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K3 surfaces are holomorphically symplectic (reminder)

DEFINITION: A complex surface is a compact, complex manifold of com-
plex dimension 2.

DEFINITION: A K3 surface is a Kahler complex surface M with b1 = 0O
and ¢y (M,Z) = 0.

REMARK: AIll surfaces with b; even are Kahler (Kodaira, Buchdahl-
Lamari).

REMARK: Since b;(M) = 0, for a K3 we have H1(O,;) = 0 (follows from
Hodge theory). The canonical bundle of a K3 surface is trivial. This
follows from the exponential exact sequence 0 = H1(©,;) — Picl(M) AL
H?(M,7)

COROLLARY: A K3 surface is holomorphically symplectic.
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Period map for holomorphically symplectic manifolds (reminder)

DEFINITION: Let (M,1,92) be a holomorphically symplectic manifold, and
CSymp the space of all C-symplectic forms. The quotient CTeich := CS?{{;D
is called the holomorphically symplectic Teichmuller space, and the map
CTeich — H2(M, C) taking (M, I, Q) to the cohomology class [Q2] € H2(M,C)

the holomorphically symplectic period map.

We want to prove that the period map is locally an embedding. This is
immediately implied by the following version of Moser’s lemma.

THEOREM: Let (M, 1;,€2:), t € [0,1] be a family of C-symplectic forms on
a compact manifold. Assume that the cohomology class [$2] € H2(M,C) is
constant, and H%1(M,I;) = 0, where H%Y(M, I;) = H'(M, Oy, 1,)) is coho-
mology of the sheaf of holomorphic functions. Then there exists a smooth
family of diffeomorphisms V; € Diffo(M ), such that V;*Qqy = ;.

Proof: Later in this course.
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Intersection form on Re A20(V)

Lemma A: Let (V,I,g) be a 4-dimensional space equipped with a complex
structure operator I € End(V), I2 = —1Id, and W := Re(A29%(V, 1)) Cc A*(V)
Then for any non-zero o € W, one has & > 0.

Proof: The space A29(V,I) ¢ A2(V ® C) is 1-dimensional over C. Let
(2 =wi1 ++v—1wy be its generator, with w; = Re 2, wo =ImS£2. Then

O=Q/\Q=w%—w§—|—2\/—lw1/\w2

implies w? = w% By definition of the orientation in V, one has %/g,z > 0, but
QAQ =w?+ w5 =2w3, hence w? >0. =
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Intersection form on ReA V)

pmm(
Lemma B: Let (V,I,9) be a 4-dimensional space equipped with a complex
structure operator I € End(V), I? = —1Id, w € ALL(V) a Hermitian form,
and AL (V) c ALL(V,I) c A*(V) be the space of (1,1)-forms a such that

p'r’zm
a Aw = 0. Then for any non-zero a € W, one has 2% < 0.

Proof. Step 1: Consider the Hodge star operator x : A2(V) — A2(V).
Clearly, *2 = Id, hence all eigenvalues of x are +1. If we invert the orientation,
x becomes —x; this implies that % is conjugated to —x, hence the multiplicity
of 1 and —1 is equal 3. Denote the corresponding eigenspaces as A2V =
ATV @& A~V. This decomposition is clearly orthogonal with respect to the

alf
pairing o, 8 — /o1

Step 2: Let usidentify V with quaternionic algebra H Then the three symplec-
tic structures Re€2,Im €2, w can be understood as Hermitian forms for I, J, K,
which implies that xw = w, and the same is true for Re{2,Im 2. Therefore,
(Re 2, ImQ,w) = ATV,

Step 3: The space /\pmm(V) is 3-dimensional and orthogonal to the 3-

dimensional space (Re2,ImQ w) The space (Re2,ImQ,w) is equal to ATV,

: 1
as follows from Step 2. Then /\pmm(V) = (ReQ2,ImQ,w)~—=A"V. =
5
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Hodge index formula

THEOREM: Let (M,I,w) be a complex Kahler surface, and pmm(M) the
kernel of the natural map a — [j;a Aw. Then the intersection form is
positive definite on the space Re H29(M) @ Rw and negative definite in
gt .

prim

Proof. Step 1: It is clear that the intersection form is positive definite on
the space (w), which is orthogonal to Re H29(M). On ReA29(M), the form
a — oo, taking value in C°°M, is positive by the previous lemma, hence the
intersection form is positive definite on (2,0) + (0,2) real cohomology

classes. It remains only to prove it is negative definite on Hpmm(M).

Step 2: The operator a — o A w takes harmonic form to harmonic, as
follows from Hodge theory. Therefore, for any [a] € pmm(M) its harmonic

representative o satisfies o A w = 0. Now, Lemma B implies that the

intersection form is negative definite on Hpmm(M) u
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Local Torelli theorem

REMARK: In real dimension 4, C-symplectic form is a pair wq,wo Of sym-
plectic forms which satisfy w? = w3 and w; Awy = 0.

THEOREM: Let (M,I1,Q2) be a complex holomorphically symplectic sur-
face with HO91(M) = 0, that is, a K3 surface. Consider the period map
Per : CTeich — H?(M,C) taking (M,I,) to the cohomology class [Q?] €
H?2(M,C). Then Per is a local diffeomorpism of CTeich to the period
space Q := {ve H>(M,C) | [yyvAv=0,[y;vAT>0}.

