K3 surfaces

lecture 7: Intersection form of a K3 surface

Misha Verbitsky

IMPA, sala 236

September 23, 2024, 17:00

K3 surfaces are holomorphically symplectic (reminder)

DEFINITION: A complex surface is a compact, complex manifold of complex dimension 2.

DEFINITION: A K3 surface is a Kähler complex surface M with $b_1 = 0$ and $c_1(M, \mathbb{Z}) = 0$.

REMARK: All surfaces with b_1 even are Kähler (Kodaira, Buchdahl-Lamari).

REMARK: Since $b_1(M) = 0$, for a K3 we have $H^1(\mathcal{O}_M) = 0$ (follows from Hodge theory). The canonical bundle of a K3 surface is trivial. This follows from the exponential exact sequence $0 = H^1(\mathcal{O}_M) \longrightarrow \mathrm{Pic}^1(M) \stackrel{c_1}{\longrightarrow}$ $H^2(M,\mathbb{Z})$

COROLLARY: A K3 surface is holomorphically symplectic.

Period map for holomorphically symplectic manifolds (reminder)

DEFINITION: Let (M, I, Ω) be a holomorphically symplectic manifold, and CSymp the space of all C-symplectic forms. The quotient CTeich := $\frac{CSymp}{Diff}$ $\overline{\mathsf{Diff}_0}$ is called the holomorphically symplectic Teichmüller space, and the map CTeich $\longrightarrow H^2(M,\mathbb{C})$ taking (M,I,Ω) to the cohomology class $[\Omega] \in H^2(M,\mathbb{C})$ the holomorphically symplectic period map.

We want to prove that the period map is locally an embedding. This is immediately implied by the following version of Moser's lemma.

THEOREM: Let (M, I_t, Ω_t) , $t \in [0, 1]$ be a family of C-symplectic forms on a compact manifold. Assume that the cohomology class $[\Omega_t] \in H^2(M, \mathbb{C})$ is constant, and $H^{0,1}(M,I_t)=$ 0, where $H^{0,1}(M,I_t)=H^1(M,\mathbb{O}_{(M,I_t)})$ is cohomology of the sheaf of holomorphic functions. Then there exists a smooth family of diffeomorphisms $V_t \in \mathrm{Diff}_0(M)$, such that $V_t^* \Omega_0 = \Omega_t$.

Proof: Later in this course.

Intersection form on $\text{Re }\Lambda^{2,0}(V)$

Lemma A: Let (V, I, g) be a 4-dimensional space equipped with a complex structure operator $I \in \mathsf{End}(V)$, $I^2 = -\mathsf{Id}$, and $W := \mathsf{Re}(\mathsf{\Lambda}^{2,0}(V,I)) \subset \mathsf{\Lambda}^4(V)$ Then for any non-zero $\alpha \in W$, one has $\frac{\alpha \wedge \alpha}{\text{Vol}} > 0$.

Proof: The space $\Lambda^{2,0}(V, I) \subset \Lambda^2(V \otimes_{\mathbb{R}} \mathbb{C})$ is 1-dimensional over \mathbb{C} . Let $\Omega = \omega_1 +$ √ $\overline{-1}\,\omega_2$ be its generator, with $\omega_1 = \mathsf{Re}\,\Omega$, $\omega_2 = \mathsf{Im}\,\Omega$. Then

$$
0 = \Omega \wedge \Omega = \omega_1^2 - \omega_2^2 + 2\sqrt{-1} \omega_1 \wedge \omega_2
$$

implies $\omega_1^2 = \omega_2^2$ 2. By definition of the orientation in V, one has $\frac{\Omega \wedge \overline{\Omega}}{\text{Vol}} > 0$, but $\Omega \wedge \overline{\Omega} = \omega_1^2 + \omega_2^2 = 2\omega_2^2$ 2^2 , hence $\omega_1^2 > 0$.

Intersection form on $\mathsf{Re}\,\Lambda^{1,1}_{prim}(V)$

Lemma B: Let (V, I, g) be a 4-dimensional space equipped with a complex structure operator $I \in \mathsf{End}(V)$, $I^2 = -\text{Id}$, $\omega \in \Lambda^{1,1}(V)$ a Hermitian form, and $\Lambda_{prim}^{1,1}(V) \subset \Lambda^{1,1}(V,I) \subset \Lambda^{4}(V)$ be the space of $(1,1)$ -forms α such that $\alpha\wedge\omega=0$. Then for any non-zero $\alpha\in W$, one has $\frac{\alpha\wedge\alpha}{\mathsf{Vol}}< 0$.

Proof. Step 1: Consider the Hodge star operator $*$: $\Lambda^2(V) \longrightarrow \Lambda^2(V)$. Clearly, $*^2 =$ Id, hence all eigenvalues of $*$ are ± 1 . If we invert the orientation, ∗ becomes −∗; this implies that ∗ is conjugated to −∗, hence the multiplicity of 1 and -1 is equal 3. Denote the corresponding eigenspaces as $\Lambda^2 V =$ $\Lambda^+V \oplus \Lambda^-V$. This decomposition is clearly orthogonal with respect to the pairing $\alpha, \beta \longrightarrow \frac{\alpha \wedge \beta}{\text{Vol}}$.

