K3 surfaces

lecture 7: Intersection form of a K3 surface

Misha Verbitsky

IMPA, sala 236

September 23, 2024, 17:00

K3 surfaces are holomorphically symplectic (reminder)

DEFINITION: A complex surface is a compact, complex manifold of complex dimension 2.

DEFINITION: A K3 surface is a Kähler complex surface M with $b_1 = 0$ and $c_1(M, \mathbb{Z}) = 0$.

REMARK: All surfaces with b_1 even are Kähler (Kodaira, Buchdahl-Lamari).

REMARK: Since $b_1(M) = 0$, for a K3 we have $H^1(\mathcal{O}_M) = 0$ (follows from Hodge theory). The canonical bundle of a K3 surface is trivial. This follows from the exponential exact sequence $0 = H^1(\mathcal{O}_M) \longrightarrow \operatorname{Pic}^1(M) \xrightarrow{c_1} H^2(M,\mathbb{Z})$

COROLLARY: A K3 surface is holomorphically symplectic.

M. Verbitsky

Period map for holomorphically symplectic manifolds (reminder)

DEFINITION: Let (M, I, Ω) be a holomorphically symplectic manifold, and CSymp the space of all C-symplectic forms. The quotient CTeich := $\frac{CSymp}{Diff_0}$ is called **the holomorphically symplectic Teichmüller space**, and the map CTeich $\longrightarrow H^2(M, \mathbb{C})$ taking (M, I, Ω) to the cohomology class $[\Omega] \in H^2(M, \mathbb{C})$ **the holomorphically symplectic period map**.

We want to prove that **the period map is locally an embedding.** This is immediately implied by the following version of Moser's lemma.

THEOREM: Let (M, I_t, Ω_t) , $t \in [0, 1]$ be a family of C-symplectic forms on a compact manifold. Assume that the cohomology class $[\Omega_t] \in H^2(M, \mathbb{C})$ is constant, and $H^{0,1}(M, I_t) = 0$, where $H^{0,1}(M, I_t) = H^1(M, \Theta_{(M, I_t)})$ is cohomology of the sheaf of holomorphic functions. Then **there exists a smooth family of diffeomorphisms** $V_t \in \text{Diff}_0(M)$, such that $V_t^*\Omega_0 = \Omega_t$.

Proof: Later in this course.

Intersection form on $\operatorname{Re} \Lambda^{2,0}(V)$

Lemma A: Let (V, I, g) be a 4-dimensional space equipped with a complex structure operator $I \in \text{End}(V)$, $I^2 = -\text{Id}$, and $W := \text{Re}(\Lambda^{2,0}(V,I)) \subset \Lambda^4(V)$ **Then for any non-zero** $\alpha \in W$, one has $\frac{\alpha \wedge \alpha}{\text{Vol}} > 0$.

Proof: The space $\Lambda^{2,0}(V,I) \subset \Lambda^2(V \otimes_{\mathbb{R}} \mathbb{C})$ is 1-dimensional over \mathbb{C} . Let $\Omega = \omega_1 + \sqrt{-1} \omega_2$ be its generator, with $\omega_1 = \operatorname{Re}\Omega$, $\omega_2 = \operatorname{Im}\Omega$. Then

$$0 = \Omega \wedge \Omega = \omega_1^2 - \omega_2^2 + 2\sqrt{-1}\,\omega_1 \wedge \omega_2$$

implies $\omega_1^2 = \omega_2^2$. By definition of the orientation in V, one has $\frac{\Omega \wedge \overline{\Omega}}{\text{Vol}} > 0$, but $\Omega \wedge \overline{\Omega} = \omega_1^2 + \omega_2^2 = 2\omega_2^2$, hence $\omega_1^2 > 0$.

Intersection form on $\operatorname{Re} \Lambda_{prim}^{1,1}(V)$

Lemma B: Let (V, I, g) be a 4-dimensional space equipped with a complex structure operator $I \in \text{End}(V)$, $I^2 = -\text{Id}$, $\omega \in \Lambda^{1,1}(V)$ a Hermitian form, and $\Lambda^{1,1}_{prim}(V) \subset \Lambda^{1,1}(V,I) \subset \Lambda^4(V)$ be the space of (1,1)-forms α such that $\alpha \wedge \omega = 0$. Then for any non-zero $\alpha \in W$, one has $\frac{\alpha \wedge \alpha}{Vol} < 0$.

Proof. Step 1: Consider the Hodge star operator $* : \Lambda^2(V) \longrightarrow \Lambda^2(V)$. Clearly, $*^2 = \text{Id}$, hence all eigenvalues of * are ± 1 . If we invert the orientation, * becomes -*; this implies that * is conjugated to -*, hence the multiplicity of 1 and -1 is equal 3. Denote the corresponding eigenspaces as $\Lambda^2 V =$ $\Lambda^+ V \oplus \Lambda^- V$. This decomposition is clearly orthogonal with respect to the pairing $\alpha, \beta \longrightarrow \frac{\alpha \wedge \beta}{\text{Vol}}$.

