K3 surfaces

lecture 10: K3 surfaces with picard rank 1

Misha Verbitsky

IMPA, sala 236

October 2, 2024, 17:00

Very ample bundles (reminder)

DEFINITION: Very ample bundle on M is a line bundle obtained as $\varphi^*(\mathfrak{O}(1))$, where $\varphi : M \hookrightarrow \mathbb{C}P^n$ is a projective embedding. **Ample bundle** is a line bundle L such that its tensor power $nL := L^{\otimes n}, n \ge 1$ is very ample.

THEOREM: (Kodaira) A bundle *L* is ample if and only if $c_1(L)$ is a Kähler class.

COROLLARY: Any line bundle of positive degree on a compact complex curve is ample.

COROLLARY: Let L be a bundle on a compact complex manifold X. Then the following are equivalent:

(i) *L* is very ample

(ii) for any two distinct points $x, y \in X$, the natural maps $H^0(X, L) \longrightarrow H^0\left(X, L \otimes \frac{\mathcal{O}_X}{\mathfrak{m}_x \cap \mathfrak{m}_y}\right)$ and $H^0(X, L) \longrightarrow H^0(X, L \otimes \mathcal{O}_X/\mathfrak{m}_x^2)$ are surjective.

Very ample bundles 2 (reminder)

COROLLARY: Let *L* be a bundle on a compact complex manifold *X*, such that $H^1(X, L \otimes \mathcal{O}_X/\mathfrak{m}_x^2) = 0$ and $H^0\left(X, L \otimes \frac{\mathcal{O}_X}{\mathfrak{m}_x \cap \mathfrak{m}_y}\right) = 0$. Then *L* is very ample.

THEOREM: (Kodaira-Nakano vanishing)

Let L be a line bundle on a compact complex manifold X, and K_X its canonical bundle, Assume that $L \otimes K_X^{-1}$ is ample. Then $H^i(L) = 0$ for all i > 0.

COROLLARY: Let *L* be a line bundle on a compact complex curve *C* of genus *g*, and deg L > 2g. Then *L* is very ample.

Theorem 1: Let *C* be a compact complex curve of genus ≥ 2 , and *K* its canonical bundle. Then **the holomorphic sections of** *K* **have no base points,** and **the canonical map** $\Psi : C \longrightarrow \mathbb{P}H^0(K)$ **is an embedding** or a **two-sheeted ramified covering with** $\Psi(C) = \mathbb{C}P^1$.

REMARK: In the second case C is called a hyperelliptic curve.

CLAIM: Any curve admitting a two-sheeted ramified covering to $\mathbb{C}P^1$ is hyperelliptic.

Finite morphisms (reminder)

DEFINITION: Let Φ : $X \longrightarrow Y$ be a morphism of complex varieties (or schemes). We say that Φ is **finite** if for any open set $U \subset Y$ the ring $\Phi^* \mathcal{O}_U$ is finite generated as \mathcal{O}_V -module, where $V = \Phi^{-1}(U)$.

THEOREM: A morphism Φ : $X \longrightarrow Y$ of complex varieties (or algebraic varieties, or schemes of finite type) is finite if and only if Φ is proper, and preimage of any point is finite.

Proof: EGA IV, part 3, 8.11.1; Hartshorne, III, Exercise 11.2, http://verbit. ru/IMPA/CV-2023/slides-cv-25.pdf, Proposition 2. ■ K3 surfaces, 2024, lecture 10

Ampleness and cohomology (reminder)

THEOREM: Let *L* be a line bundle on a scheme (or on a complex variety) *X*. Then the *L* is ample if and only if or any coherent sheaf *F*, there exists d > 0 such that $H^i(F \otimes L^{\otimes k}) = 0$ for all i > 0 and all $k \ge d$.

Proof: See e.g. Hartshorne. ■

THEOREM: Let $f: X \longrightarrow Y$ be a finite morphism, and F a coherent sheaf on Y. Then $H^i(f^{-1}(U), F) = H^i(U, f_*F)$ for any open set $U \subset Y$; in other words, $R^i f_* f = 0$ for all i > 0.

