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Very ample bundles (reminder)

DEFINITION: Very ample bundle on M is a line bundle obtained as
©*(O(1)), where ¢ : M < CP™ is a projective embedding. Ample bun-
dle is a line bundle L such that its tensor power nlL = L®”,n > 1 is very
ample.

THEOREM: (Kodaira) A bundle L is ample if and only if ¢q(L) is a
Kahler class.

COROLLARY: Any line bundle of positive degree on a compact com-
plex curve is ample.

COROLLARY: Let L be a bundle on a compact complex manifold X. Then
the following are equivalent:

(i) L is very ample

(ii) for any two distinct points z,y € X, the natural maps
HO(X,L) — HO (X,L ® - 9x ) and HO(X,L) — H9(X,L®Ox/m2) are sur-

mymy,

jective. m
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Very ample bundles 2 (reminder)

COROLLARY: Let L be a bundle on a compact complex manifold X, such
that H1(X,L ® Ox/m2) = 0 and H° (X,L@ Ox ) = 0. Then L is very

Mg My,

ample. =

THEOREM: (Kodaira-Nakano vanishing)
Let L be a line bundle on a compact complex manifold X, and K x its canonical
bundle, Assume that L ® K)_(l is ample. Then H*(L) =0 for all 7 > 0.

COROLLARY: Let L be a line bundle on a compact complex curve C of
genus g, and deg L > 2g. Then L iIs very ample.

Theorem 1: Let C be a compact complex curve of genus > 2, and K its
canonical bundle. Then the holomorphic sections of K have no base
points, and the canonical map V : ¢ — PH9(K) is an embedding or a
two-sheeted ramified covering with W (C) = CPL.

REMARK: In the second case C' is called a hyperelliptic curve.
CLAIM: Any curve admitting a two-sheeted ramified covering to CP1

IS hyperelliptic.
3
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Finite morphisms (reminder)

DEFINITION: Let ©® : X —Y be a morphism of complex varieties (or
schemes). We say that & is finite if for any open set U C Y the ring ®*Oy
is finite generated as ©y-module, where V = &~ 1(U).

THEOREM: A morphism & : X — Y of complex varieties (or algebraic
varieties, or schemes of finite type) is finite if and only if & is proper, and
preimage of any point is finite.

Proof: EGA 1V, part 3, 8.11.1; Hartshorne, III, Exercise 11.2, http://verbit.
ru/IMPA/CV-2023/slides-cv-25.pdf, Proposition 2. m
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Ampleness and cohomology (reminder)

THEOREM: Let L be a line bundle on a scheme (or on a complex variety)
X. Then the L is ample if and only if or any coherent sheaf F', there
exists d > 0 such that H(F ® L®*) =0 for all i > 0 and all k£ > d.

Proof: See e.g. Hartshorne. m

THEOREM: Let f: X — Y be a finite morphism, and F' a coherent sheaf
onY. Then H'(f~1(U),F) = H'(U, f«F) for any open set U C Y; in other
words, R'f.f = 0 for all i > 0.

Proof: Ravi Vakil “Rising sea’, Theorem 18.7.5. =

Corollary 1: Let L be a line bundle on a complex variety X such that the
standard map f: X — PHO(X, L)* is finite. Then L is ample.

THEOREM: (Nakai-Moishezon)
Let X be a compact projective variety, and L a line bundle on X. Assume
that for any subvariety Z C X, dimZ = d, one has [, cl(L)d > 0. Then L is

ample.
5
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Singular curve in a K3 surface

CLAIM: Let C C M be a curve in a smooth complex surface. Then there
exists a surface M -5 M obtained by successive blow-ups of M such
that the proper preimage C of C is smooth.

