K3 surfaces

lecture 10: K3 surfaces with picard rank 1

Misha Verbitsky

IMPA, sala 236

October 2, 2024, 17:00

Very ample bundles (reminder)

DEFINITION: Very ample bundle on M is a line bundle obtained as $\varphi^*(\Theta(1))$, where φ : $M \hookrightarrow \mathbb{C}P^n$ is a projective embedding. Ample bun**dle** is a line bundle L such that its tensor power $nL := L^{\otimes n}, n \ge 1$ is very ample.

THEOREM: (Kodaira) A bundle L is ample if and only if $c_1(L)$ is a Kähler class.

COROLLARY: Any line bundle of positive degree on a compact complex curve is ample.

COROLLARY: Let L be a bundle on a compact complex manifold X . Then the following are equivalent:

(i) L is very ample

(ii) for any two distinct points $x, y \in X$, the natural maps $H^{\mathsf{O}}(X,L) \longrightarrow H^{\mathsf{O}}\left(\right)$ $X, L \otimes \frac{\mathcal{O}_X}{\mathfrak{m}_x \Omega^*}$ $\overline{\mathfrak{m}_x\cap\mathfrak{m}_y}$ and $H^0(X, L) \longrightarrow H^0(X, L \otimes \mathcal{O}_X/\mathfrak{m}_x^2)$ are surjective.

Very ample bundles 2 (reminder)

COROLLARY: Let L be a bundle on a compact complex manifold X , such that $H^1(X, L \otimes \mathbb{O}_X/\mathfrak{m}_x^2) \,=\, 0$ and $H^0\Big(\,$ $X, L \otimes \frac{\mathcal{O}_X}{\mathfrak{m}_x \Omega^\bullet}$ $\overline{\mathfrak{m}_{x}\cap\mathfrak{m}_{y}}$ \setminus $= 0$. Then L is very ample. ■

THEOREM: (Kodaira-Nakano vanishing)

Let L be a line bundle on a compact complex manifold X, and K_X its canonical bundle, Assume that $L \otimes K_X^{-1}$ is ample. Then $H^i(L) = 0$ for all $i > 0$.

COROLLARY: Let L be a line bundle on a compact complex curve C of genus g, and deg $L > 2g$. Then L is very ample.

Theorem 1: Let C be a compact complex curve of genus ≥ 2 , and K its canonical bundle. Then the holomorphic sections of K have no base points, and the canonical map $\Psi: C \longrightarrow \mathbb{P}H^0(K)$ is an embedding or a two-sheeted ramified covering with $\psi(C) = \mathbb{C}P^1$.

REMARK: In the second case C is called **a hyperelliptic curve.**

CLAIM: Any curve admitting a two-sheeted ramified covering to $\mathbb{C}P^1$ is hyperelliptic.

Finite morphisms (reminder)

DEFINITION: Let Φ : $X \rightarrow Y$ be a morphism of complex varieties (or schemes). We say that Φ is finite if for any open set $U \subset Y$ the ring $\Phi^* \mathcal{O}_U$ is finite generated as \mathcal{O}_V -module, where $V = \Phi^{-1}(U)$.

THEOREM: A morphism $\Phi : X \longrightarrow Y$ of complex varieties (or algebraic varieties, or schemes of finite type) is finite if and only if Φ is proper, and preimage of any point is finite.

Proof: EGA IV, part 3, 8.11.1; Hartshorne, III, Exercise 11.2, http://verbit. ru/IMPA/CV-2023/slides-cv-25.pdf, Proposition 2.

K3 surfaces, 2024, lecture 10 M. Verbitsky

Ampleness and cohomology (reminder)

THEOREM: Let L be a line bundle on a scheme (or on a complex variety) X. Then the L is ample if and only if or any coherent sheaf F , there exists $d > 0$ such that $H^{i}(F \otimes L^{\otimes k}) = 0$ for all $i > 0$ and all $k \ge d$.

Proof: See e.g. Hartshorne. ■

THEOREM: Let $f: X \longrightarrow Y$ be a finite morphism, and F a coherent sheaf on Y . Then $H^i(f^{-1}(U),F)=H^i(U,f_*F)$ for any open set $U\subset Y$; in other words, $R^if_*f=0$ for all $i>0$.