Proof: Later in this course.

A caution: CTeich is smooth, but non-Hausdorff.
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The period space of complex structures

DEFINITION: Since H%9(M) = C, the space CTeich is C*-fibered over the
space Teich of complex structures on K3. The corresponding period space is
denoted Per := {v € PH?(M,C) | [yyvAv =0, [;vAT>0}.

The following theorem follows from local Torelli for C-symplectic structures.

PROPOSITION: (local Torelli theorem for complex structures)

Let Teich be the space of complex structures on a K3 surface, and Per :
Teich —» Per the map taking (M, I) to the line H29(M) ¢ H%(M,C). Then
Per is a local diffeomorphism.

Proof: The group C* acts on CTeich and on @, which are locally diffeo-
morphic, hence Teich = CTeich /C* is locally diffeomorphic to Per = Q/C*.
|
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The period space of complex structures is a Grassmannian
CLAIM: Per = SO(by — 3,3)/50(2) x SO(by — 3,1).

Proof. First version: Indeed, the group SO(H?(M,R),q) = SO(bs> — 3,3)
acts transitively on Per, and SO(2) x SO(b> — 3,1) is a stabilizer of a point.

Proof. Second version: Take a non-zero vector v in a line [ € Per. Since
(v,v) = 0 and (v,v) > 0, the vectors v and w are not proportional, hence
they generate a 2-dimensional plane P C HQ(M, R) which is positive, because
(v,v) > 0, hence belongs to the positive, oriented Grassmannian

Gro 4 (H?*(M,R)) = SO(by — 3,3)/SO(2) x SO(by — 3, 1).

Conversely, for any P C Gr_|__|_(H2(M, R)), its complexification P ® C contains
two lines [1,1l> which belong to the quadric g(v,v) = 0. These two lines are
distinguished by their orientation. This implies that the correspondence
Per — SO(by — 3,3)/50(2) x SO(by — 3,1) taking 2 € Q to (Rew,ImQ) €
Gry 4 (H?(M,R)) is bijective. =
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The set of all classes of type (1,1)

Corollary 1: Let U C Teich be an open neighbourhood, and V C H2(M,R)
the set of all cohomology classes which are of type (1,1) for some I € U.
Then V is open in H2(M,R).

Proof. Step 1: Let I € Teich and P ¢ Gr+_|_(H2(M, R)) be the corresponding
D-space, P = Re(H29(M,I)). Then HV1(Mm) = PL.

Step 2: Consider a 2-dimensional positive subspace P € Gr+_|_(H2(M, R)) as-
sociated with I € U. Since Teich is locally diffeomorphic to Gr_|__|_(H2(M, R)),
it would suffice to show that for some neighbourhood U; 3 P iIn
Gr44(H?(M,R)), the union Up,cy, Pi- is open in H2(M,R).

Step 3: Consider a non-zero element y € HQ(M,R), which belongs to a
sufficiently small neighbourhood U, of = & Pi, and let P, be the projection
of P to y-. Since y is close to z, this projection is non-degenerate, and
its image is a positive 2-plane. This defines a map ¢ : U — Gr_|__|_. Let
W = &(Uz)NPer(U). By construction, the set S of all y € H2(M,R) such that
yL P’ for some P’ € W contains U, hence it is open in HQ(M, R). However,
S is the union of HL:1(I) for all I € Teich such that Per(I) € ®(U;) N Per(U),
hence it belongs to Urey HYY(M,1). =

10
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Intersection form for a K3 surface

Lemma 1: Let n be an odd intersection form on V,; = Z"™, and let = :
Vz\0 — P(V ®7 R) be the standard projection. Consider the set R of odd
vectors in V. Then n(R) is dense in P(V ®7 R).

Proof. Step 1: Let s € V;\0 be any vector. To prove that n(R) is dense, it
will suffice to fine an element of #(R) in any neighbourhood of «(s).

Step 2: Let rg € R. Then all vectors in the sequence r, := rg+ 2ns are odd,
and |imi7'('(7“i) =s. n

THEOREM: The intersection form of a K3 surface is even.

Proof. Step 1: Going ad absurdum, assume that the intersection form of a
K3 is odd. Using Corollary 1 and Lemma 1, we obtain a complex structure
I and an odd vector r ¢ HL1(M,I). Indeed, by Corollary 1, the union
UreTeich H11 (M, I) of the set of all (1,1)-vectors is open in H?(M, R) and by
Lemma 1 there are odd vectors in any R*-invariant open subset of H2(M, R).

Step 2: Let L be a line bundle on (M, ) such that ¢;(L) = r has odd self-
intersection. By Riemann-Roch-Hirzebruch formula, x(L) = 2 + %er AT,
hence the self-intersection of c¢;(L) is even. =

11
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Voting

Order of the next lectures (please vote):

1. Local Torelli (3-4 lectures), then Lefschetz hyperplane section, then
density of quartics.

2. Density of quartics, then Lefschetz hyperplane section, then local Torelli.
3. Lefschetz hyperplane section, density of quartics, local Torelli.
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