Proof: Let us blow up a singular point p of C, obtaining a resolution M- N
M, and let C' be the proper preimage of C. Let F C My be the exceptional
divisor. The intersection index of C' and a curve L passing through p is
equal to the intersection index of C + E with its proper preimage L, hence
(C,L) < (C,L). Therefore, the multiplicity of the singularity of C in the
preimages of p is smaller than in p. Using induction by multiplicity, we

obtain that successive blow-ups resolve the singularity. =
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Singular curve in a K3 surface (2)

Let C be a curve in a K3 surface M, C its proper preimage in a resolution
M -Zs M obtained by successive blowing up the singularities of C, and E
the exceptional divisor of w. Denote by L the pullback of ©O(C) to M. Then
N(C) =0(C) = L® O(—E) and K;; = O(F). Adjunction formula implies
Kr=0O(E)® L®O(—E) = L.

Corollary 2: Let C be a curve of genus > 0 in a K3 surface M. Then O(C)|~
IS globally generated.

Proof: Since m : C — C is finite, it would suffice to show that 7*O(C) is
globally generated. However, K= 7*O(C) is globally generated by Theorem
1. m
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K3 surfaces with Pic(M) = Z: either L or L* is globally generated

THEOREM: Let M be a K3 surface, such that Pic(M) = Z, and L the line
bundle generating Pic(M). Assume that (L,L) > 0. Then L or L* is globally
generated.

Proof. SteP : Riemann-Roch-Hirzebruch gives h9(L) — h1(L) + r2(L) =
y(L) =2+ LL), and Serre duality gives HO(L*)* = H2(L ® K);) = H?2(L),
hence hO(L*) = h2(L). Therefore, h°(L)+r%(L*) > 2, hence either L or L*
have have non-zero holomorphic sections. Replacing L by L* if necessary,
we can assume that r°(L) > 1.

Step 2: Let D be the zero divisor of a a general section of L. Since [D]
generates HL1 (M) n H2(M,Z) = Pic(M), the divisor D is irreducible. From
the exact sequence 0 — Op; — L — L|p — 0 and H1(©;;) = 0 it follows
that the restriction mao v : HO(M,L) — HO9(D, L|p) is surjective: every
section of L|p can be restricted to a section of L.

Step 3: The bundle L|p is base point free by Corollary 1. Since hO(L) > 1,
the union of all zero divisors of sections of L is M; then Step 2 implies
that L is base point free. =

Remark 1: Let (M,D) = (M,D) be a resolution of singularities of D.
Since m*L = Kp, the restriction = i if and only if D is
not hyperelliptic.
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K3 surfaces with Pic(M) =7Z: L or L* is ample

DEFINITION: Let L be a line bundle. The line system defined by L is the
set of all zero divisors of all holomorphic sections of L. We denote this set
as |L|. The base set of L is Np¢ | D; L is globally generated if this set is
empty.

THEOREM: Let M be a K3 surface, such that Pic(M) = Z, and L a line
bundle generating Pic(M). Assume that (L,L) > 2. Then L or L* is ample,
base point free, and the map v : M — PHO(M, L)* is an embedding or
a 2-sheeted ramified cover.

Proof. Step 1: As usual, we replace L by L* if it has no sections. Let WV :
M — PHO(M, L)* be the standard map; it is holomorphic as shown above.
W does not contract curves, because Pic(M) = Z, hence L = W*(©O(1))
restricted to any curve is non-trivial. If W glues together points = #= y, any
curve D € |L| passing through = and y is hyperelliptic (Remark 1).

Step 2: Every such D is obtained as a preimage of a hyperplane section
containing W(xz). The union of all such D is M. Therefore, if |L| contains
at least one hyperelliptic curve, V is 2-sheeted, and all curves D c |L|
are hyperelliptic.

Step 3: The bundle L is ample by Corollary 1. m
9
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Hyperelliptic curves

Lemma 1: Let C be a hyperellptic curve of genus g. Then the hyperelliptic
involution has 2g fixed points on C.

Proof: Let f be the number of the fixed points, and e(C) the Euler charac-
teristic. Riemann-Hurwitz formula gives 2 —2g = e(C) = 2¢(CPHY - f =2 f.
u

PROPOSITION: All curves of genus 2 are hyperelliptic.