Proof: Ravi Vakil "Rising sea", Theorem 18.7.5. ■

Corollary 1: Let *L* be a line bundle on a complex variety *X* such that the standard map $f: X \longrightarrow \mathbb{P}H^0(X, L)^*$ is finite. Then *L* is ample.

THEOREM: (Nakai-Moishezon)

Let X be a compact projective variety, and L a line bundle on X. Assume that for any subvariety $Z \subset X$, dim Z = d, one has $\int_Z c_1(L)^d > 0$. Then L is ample.

Singular curve in a K3 surface

CLAIM: Let $C \subset M$ be a curve in a smooth complex surface. Then **there** exists a surface $\tilde{M} \xrightarrow{\pi} M$ obtained by successive blow-ups of M such that the proper preimage \tilde{C} of C is smooth.

Proof: Let us blow up a singular point p of C, obtaining a resolution $M_1 \xrightarrow{\pi_1} M$, and let C be the proper preimage of C. Let $E \subset M_1$ be the exceptional divisor. The intersection index of C and a curve L passing through p is equal to the intersection index of $\tilde{C} + E$ with its proper preimage \tilde{L} , hence $(\tilde{C}, \tilde{L}) < (C, L)$. Therefore, the multiplicity of the singularity of \tilde{C} in the preimages of p is smaller than in p. Using induction by multiplicity, we obtain that successive blow-ups resolve the singularity.

Singular curve in a K3 surface (2)

Let *C* be a curve in a K3 surface *M*, \tilde{C} its proper preimage in a resolution $\tilde{M} \xrightarrow{\pi} M$ obtained by successive blowing up the singularities of *C*, and *E* the exceptional divisor of π . Denote by *L* the pullback of $\Theta(C)$ to \tilde{M} . Then $N(\tilde{C}) = \Theta(\tilde{C}) = L \otimes \Theta(-E)$ and $K_{\tilde{M}} = \Theta(E)$. Adjunction formula implies $K_{\tilde{C}} = \Theta(E) \otimes L \otimes \Theta(-E) = L$.

Corollary 2: Let *C* be a curve of genus > 0 in a K3 surface *M*. Then $\mathcal{O}(C)|_C$ is globally generated.

Proof: Since $\pi : \tilde{C} \longrightarrow C$ is finite, it would suffice to show that $\pi^* \mathcal{O}(C)$ is globally generated. However, $K_{\tilde{C}} = \pi^* \mathcal{O}(C)$ is globally generated by Theorem 1.

K3 surfaces with $Pic(M) = \mathbb{Z}$: either L or L^* is globally generated

THEOREM: Let *M* be a K3 surface, such that $Pic(M) = \mathbb{Z}$, and *L* the line bundle generating Pic(M). Assume that $(L, L) \ge 0$. Then *L* or L^* is globally generated.

Proof. Step 1: Riemann-Roch-Hirzebruch gives $h^0(L) - h^1(L) + h^2(L) = \chi(L) = 2 + \frac{(L,L)}{2}$, and Serre duality gives $H^0(L^*)^* = H^2(L \otimes K_M) = H^2(L)$, hence $h^0(L^*) = h^2(L)$. Therefore, $h^0(L) + h^0(L^*) \ge 2$, hence either *L* or L^* have have non-zero holomorphic sections. Replacing *L* by L^* if necessary, we can assume that $h^0(L) > 1$.

Step 2: Let *D* be the zero divisor of a a general section of *L*. Since [D] generates $H^{1,1}(M) \cap H^2(M,\mathbb{Z}) = \operatorname{Pic}(M)$, the divisor *D* is irreducible. From the exact sequence $0 \longrightarrow \mathcal{O}_M \longrightarrow L \longrightarrow L|_D \longrightarrow 0$ and $H^1(\mathcal{O}_M) = 0$ it follows that **the restriction mao** $\Psi : H^0(M,L) \longrightarrow H^0(D,L|_D)$ **is surjective:** every section of $L|_D$ can be restricted to a section of *L*.

