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K3 surfaces are holomorphically symplectic (reminder)

DEFINITION: A complex surface is a compact, complex manifold of com-

plex dimension 2.

DEFINITION: A K3 surface is a Kähler complex surface M with b1 = 0

and c1(M,Z) = 0.

REMARK: All surfaces with b1 even are Kähler (Kodaira, Buchdahl-

Lamari).

REMARK: Since b1(M) = 0, for a K3 we have H1(OM) = 0 (follows from

Hodge theory). The canonical bundle of a K3 surface is trivial. This

follows from the exponential exact sequence 0 = H1(OM)−→ Pic1(M)
c1−→

H2(M,Z)

COROLLARY: A K3 surface is holomorphically symplectic.

2



K3 surfaces, 2024, lecture 7 M. Verbitsky

Period map for holomorphically symplectic manifolds (reminder)

DEFINITION: Let (M, I,Ω) be a holomorphically symplectic manifold, and

CSymp the space of all C-symplectic forms. The quotient CTeich := CSymp
Diff0

is called the holomorphically symplectic Teichmüller space, and the map

CTeich −→H2(M,C) taking (M, I,Ω) to the cohomology class [Ω] ∈ H2(M,C)
the holomorphically symplectic period map.

We want to prove that the period map is locally an embedding. This is

immediately implied by the following version of Moser’s lemma.

THEOREM: Let (M, It,Ωt), t ∈ [0,1] be a family of C-symplectic forms on

a compact manifold. Assume that the cohomology class [Ωt] ∈ H2(M,C) is

constant, and H0,1(M, It) = 0, where H0,1(M, It) = H1(M,O(M,It)) is coho-

mology of the sheaf of holomorphic functions. Then there exists a smooth

family of diffeomorphisms Vt ∈ Diff0(M), such that V ∗
t Ω0 = Ωt.

Proof: Later in this course.
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Intersection form on ReΛ2,0(V )

Lemma A: Let (V, I, g) be a 4-dimensional space equipped with a complex

structure operator I ∈ End(V ), I2 = − Id, and W := Re(Λ2,0(V, I)) ⊂ Λ4(V )

Then for any non-zero α ∈ W , one has α∧α
Vol > 0.

Proof: The space Λ2,0(V, I) ⊂ Λ2(V ⊗R C) is 1-dimensional over C. Let

Ω = ω1 +
√
−1 ω2 be its generator, with ω1 = ReΩ, ω2 = ImΩ. Then

0 = Ω ∧Ω = ω2
1 − ω2

2 +2
√
−1 ω1 ∧ ω2

implies ω2
1 = ω2

2. By definition of the orientation in V , one has Ω∧Ω
Vol > 0, but

Ω ∧Ω = ω2
1 + ω2

2 = 2ω2
2, hence ω2

1 > 0.

4



K3 surfaces, 2024, lecture 7 M. Verbitsky

Intersection form on ReΛ1,1
prim(V )

Lemma B: Let (V, I, g) be a 4-dimensional space equipped with a complex
structure operator I ∈ End(V ), I2 = − Id, ω ∈ Λ1,1(V ) a Hermitian form,
and Λ1,1

prim(V ) ⊂ Λ1,1(V, I) ⊂ Λ4(V ) be the space of (1,1)-forms α such that
α ∧ ω = 0. Then for any non-zero α ∈ W , one has α∧α

Vol < 0.

Proof. Step 1: Consider the Hodge star operator ∗ : Λ2(V )−→ Λ2(V ).
Clearly, ∗2 = Id, hence all eigenvalues of ∗ are ±1. If we invert the orientation,
∗ becomes −∗; this implies that ∗ is conjugated to −∗, hence the multiplicity
of 1 and −1 is equal 3. Denote the corresponding eigenspaces as Λ2V =
Λ+V ⊕ Λ−V . This decomposition is clearly orthogonal with respect to the
pairing α, β −→ α∧β

Vol .