Proof: Let C be a genus 2 curve. Serre duality implies x(K¢g) = —x(O¢) =
g—1. Also Serre duality implies that H1(K~) = C, which gives dim HO(K) =
xX(Kc) +1 = g = 2. Since K¢ is base point free, the natural map ¢ :
C — PHO(K)* is a holomorphic map to PHY(K-)* = CPLl. This map
cannot be an isomorphism, hence it is a 2-sheeted covering. =

10



K3 surfaces, 2024, lecture 10 M. Verbitsky
K3 surfaces with Pic(M) =7Z: L or L* is very ample if (L,L) > 2

THEOREM: Let M be a K3 surface, such that Pic(M) = Z, and L the
line bundle generating Pic(M). Then the map Vv : M — PHO(M,L)* is a
2-sheeted ramified cover if (L,L) = 2 and an embedding otherwise; in
the first case, M is a 2-sheeted covering of CP2 ramified in a sextic.

Proof. Step 1: As usual, we replace L by L* if it has no sections. Since L
is base point free, a general element D of |L| is smooth by Bertini theorem.
Since Kp = L|p, the genus ¢g(D) = (LQ—L) + 1. Let R C M be the ramification
divisor. A general D meets R in 2g(D) points by Lemma 1, hence (L,L) + 2
is divisible by (L,L). Since (L,L) is even, this is possible only when
(L, L) = 2.

Step 2: If (L,L) = 2, the genus of all curves D € |L| is 2, hence they
are hyperelliptic. Then W : M — PHO(M,L)* is a 2-sheeted cover. Since
L is ample, H1(L) = 0, hence the Riemann-Roch formula gives x(L) =
2+ &L — 3 — dimHO(L). Then PHO(M,L)* is 2-dimensional, and W :
M — PHO(M, L)* is a ramified cover.

11
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K3 surfaces with Pic(M) = Z: L or L* is ramified in a sextic if (L,L) =2

Step 3: It remains to show that W is ramified in a sextic. Let R C M be the
ramification divisor. Since R is the fixed set of a holomorphic involution, it
is smooth. Then Kj; = W*Kp2 ® O(R) = Oy, and the self-intersection of
c1(W*Kep2) is 18, because c1(Kpp2)? = 9. This implies that W*Kpz = L®3
and [R] = 3c¢1(L). Let Rg = W(R). The intersection of Rg with a transversal
hyperplane section has the same number of points as RN D = 6, hence Rp is
a sextic. m

REMARK: Converse is also true, by the same formula K); = \U*KCPQ 0%
O(R) = ©,;: a double cover of CP? ramified in sextic is a K3.

Corollary 3: Let M be a K3 surface, such that Pic(M) = Z, and L the line

bundle generating Pic(M). Assume that (L,L) > 2. Then L or L* is very
ample. =

12
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Ample bundles on quartic surfaces

PROPOSITION: A K3 surface M is isomorphic to a quartic if and only if
Pic(M) contains a very ample bundle L with (L,L) = 4.

Proof. Step 1: Suppose that M is isomorphic to a quartic, let b : M — cp3
be the projective embedding, and L := ®*(O(1)). Then (L,L) = [j;c1(L) A
c1(L) = [ep3[M]IA[H]A[H], where [H] is the fundamental class of a hyperplane
section. Since M is a quartic, [M] = 4[H], which gives (L,L) = 4.

Step 2: Conversely, let L be a very ample bundle on a K3 such that (L, L) = 4.
Riemann-Roch-Hirzebruch give h9(L) = h9(L) — h1(L) + h2(L) = x(L) =
2+ (LQ—L) = 4. The corresponding embedding M — PHO(M, L)* takes M
to a hypersurface of degree [-p3[M]A[H|A[H]=(L,L) =4. =

COROLLARY: Let M be a K3 surface, such that Pic(M) = Z, and L the line
bundle generating Pic(M). Assume that (L,L) = 4. Then M is isomorphic
to a quartic.

Proof: It is very ample by Corollary 3, hence by the previous proposition M

IS @ quartic. m
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