Step 2: Let us identify V with quaternionic algebra \mathbb{H} Then the three symplectic structures Re Ω , Im Ω , ω can be understood as Hermitian forms for I, J, K, which implies that * $\omega = \omega$, and the same is true for Re Ω , Im Ω . Therefore, $\langle \text{Re}\,\Omega,\text{Im}\,\Omega,\omega\rangle = \Lambda^+V.$

Step 3: The space $\Lambda_{prim}^{1,1}(V)$ is 3-dimensional and orthogonal to the 3dimensional space $\langle \text{Re}\,\Omega,\text{Im}\,\Omega,\omega\rangle$. The space $\langle \text{Re}\,\Omega,\text{Im}\,\Omega,\omega\rangle$ is equal to Λ^+V , as follows from Step 2. Then $\Lambda_{prim}^{1,1}(V)=\langle {\rm Re}\,\Omega, {\rm Im}\,\Omega,\omega\rangle^\perp=\Lambda^-V.$

Hodge index formula

 ${\sf THEOREM}\text{: Let }(M,I,\omega)$ be a complex Kähler surface, and $H^{1,1}_{prim}(M)$ the kernel of the natural map $\alpha \to \int_M \alpha \wedge \omega$. Then the intersection form is positive definite on the space $\text{Re } H^{2,0}(M) \oplus \mathbb{R}\omega$ and negative definite in H $_{prim}^{1,1}(M).$

Proof. Step 1: It is clear that the intersection form is positive definite on the space $\langle \omega \rangle$, which is orthogonal to Re $H^{2,0}(M)$. On Re $\Lambda^{2,0}(M)$, the form $\alpha \to \alpha \wedge \alpha$, taking value in $C^{\infty}M$, is positive by the previous lemma, hence the intersection form is positive definite on $(2,0) + (0,2)$ real cohomology classes. It remains only to prove it is negative definite on $H^{1,1}_{prim}(M)$.

Step 2: The operator $\alpha \to \alpha \wedge \omega$ takes harmonic form to harmonic, as follows from Hodge theory. Therefore, for any $[\alpha]\in H^{1,1}_{prim}(M)$, its harmonic representative α satisfies $\alpha \wedge \omega = 0$. Now, Lemma B implies that the intersection form is negative definite on $H^{1,1}_{prim}(M).$

Local Torelli theorem

REMARK: In real dimension 4, C-symplectic form is a pair ω_1, ω_2 of symplectic forms which satisfy $\omega_1^2=\omega_2^2$ $\frac{2}{2}$ and $\omega_1 \wedge \omega_2 = 0$.

THEOREM: Let (M, I, Ω) be a complex holomorphically symplectic surface with $H^{0,1}(M) = 0$, that is, a K3 surface. Consider the period map Per : CTeich $\longrightarrow H^2(M,\mathbb{C})$ taking (M,I,Ω) to the cohomology class $[\Omega] \in$ $H^2(M, \mathbb{C})$. Then Per is a local diffeomorpism of CTeich to the period space $Q := \{ v \in H^2(M, \mathbb{C}) \mid \int_M v \wedge v = 0, \int_M v \wedge \overline{v} > 0 \}.$

Proof: Later in this course.

A caution: CTeich is smooth, but non-Hausdorff.

The period space of complex structures

DEFINITION: Since $H^{2,0}(M) = \mathbb{C}$, the space CTeich is \mathbb{C}^* -fibered over the space Teich of complex structures on K3. The corresponding period space is denoted $\mathbb{P}\mathrm{er}:=\{v\in \mathbb{P} H^2(M,\mathbb{C})\quad|\quad \int_M v\wedge v=0, \int_M v\wedge \overline{v}>0\}.$

The following theorem follows from local Torelli for C-symplectic structures.

PROPOSITION: (local Torelli theorem for complex structures) Let Teich be the space of complex structures on a K3 surface, and Per : Teich \longrightarrow Per the map taking (M, I) to the line $H^{2,0}(M) \subset H^2(M, \mathbb{C})$. Then Per is a local diffeomorphism.

Proof: The group \mathbb{C}^* acts on CTeich and on Q , which are locally diffeomorphic, hence Teich = CTeich / \mathbb{C}^* is locally diffeomorphic to \mathbb{P} er = Q/\mathbb{C}^* . \blacksquare

The period space of complex structures is a Grassmannian

CLAIM: $Per = SO(b_2 - 3, 3)/SO(2) \times SO(b_2 - 3, 1)$.

Proof. First version: Indeed, the group $SO(H^2(M,\mathbb{R}),q) = SO(b_2-3,3)$ acts transitively on Per, and $SO(2) \times SO(b_2-3,1)$ is a stabilizer of a point.