Step 2: Let us identify V with quaternionic algebra H Then the three symplec-
tic structures ReΩ, ImΩ, ω can be understood as Hermitian forms for I, J,K,
which implies that ∗ω = ω, and the same is true for ReΩ, ImΩ. Therefore,
⟨ReΩ, ImΩ, ω⟩ = Λ+V .

Step 3: The space Λ1,1
prim(V ) is 3-dimensional and orthogonal to the 3-

dimensional space ⟨ReΩ, ImΩ, ω⟩. The space ⟨ReΩ, ImΩ, ω⟩ is equal to Λ+V ,
as follows from Step 2. Then Λ1,1

prim(V ) = ⟨ReΩ, ImΩ, ω⟩⊥ = Λ−V.
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Hodge index formula

THEOREM: Let (M, I, ω) be a complex Kähler surface, and H
1,1
prim(M) the

kernel of the natural map α →
∫
M α ∧ ω. Then the intersection form is

positive definite on the space ReH2,0(M)⊕ Rω and negative definite in

H
1,1
prim(M).

Proof. Step 1: It is clear that the intersection form is positive definite on

the space ⟨ω⟩, which is orthogonal to ReH2,0(M). On ReΛ2,0(M), the form

α → α∧α , taking value in C∞M , is positive by the previous lemma, hence the

intersection form is positive definite on (2,0) + (0,2) real cohomology

classes. It remains only to prove it is negative definite on H
1,1
prim(M).

Step 2: The operator α → α ∧ ω takes harmonic form to harmonic, as

follows from Hodge theory. Therefore, for any [α] ∈ H
1,1
prim(M), its harmonic

representative α satisfies α ∧ ω = 0. Now, Lemma B implies that the

intersection form is negative definite on H
1,1
prim(M).
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Local Torelli theorem

REMARK: In real dimension 4, C-symplectic form is a pair ω1, ω2 of sym-

plectic forms which satisfy ω2
1 = ω2

2 and ω1 ∧ ω2 = 0.

THEOREM: Let (M, I,Ω) be a complex holomorphically symplectic sur-

face with H0,1(M) = 0, that is, a K3 surface. Consider the period map

Per : CTeich −→H2(M,C) taking (M, I,Ω) to the cohomology class [Ω] ∈
H2(M,C). Then Per is a local diffeomorpism of CTeich to the period

space Q := {v ∈ H2(M,C) |
∫
M v ∧ v = 0,

∫
M v ∧ v > 0}.

Proof: Later in this course.

A caution: CTeich is smooth, but non-Hausdorff.
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The period space of complex structures

DEFINITION: Since H2,0(M) = C, the space CTeich is C∗-fibered over the

space Teich of complex structures on K3. The corresponding period space is

denoted Per := {v ∈ PH2(M,C) |
∫
M v ∧ v = 0,

∫
M v ∧ v > 0}.

The following theorem follows from local Torelli for C-symplectic structures.

PROPOSITION: (local Torelli theorem for complex structures)

Let Teich be the space of complex structures on a K3 surface, and Per :

Teich −→ Per the map taking (M, I) to the line H2,0(M) ⊂ H2(M,C). Then

Per is a local diffeomorphism.

Proof: The group C∗ acts on CTeich and on Q, which are locally diffeo-

morphic, hence Teich = CTeich /C∗ is locally diffeomorphic to Per = Q/C∗.
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The period space of complex structures is a Grassmannian

CLAIM: Per = SO(b2 − 3,3)/SO(2)× SO(b2 − 3,1).

Proof. First version: Indeed, the group SO(H2(M,R), q) = SO(b2 − 3,3)

acts transitively on Per, and SO(2)× SO(b2 − 3,1) is a stabilizer of a point.