Step 2: Let us identify V with quaternionic algebra \mathbb{H} Then the three symplectic structures $\operatorname{Re}\Omega, \operatorname{Im}\Omega, \omega$ can be understood as Hermitian forms for I, J, K, which implies that $*\omega = \omega$, and the same is true for $\operatorname{Re}\Omega, \operatorname{Im}\Omega$. Therefore, $\langle \operatorname{Re}\Omega, \operatorname{Im}\Omega, \omega \rangle = \Lambda^+ V$.

Step 3: The space $\Lambda_{prim}^{1,1}(V)$ is 3-dimensional and orthogonal to the 3-dimensional space $\langle \operatorname{Re}\Omega, \operatorname{Im}\Omega, \omega \rangle$. The space $\langle \operatorname{Re}\Omega, \operatorname{Im}\Omega, \omega \rangle$ is equal to $\Lambda^+ V$, as follows from Step 2. Then $\Lambda_{prim}^{1,1}(V) = \langle \operatorname{Re}\Omega, \operatorname{Im}\Omega, \omega \rangle^{\perp} = \Lambda^- V$.

Hodge index formula

THEOREM: Let (M, I, ω) be a complex Kähler surface, and $H_{prim}^{1,1}(M)$ the kernel of the natural map $\alpha \to \int_M \alpha \wedge \omega$. Then **the intersection form is positive definite on the space** $\operatorname{Re} H^{2,0}(M) \oplus \mathbb{R}\omega$ and negative definite in $H_{prim}^{1,1}(M)$.

Proof. Step 1: It is clear that the intersection form is positive definite on the space $\langle \omega \rangle$, which is orthogonal to $\operatorname{Re} H^{2,0}(M)$. On $\operatorname{Re} \Lambda^{2,0}(M)$, the form $\alpha \to \alpha \wedge \alpha$, taking value in $C^{\infty}M$, is positive by the previous lemma, hence the intersection form is positive definite on (2,0) + (0,2) real cohomology classes. It remains only to prove it is negative definite on $H^{1,1}_{prim}(M)$.

Step 2: The operator $\alpha \to \alpha \land \omega$ takes harmonic form to harmonic, as follows from Hodge theory. Therefore, for any $[\alpha] \in H^{1,1}_{prim}(M)$, its harmonic representative α satisfies $\alpha \land \omega = 0$. Now, Lemma B implies that the intersection form is negative definite on $H^{1,1}_{prim}(M)$.

Local Torelli theorem

REMARK: In real dimension 4, C-symplectic form is a pair ω_1, ω_2 of symplectic forms which satisfy $\omega_1^2 = \omega_2^2$ and $\omega_1 \wedge \omega_2 = 0$.

THEOREM: Let (M, I, Ω) be a complex holomorphically symplectic surface with $H^{0,1}(M) = 0$, that is, a K3 surface. Consider the period map Per : CTeich $\longrightarrow H^2(M, \mathbb{C})$ taking (M, I, Ω) to the cohomology class $[\Omega] \in H^2(M, \mathbb{C})$. Then Per is a local diffeomorphism of CTeich to the period space $Q := \{v \in H^2(M, \mathbb{C}) \mid \int_M v \wedge v = 0, \int_M v \wedge \overline{v} > 0\}.$

Proof: Later in this course.

A caution: CTeich is smooth, but non-Hausdorff.

The period space of complex structures

DEFINITION: Since $H^{2,0}(M) = \mathbb{C}$, the space CTeich is \mathbb{C}^* -fibered over the space Teich of complex structures on K3. The corresponding period space is denoted \mathbb{P} er := { $v \in \mathbb{P}H^2(M, \mathbb{C}) \mid \int_M v \wedge v = 0, \int_M v \wedge \overline{v} > 0$ }.

The following theorem follows from local Torelli for C-symplectic structures.

PROPOSITION: (local Torelli theorem for complex structures) Let Teich be the space of complex structures on a K3 surface, and Per : Teich \longrightarrow Per the map taking (M, I) to the line $H^{2,0}(M) \subset H^2(M, \mathbb{C})$. Then Per is a local diffeomorphism.

Proof: The group \mathbb{C}^* acts on CTeich and on Q, which are locally diffeomorphic, hence Teich = CTeich / \mathbb{C}^* is locally diffeomorphic to \mathbb{P} er = Q/\mathbb{C}^* .

The period space of complex structures is a Grassmannian

CLAIM: $\mathbb{P}er = SO(b_2 - 3, 3)/SO(2) \times SO(b_2 - 3, 1).$

Proof. First version: Indeed, the group $SO(H^2(M, \mathbb{R}), q) = SO(b_2 - 3, 3)$ acts transitively on \mathbb{P} er, and $SO(2) \times SO(b_2 - 3, 1)$ is a stabilizer of a point.