Step 3: The bundle $L|_D$ is base point free by Corollary 1. Since $h^0(L) > 1$, **the union of all zero divisors of sections of** L **is** M; then Step 2 implies that L is base point free.

Remark 1: Let $(\tilde{M}, \tilde{D}) \xrightarrow{\pi} (M, D)$ be a resolution of singularities of D. Since $\pi^*L = K_{\tilde{D}}$, the restriction $\pi^*L|_{\tilde{D}}$ is very ample if and only if D is not hyperelliptic.

K3 surfaces with $Pic(M) = \mathbb{Z}$: L or L^* is ample

DEFINITION: Let *L* be a line bundle. The line system defined by *L* is the set of all zero divisors of all holomorphic sections of *L*. We denote this set as |L|. The base set of *L* is $\bigcap_{D \in |L|} D$; *L* is globally generated if this set is empty.

THEOREM: Let M be a K3 surface, such that $Pic(M) = \mathbb{Z}$, and L a line bundle generating Pic(M). Assume that (L, L) > 2. Then L or L^* is ample, base point free, and the map $\Psi : M \longrightarrow \mathbb{P}H^0(M, L)^*$ is an embedding or a 2-sheeted ramified cover.

Proof. Step 1: As usual, we replace L by L^* if it has no sections. Let Ψ : $M \longrightarrow \mathbb{P}H^0(M, L)^*$ be the standard map; **it is holomorphic as shown above.** Ψ does not contract curves, because $\text{Pic}(M) = \mathbb{Z}$, hence $L = \Psi^*(\mathcal{O}(1))$ restricted to any curve is non-trivial. If Ψ glues together points $x \neq y$, any curve $D \in |L|$ passing through x and y is hyperelliptic (Remark 1).

Step 2: Every such *D* is obtained as a preimage of a hyperplane section containing $\Psi(x)$. The union of all such *D* is *M*. Therefore, if |L| contains at least one hyperelliptic curve, Ψ is 2-sheeted, and all curves $D \in |L|$ are hyperelliptic.

Step 3: The bundle L is ample by Corollary 1.

Hyperelliptic curves

Lemma 1: Let C be a hyperelliptic curve of genus g. Then the hyperelliptic involution has 2g fixed points on C.

Proof: Let f be the number of the fixed points, and e(C) the Euler characteristic. Riemann-Hurwitz formula gives $2-2g = e(C) = 2e(\mathbb{C}P^1) - f = 2 - f$.

PROPOSITION: All curves of genus 2 are hyperelliptic.

Proof: Let *C* be a genus 2 curve. Serre duality implies $\chi(K_C) = -\chi(\mathcal{O}_C) = g-1$. Also Serre duality implies that $H^1(K_C) = \mathbb{C}$, which gives dim $H^0(K_C) = \chi(K_C) + 1 = g = 2$. Since K_C is base point free, the natural map Φ : $C \longrightarrow \mathbb{P}H^0(K_C)^*$ is a holomorphic map to $\mathbb{P}H^0(K_C)^* = \mathbb{C}P^1$. This map cannot be an isomorphism, hence it is a 2-sheeted covering.

M. Verbitsky

K3 surfaces with $Pic(M) = \mathbb{Z}$: L or L^* is very ample if (L, L) > 2

THEOREM: Let M be a K3 surface, such that $Pic(M) = \mathbb{Z}$, and L the line bundle generating Pic(M). Then the map $\Psi : M \longrightarrow \mathbb{P}H^0(M, L)^*$ is a 2-sheeted ramified cover if (L, L) = 2 and an embedding otherwise; in the first case, M is a 2-sheeted covering of $\mathbb{C}P^2$ ramified in a sextic.