Proof. Second version: Take a non-zero vector v in a line l ∈ Per. Since

(v, v) = 0 and (v, v) > 0, the vectors v and v are not proportional, hence

they generate a 2-dimensional plane P ⊂ H2(M,R) which is positive, because

(v, v) > 0, hence belongs to the positive, oriented Grassmannian

Gr++(H2(M,R)) = SO(b2 − 3,3)/SO(2)× SO(b2 − 3,1).

Conversely, for any P ⊂ Gr++(H2(M,R)), its complexification P ⊗C contains

two lines l1, l2 which belong to the quadric q(v, v) = 0. These two lines are

distinguished by their orientation. This implies that the correspondence

Per → SO(b2 − 3,3)/SO(2) × SO(b2 − 3,1) taking Ω ∈ Q to ⟨Reω, ImΩ⟩ ∈
Gr++(H2(M,R)) is bijective.
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The set of all classes of type (1,1)

Corollary 1: Let U ⊂ Teich be an open neighbourhood, and V ⊂ H2(M,R)
the set of all cohomology classes which are of type (1,1) for some I ∈ U .
Then V is open in H2(M,R).

Proof. Step 1: Let I ∈ Teich and P ∈ Gr++(H2(M,R)) be the corresponding
2-space, P = Re(H2,0(M, I)). Then H1,1(M) = P⊥.

Step 2: Consider a 2-dimensional positive subspace P ∈ Gr++(H2(M,R)) as-
sociated with I ∈ U . Since Teich is locally diffeomorphic to Gr++(H2(M,R)),
it would suffice to show that for some neighbourhood U1 ∋ P in
Gr++(H2(M,R)), the union

⋃
P1∈U1

P⊥
1 is open in H2(M,R).

Step 3: Consider a non-zero element y ∈ H2(M,R), which belongs to a
sufficiently small neighbourhood Ux of x ∈ P⊥, and let Py be the projection
of P to y⊥. Since y is close to x, this projection is non-degenerate, and
its image is a positive 2-plane. This defines a map Φ : Ux −→ Gr++. Let
W := Φ(Ux)∩Per(U). By construction, the set S of all y ∈ H2(M,R) such that
y⊥P ′ for some P ′ ∈ W contains Ux, hence it is open in H2(M,R). However,
S is the union of H1,1(I) for all I ∈ Teich such that Per(I) ∈ Φ(Ux)∩Per(U),
hence it belongs to

⋃
I∈U H1,1(M, I).
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Intersection form for a K3 surface

Lemma 1: Let η be an odd intersection form on VZ = Zn, and let π :
VZ\0−→ P(V ⊗Z R) be the standard projection. Consider the set R of odd
vectors in V . Then π(R) is dense in P(V ⊗Z R).

Proof. Step 1: Let s ∈ VZ\0 be any vector. To prove that π(R) is dense, it
will suffice to fine an element of π(R) in any neighbourhood of π(s).

Step 2: Let r0 ∈ R. Then all vectors in the sequence rn := r0+2ns are odd,
and limi π(ri) = s.

THEOREM: The intersection form of a K3 surface is even.

Proof. Step 1: Going ad absurdum, assume that the intersection form of a
K3 is odd. Using Corollary 1 and Lemma 1, we obtain a complex structure
I and an odd vector r ∈ H1,1(M, I). Indeed, by Corollary 1, the union⋃
I∈TeichH

1,1(M, I) of the set of all (1,1)-vectors is open in H2(M,R) and by
Lemma 1 there are odd vectors in any R∗-invariant open subset of H2(M,R).

Step 2: Let L be a line bundle on (M, I) such that c1(L) = r has odd self-
intersection. By Riemann-Roch-Hirzebruch formula, χ(L) = 2 + 1

2

∫
M r ∧ r,

hence the self-intersection of c1(L) is even.
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Voting

Order of the next lectures (please vote):

1. Local Torelli (3-4 lectures), then Lefschetz hyperplane section, then

density of quartics.

2. Density of quartics, then Lefschetz hyperplane section, then local Torelli.

3. Lefschetz hyperplane section, density of quartics, local Torelli.
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