Proof: Ravi Vakil "Rising sea", Theorem 18.7.5. ■

Corollary 1: Let L be a line bundle on a complex variety X such that the standard map $f: X \longrightarrow \mathbb{P}H^0(X, L)^*$ is finite. Then L is ample.

THEOREM: (Nakai-Moishezon)

Let X be a compact projective variety, and L a line bundle on X . Assume that for any subvariety $Z \subset X$, dim $Z = d$, one has $\int_Z c_1(L)^d > 0.$ Then L is ample.

Singular curve in a K3 surface

CLAIM: Let $C \subset M$ be a curve in a smooth complex surface. Then there exists a surface $\tilde M \, \stackrel{\pi}{\longrightarrow} \, M$ obtained by successive blow-ups of M such that the proper preimage \tilde{C} of C is smooth.

Proof: Let us blow up a singular point p of C, obtaining a resolution $M_1 \stackrel{\pi_1}{\longrightarrow}$ M, and let C be the proper preimage of C. Let $E \subset M_1$ be the exceptional divisor. The intersection index of C and a curve L passing through p is equal to the intersection index of $\tilde{C} + E$ with its proper preimage \tilde{L} , hence $(\tilde{C}, \tilde{L}) < (C, L)$. Therefore, the multiplicity of the singularity of \tilde{C} in the preimages of p is smaller than in p . Using induction by multiplicity, we obtain that successive blow-ups resolve the singularity.

Singular curve in a K3 surface (2)

Let C be a curve in a K3 surface M, \tilde{C} its proper preimage in a resolution $\tilde{M} \, \stackrel{\pi}{\longrightarrow} \, M$ obtained by successive blowing up the singularities of C , and E the exceptional divisor of π . Denote by L the pullback of $\mathcal{O}(C)$ to \tilde{M} . Then $N(\tilde{C}) = \mathcal{O}(\tilde{C}) = L \otimes \mathcal{O}(-E)$ and $K_{\tilde{M}} = \mathcal{O}(E)$. Adjunction formula implies $K_{\tilde{C}} = \mathcal{O}(E) \otimes L \otimes \mathcal{O}(-E) = L.$

Corollary 2: Let C be a curve of genus > 0 in a K3 surface M. Then $\mathcal{O}(C)|_C$ is globally generated.

Proof: Since π : $\tilde{C} \longrightarrow C$ is finite, it would suffice to show that $\pi^* \Theta(C)$ is globally generated. However, $K_{\widetilde C}=\pi^*{\mathcal O}(C)$ is globally generated by Theorem $1.$

K3 surfaces with $Pic(M) = \mathbb{Z}$: either L or L^* is globally generated

THEOREM: Let M be a K3 surface, such that $Pic(M) = \mathbb{Z}$, and L the line bundle generating Pic (M) . Assume that $(L, L) \geqslant 0$. Then L or L^* is globally generated.

Proof. Step 1: Riemann-Roch-Hirzebruch gives $h^0(L) - h^1(L) + h^2(L) =$ $\chi(L) = 2 + \frac{(L,L)}{2}$, and Serre duality gives $H^0(L^*)^* = H^2(L \otimes K_M) = H^2(L)$, hence $h^0(L^*) = h^2(L)$. Therefore, $h^0(L) + h^0(L^*) \geqslant 2$, hence either L or L^* have have non-zero holomorphic sections. Replacing L by L^* if necessary, we can assume that $h^0(L) > 1$.

Step 2: Let D be the zero divisor of a a general section of L. Since $[D]$ generates $H^{1,1}(M) \cap H^2(M, \mathbb{Z}) = \text{Pic}(M)$, the divisor D is irreducible. From the exact sequence $0 \longrightarrow \mathcal{O}_M \longrightarrow L \longrightarrow L|_D \longrightarrow 0$ and $H^1(\mathcal{O}_M) = 0$ it follows that the restriction mao Ψ : $H^0(M,L) \longrightarrow H^0(D,L|_D)$ is surjective: every section of $L|_D$ can be restricted to a section of L.