Proof. Step 1: As usual, we replace L by L^* if it has no sections. Since L is base point free, a general element D of |L| is smooth by Bertini theorem. Since $K_D = L|_D$, the genus $g(D) = \frac{(L,L)}{2} + 1$. Let $R \subset M$ be the ramification divisor. A general D meets R in 2g(D) points by Lemma 1, hence (L,L) + 2 is divisible by (L,L). Since (L,L) is even, this is possible only when (L,L) = 2.

Step 2: If (L,L) = 2, the genus of all curves $D \in |L|$ is 2, hence they are hyperelliptic. Then $\Psi : M \longrightarrow \mathbb{P}H^0(M,L)^*$ is a 2-sheeted cover. Since L is ample, $H^1(L) = 0$, hence the Riemann-Roch formula gives $\chi(L) = 2 + \frac{(L,L)}{2} = 3 = \dim H^0(L)$. Then $\mathbb{P}H^0(M,L)^*$ is 2-dimensional, and $\Psi : M \longrightarrow \mathbb{P}H^0(M,L)^*$ is a ramified cover.

K3 surfaces with $Pic(M) = \mathbb{Z}$: L or L^* is ramified in a sextic if (L, L) = 2

Step 3: It remains to show that Ψ is ramified in a sextic. Let $R \subset M$ be the ramification divisor. Since R is the fixed set of a holomorphic involution, it is smooth. Then $K_M = \Psi^* K_{\mathbb{C}P^2} \otimes \mathcal{O}(R) = \mathcal{O}_M$, and the self-intersection of $c_1(\Psi^* K_{\mathbb{C}P^2})$ is 18, because $c_1(K_{\mathbb{C}P^2})^2 = 9$. This implies that $\Psi^* K_{\mathbb{C}P^2} = L^{\otimes 3}$ and $[R] = 3c_1(L)$. Let $R_0 = \Psi(R)$. The intersection of R_0 with a transversal hyperplane section has the same number of points as $R \cap D = 6$, hence R_0 is a sextic.

REMARK: Converse is also true, by the same formula $K_M = \Psi^* K_{\mathbb{C}P^2} \otimes \mathcal{O}(R) = \mathcal{O}_M$: a double cover of $\mathbb{C}P^2$ ramified in sextic is a K3.

Corollary 3: Let *M* be a K3 surface, such that $Pic(M) = \mathbb{Z}$, and *L* the line bundle generating Pic(M). Assume that (L, L) > 2. Then *L* or L^* is very ample.

M. Verbitsky

Ample bundles on quartic surfaces

PROPOSITION: A K3 surface M is isomorphic to a quartic if and only if Pic(M) contains a very ample bundle L with (L, L) = 4.

Proof. Step 1: Suppose that M is isomorphic to a quartic, let $\Phi : M \longrightarrow \mathbb{C}P^3$ be the projective embedding, and $L := \Phi^*(\mathfrak{O}(1))$. Then $(L, L) = \int_M c_1(L) \wedge c_1(L) = \int_{\mathbb{C}P^3} [M] \wedge [H] \wedge [H]$, where [H] is the fundamental class of a hyperplane section. Since M is a quartic, [M] = 4[H], which gives (L, L) = 4.

Step 2: Conversely, let *L* be a very ample bundle on a K3 such that (L, L) = 4. Riemann-Roch-Hirzebruch give $h^0(L) = h^0(L) - h^1(L) + h^2(L) = \chi(L) = 2 + \frac{(L,L)}{2} = 4$. The corresponding embedding $M \longrightarrow \mathbb{P}H^0(M,L)^*$ takes *M* to a hypersurface of degree $\int_{\mathbb{C}P^3} [M] \wedge [H] \wedge [H] = (L,L) = 4$.

COROLLARY: Let *M* be a K3 surface, such that $Pic(M) = \mathbb{Z}$, and *L* the line bundle generating Pic(M). Assume that (L, L) = 4. Then *M* is isomorphic to a quartic.

Proof: It is very ample by Corollary 3, hence by the previous proposition M is a quartic. \blacksquare