \Omega = \omega_1^2 + \omega_2^2 + 2\sqrt{-1}\,\omega_1 \wedge \omega_2 = 0$, hence $\omega_1^2 = \omega_2^2$ and $\omega_1 \wedge \omega_2 = 0$. The form $\Omega \wedge \overline{\Omega} = \omega_1^2 + \omega_2^2$ is non-degenerate, hence $\omega_1^2 = \omega_2^2$ is non-degenerate.

Conversely, if $\omega_1^2 = \omega_2^2$ and $\omega_1 \wedge \omega_2 = 0$, we have $\Omega \wedge \Omega = 0$, and $\Omega \wedge \overline{\Omega} = \omega_1^2 + \omega_2^2$ is non-degenerate if ω_i is non-degenerate.

REMARK: For K3 surface, the local Torelli theorem would imply that the period map Per : CTeich $\longrightarrow H^2(M,\mathbb{C})$ takes ω_1,ω_2 to their cohomology classes which satisfy $[\omega_1]^2 = [\omega_2]^2$ and $[\omega_1] \wedge [\omega_2] = 0$.

Period map for holomorphically symplectic manifolds

DEFINITION: Let (M, I, Ω) be a holomorphically symplectic manifold, and CSymp the space of all C-symplectic forms. The quotient CTeich := $\frac{\text{CSymp}}{\text{Diff}_0}$ is called **the holomorphically symplectic Teichmüller space**, and the map CTeich $\longrightarrow H^2(M, \mathbb{C})$ taking (M, I, Ω) to the cohomology class $[\Omega] \in H^2(M, \mathbb{C})$ **the holomorphically symplectic period map**.

We want to prove that **the period map is locally an embedding.** This is immediately implied by the following version of Moser's lemma.

THEOREM: Let (M, I_t, Ω_t) , $t \in [0, 1]$ be a family of C-symplectic forms on a compact manifold. Assume that the cohomology class $[\Omega_t] \in H^2(M, \mathbb{C})$ is constant, and $H^{0,1}(M, I_t) = 0$, where $H^{0,1}(M, I_t) = H^1(M, \mathcal{O}_{(M,I_t)})$ is cohomology of the sheaf of holomorphic functions. Then there exists a smooth family of diffeomorphisms $V_t \in \mathsf{Diff}_0(M)$, such that $V_t^*\Omega_0 = \Omega_t$.

Proof: Later in this course.

Local Torelli theorem

REMARK: In real dimension 4, C-symplectic form is a pair ω_1, ω_2 of symplectic forms which satisfy $\omega_1^2 = \omega_2^2$ and $\omega_1 \wedge \omega_2 = 0$.

THEOREM: Let (M,I,Ω) be a complex holomorphically symplectic surface with $H^{0,1}(M)=0$, that is, a K3 surface. Consider the period map $\operatorname{Per}:\operatorname{CTeich}\longrightarrow H^2(M,\mathbb{C})$ taking (M,I,Ω) to the cohomology class $[\Omega]\in H^2(M,\mathbb{C})$. Then Per is a local diffeomorphism of CTeich to the period space $Q:=\{v\in H^2(M,\mathbb{C})\mid \int_M v\wedge v=0, \int_M v\wedge \overline{v}>0\}.$

Proof: Later in this course.

A caution: CTeich is smooth, but non-Hausdorff.

The period space of complex structures

DEFINITION: Since $H^{2,0}(M)=\mathbb{C}$, the space CTeich is \mathbb{C}^* -fibered over the space Teich of complex structures on K3. The corresponding period space is denoted \mathbb{P} er := $\{v\in \mathbb{P}H^2(M,\mathbb{C}) \mid \int_M v \wedge v = 0, \int_M v \wedge \overline{v} > 0\}$.

The following theorem follows from local Torelli for C-symplectic structures.

PROPOSITION: (local Torelli theorem for complex structures)

Let Teich be the space of complex structures on a K3 surface, and Per : Teich $\longrightarrow \mathbb{P}$ er the map taking (M,I) to the line $H^{2,0}(M) \subset H^2(M,\mathbb{C})$. Then Per is a local diffeomorphism.

Proof: The group \mathbb{C}^* acts on CTeich and on Q, which are locally diffeomorphic, hence Teich = CTeich $/\mathbb{C}^*$ is locally diffeomorphic to \mathbb{P} er = Q/\mathbb{C}^* .

The period space of complex structures is a Grassmannian

CLAIM: $\mathbb{P}er = SO(b_2 - 3, 3)/SO(2) \times SO(b_2 - 3, 1).$

Proof. First version: Indeed, the group $SO(H^2(M,\mathbb{R}),q) = SO(b_2-3,3)$ acts transitively on \mathbb{P} er, and $SO(2) \times SO(b_2-3,1)$ is a stabilizer of a point.

Proof. Second version: Take a non-zero vector v in a line $l \in \mathbb{P}$ er. Since (v,v)=0 and $(v,\overline{v})>0$, the vectors v and \overline{v} are not proportional, hence they generate a 2-dimensional plane $P\subset H^2(M,\mathbb{R})$ which is positive, because $(v,\overline{v})>0$, hence belongs to the positive, oriented Grassmannian

$$Gr_{++}(H^2(M,\mathbb{R})) = SO(b_2 - 3,3)/SO(2) \times SO(b_2 - 3,1).$$

Conversely, for any $P \subset \operatorname{Gr}_{++}(H^2(M,\mathbb{R}))$, its complexification $P \otimes \mathbb{C}$ contains two lines l_1, l_2 which belong to the quadric q(v, v) = 0. These two lines are distinguished by their orientation. This implies that **the correspondence** $\operatorname{\mathbb{P}er} \to SO(b_2-3,3)/SO(2) \times SO(b_2-3,1)$ **taking** $\Omega \in Q$ **to** $\langle \operatorname{Re} \omega, \operatorname{Im} \Omega \rangle \in \operatorname{Gr}_{++}(H^2(M,\mathbb{R}))$ **is bijective.**