Proof. Second version: Take a non-zero vector v in a line $l \in \mathbb{P}$ er. Since $(v, v) = 0$ and $(v, \overline{v}) > 0$, the vectors v and \overline{v} are not proportional, hence they generate a 2-dimensional plane $P \subset H^2(M,\mathbb{R})$ which is positive, because $(v, \overline{v}) > 0$, hence belongs to the positive, oriented Grassmannian

$$
Gr_{++}(H^2(M,\mathbb{R})) = SO(b_2-3,3)/SO(2) \times SO(b_2-3,1).
$$

Conversely, for any $P \subset \text{Gr}_{++}(H^2(M,\mathbb{R}))$, its complexification $P \otimes \mathbb{C}$ contains two lines l_1, l_2 which belong to the quadric $q(v, v) = 0$. These two lines are distinguished by their orientation. This implies that the correspondence Per $\rightarrow SO(b_2-3,3)/SO(2)\times SO(b_2-3,1)$ taking $\Omega \in Q$ to \langle Re ω , Im $\Omega \rangle \in$ $Gr_{++}(H^2(M,\mathbb{R}))$ is bijective. \blacksquare

The set of all classes of type (1,1)

Corollary 1: Let $U \subset T$ eich be an open neighbourhood, and $V \subset H^2(M,\mathbb{R})$ the set of all cohomology classes which are of type $(1,1)$ for some $I \in U$. Then V is open in $H^2(M,\mathbb{R})$.

Proof. Step 1: Let $I \in$ Teich and $P \in$ Gr₊₊($H^2(M, \mathbb{R})$) be the corresponding 2-space, $P = \mathsf{Re}(H^{2,0}(M,I))$. Then $H^{1,1}(M) = P^{\perp}.$

Step 2: Consider a 2-dimensional positive subspace $P \in \text{Gr}_{++}(H^2(M,\mathbb{R}))$ associated with $I \in U$. Since Teich is locally diffeomorphic to $Gr_{++}(H^2(M,\mathbb{R}))$, it would suffice to show that for some neighbourhood $U_1 \ni P$ in $Gr_{++}(H^2(M,\mathbb{R}))$, the union $\bigcup_{P_1\in U_1}P_1^{\perp}$ H_1^\perp is open in $H^2(M,\mathbb{R})$.

Step 3: Consider a non-zero element $y \in H^2(M,\mathbb{R})$, which belongs to a sufficiently small neighbourhood U_x of $x\in P^{\perp}$, and let P_y be the projection of P to y^\perp . Since y is close to $x,$ this projection is non-degenerate, and its image is a positive 2-plane. This defines a map $\Phi : U_x \longrightarrow Gr_{++}$. Let $W := \Phi(U_x) \cap \text{Per}(U)$. By construction, the set S of all $y \in H^2(M, \mathbb{R})$ such that $y\bot P'$ for some $P'\in W$ contains U_x , hence it is open in $H^2(M,\mathbb{R}).$ However, S is the union of $H^{1,1}(I)$ for all $I \in$ Teich such that $\text{Per}(I) \in \Phi(U_x) \cap \text{Per}(U)$, hence it belongs to $\bigcup_{I\in U}H^{1,1}(M,I).$

Intersection form for a K3 surface

Lemma 1: Let η be an odd intersection form on $V_{\mathbb{Z}} = \mathbb{Z}^n$, and let π : $V_{\mathbb{Z}}\backslash 0 \longrightarrow \mathbb{P}(V \otimes_{\mathbb{Z}} \mathbb{R})$ be the standard projection. Consider the set R of odd vectors in V. Then $\pi(R)$ is dense in $\mathbb{P}(V \otimes_{\mathbb{Z}} \mathbb{R})$.

Proof. Step 1: Let $s \in V_{\mathbb{Z}}\backslash 0$ be any vector. To prove that $\pi(R)$ is dense, it will suffice to fine an element of $\pi(R)$ in any neighbourhood of $\pi(s)$.

Step 2: Let $r_0 \in R$. Then all vectors in the sequence $r_n := r_0 + 2ns$ are odd, and $\lim_i \pi(r_i) = s$.

THEOREM: The intersection form of a K3 surface is even.

Proof. Step 1: Going ad absurdum, assume that the intersection form of a K3 is odd. Using Corollary 1 and Lemma 1, we obtain a complex structure I and an odd vector $r \in H^{1,1}(M,I)$. Indeed, by Corollary 1, the union $\bigcup_{I\in\mathsf{Teich}}H^{1,1}(M,I)$ of the set of all $(\mathsf{1},\mathsf{1})$ -vectors is open in $H^2(M,R)$ and by Lemma 1 there are odd vectors in any \mathbb{R}^* -invariant open subset of $H^2(M,R)$.

Step 2: Let L be a line bundle on (M, I) such that $c_1(L) = r$ has odd selfintersection. By Riemann-Roch-Hirzebruch formula, $\chi(L) = 2 + \frac{1}{2}$ $\int_M r \wedge r$, hence the self-intersection of $c_1(L)$ is even. \blacksquare

Voting

Order of the next lectures (please vote):

1. Local Torelli (3-4 lectures), then Lefschetz hyperplane section, then density of quartics.

- 2. Density of quartics, then Lefschetz hyperplane section, then local Torelli.
- 3. Lefschetz hyperplane section, density of quartics, local Torelli.