Proof. Second version: Take a non-zero vector v in a line $l \in \mathbb{P}$ er. Since (v, v) = 0 and $(v, \overline{v}) > 0$, the vectors v and \overline{v} are not proportional, hence they generate a 2-dimensional plane $P \subset H^2(M, \mathbb{R})$ which is positive, because $(v, \overline{v}) > 0$, hence belongs to the positive, oriented Grassmannian

$$\operatorname{Gr}_{++}(H^2(M,\mathbb{R})) = SO(b_2 - 3, 3)/SO(2) \times SO(b_2 - 3, 1).$$

Conversely, for any $P \subset \text{Gr}_{++}(H^2(M,\mathbb{R}))$, its complexification $P \otimes \mathbb{C}$ contains two lines l_1, l_2 which belong to the quadric q(v, v) = 0. These two lines are distinguished by their orientation. This implies that **the correspondence** $\mathbb{P}\text{er} \to SO(b_2 - 3, 3)/SO(2) \times SO(b_2 - 3, 1)$ **taking** $\Omega \in Q$ **to** $\langle \text{Re}\omega, \text{Im} \Omega \rangle \in$ $\text{Gr}_{++}(H^2(M,\mathbb{R}))$ **is bijective.**

The set of all classes of type (1,1)

Corollary 1: Let $U \subset$ Teich be an open neighbourhood, and $V \subset H^2(M, \mathbb{R})$ the set of all cohomology classes which are of type (1,1) for some $I \in U$. **Then** V is open in $H^2(M, \mathbb{R})$.

Proof. Step 1: Let $I \in$ Teich and $P \in$ Gr₊₊($H^2(M, \mathbb{R})$) be the corresponding 2-space, $P = \text{Re}(H^{2,0}(M, I))$. Then $H^{1,1}(M) = P^{\perp}$.

Step 2: Consider a 2-dimensional positive subspace $P \in Gr_{++}(H^2(M,\mathbb{R}))$ associated with $I \in U$. Since Teich is locally diffeomorphic to $Gr_{++}(H^2(M,\mathbb{R}))$, it would suffice to show that for some neighbourhood $U_1 \ni P$ in $Gr_{++}(H^2(M,\mathbb{R}))$, the union $\bigcup_{P_1 \in U_1} P_1^{\perp}$ is open in $H^2(M,\mathbb{R})$.

Step 3: Consider a non-zero element $y \in H^2(M, \mathbb{R})$, which belongs to a sufficiently small neighbourhood U_x of $x \in P^{\perp}$, and let P_y be the projection of P to y^{\perp} . Since y is close to x, this projection is non-degenerate, and its image is a positive 2-plane. This defines a map $\Phi : U_x \longrightarrow \text{Gr}_{++}$. Let $W := \Phi(U_x) \cap \text{Per}(U)$. By construction, the set S of all $y \in H^2(M, \mathbb{R})$ such that $y \perp P'$ for some $P' \in W$ contains U_x , hence it is open in $H^2(M, \mathbb{R})$. However, S is the union of $H^{1,1}(I)$ for all $I \in \text{Teich}$ such that $\text{Per}(I) \in \Phi(U_x) \cap \text{Per}(U)$, hence it belongs to $\bigcup_{I \in U} H^{1,1}(M, I)$.

Intersection form for a K3 surface

Lemma 1: Let η be an odd intersection form on $V_{\mathbb{Z}} = \mathbb{Z}^n$, and let π : $V_{\mathbb{Z}} \setminus 0 \longrightarrow \mathbb{P}(V \otimes_{\mathbb{Z}} \mathbb{R})$ be the standard projection. Consider the set R of odd vectors in V. Then $\pi(R)$ is dense in $\mathbb{P}(V \otimes_{\mathbb{Z}} \mathbb{R})$.

Proof. Step 1: Let $s \in V_{\mathbb{Z}} \setminus 0$ be any vector. To prove that $\pi(R)$ is dense, it will suffice to fine an element of $\pi(R)$ in any neighbourhood of $\pi(s)$.

Step 2: Let $r_0 \in R$. Then all vectors in the sequence $r_n := r_0 + 2ns$ are odd, and $\lim_i \pi(r_i) = s$.

THEOREM: The intersection form of a K3 surface is even.

Proof. Step 1: Going ad absurdum, assume that the intersection form of a K3 is odd. Using Corollary 1 and Lemma 1, we obtain a complex structure *I* and an odd vector $r \in H^{1,1}(M,I)$. Indeed, by Corollary 1, the union $\bigcup_{I \in \text{Teich}} H^{1,1}(M,I)$ of the set of all (1,1)-vectors is open in $H^2(M,R)$ and by Lemma 1 there are odd vectors in any \mathbb{R}^* -invariant open subset of $H^2(M,R)$.

Step 2: Let *L* be a line bundle on (M, I) such that $c_1(L) = r$ has odd self-intersection. By Riemann-Roch-Hirzebruch formula, $\chi(L) = 2 + \frac{1}{2} \int_M r \wedge r$, hence **the self-intersection of** $c_1(L)$ **is even.**

Voting

Order of the next lectures (please vote):

1. Local Torelli (3-4 lectures), then Lefschetz hyperplane section, then density of quartics.

- 2. Density of quartics, then Lefschetz hyperplane section, then local Torelli.
- 3. Lefschetz hyperplane section, density of quartics, local Torelli.