Step 3: The bundle $L|_D$ is base point free by Corollary 1. Since $h^0(L) > 1$, the union of all zero divisors of sections of L is M ; then Step 2 implies that L is base point free. \blacksquare

Remark 1: Let $(\tilde{M}, \tilde{D}) \stackrel{\pi}{\longrightarrow} (M, D)$ be a resolution of singularities of D. Since $\pi^*L = K_{\tilde{D}}$, the restriction π^*L $\left| \tilde{D} \right|$ is very ample if and only if D is not hyperelliptic.

K3 surfaces with $Pic(M) = \mathbb{Z}$: L or L^* is ample

DEFINITION: Let L be a line bundle. The line system defined by L is the set of all zero divisors of all holomorphic sections of L . We denote this set as $|L|$. The base set of L is $\bigcap_{D \in |L|} D;$ L is globally generated if this set is empty.

THEOREM: Let M be a K3 surface, such that $Pic(M) = \mathbb{Z}$, and L a line bundle generating Pic (M) . Assume that $(L, L) > 2$. Then L or L^* is ample, base point free, and the map $\Psi : M \longrightarrow \mathbb{P} H^0(M,L)^*$ is an embedding or a 2-sheeted ramified cover.

Proof. Step 1: As usual, we replace L by L^* if it has no sections. Let Ψ : $M \longrightarrow \mathbb{P} H^0(M,L)^*$ be the standard map; it is holomorphic as shown above. Ψ does not contract curves, because Pic $(M) = \mathbb{Z}$, hence $L = \Psi^*(\Theta(1))$ restricted to any curve is non-trivial. If Ψ glues together points $x \neq y$, any curve $D \in |L|$ passing through x and y is hyperelliptic (Remark 1).

Step 2: Every such D is obtained as a preimage of a hyperplane section containing $\Psi(x)$. The union of all such D is M. Therefore, if |L| contains at least one hyperelliptic curve, Ψ is 2-sheeted, and all curves $D \in |L|$ are hyperelliptic.

Step 3: The bundle L is ample by Corollary 1. \blacksquare

Hyperelliptic curves

Lemma 1: Let C be a hyperellptic curve of genus g . Then the hyperelliptic involution has $2g$ fixed points on C .

Proof: Let f be the number of the fixed points, and $e(C)$ the Euler characteristic. Riemann-Hurwitz formula gives $2-2g=e(C)=2e({\Bbb C} P^1)-f=2-f.$

PROPOSITION: All curves of genus 2 are hyperelliptic.

Proof: Let C be a genus 2 curve. Serre duality implies $\chi(K_C) = -\chi(\Theta_C)$ = $g-1$. Also Serre duality implies that $H^1(K_C) = \mathbb{C}$, which gives dim $H^0(K_C) =$ $\chi(K_C) + 1 = g = 2$. Since K_C is base point free, the natural map Φ : $C \longrightarrow {\mathbb P} H^0(K_C)^*$ is a holomorphic map to ${\mathbb P} H^0(K_C)^* \,=\, {\mathbb C} P^1.$ This map cannot be an isomorphism, hence it is a 2-sheeted covering. \blacksquare

K3 surfaces with $Pic(M) = \mathbb{Z}$: L or L^* is very ample if $(L,L) > 2$

THEOREM: Let M be a K3 surface, such that $Pic(M) = \mathbb{Z}$, and L the line bundle generating Pic (M) . Then the map $\Psi : M \longrightarrow {\mathbb P} H^0(M,L)^*$ is a 2-sheeted ramified cover if $(L, L) = 2$ and an embedding otherwise; in the first case, M is a 2-sheeted covering of $\mathbb{C}P^2$ ramified in a sextic.

Proof. Step 1: As usual, we replace L by L^* if it has no sections. Since L is base point free, a general element D of $|L|$ is smooth by Bertini theorem. Since $K_D=L|_D$, the genus $g(D)=\frac{(L,L)}{2}+1.$ Let $R\subset M$ be the ramification divisor. A general D meets R in $2g(D)$ points by Lemma 1, hence $(L, L) + 2$ is divisible by (L, L) . Since (L, L) is even, this is possible only when $(L, L) = 2.$

Step 2: If $(L, L) = 2$, the genus of all curves $D \in |L|$ is 2, hence they are hyperelliptic. Then $\Psi: M \longrightarrow {\mathbb P} H^0(M,L)^*$ is a 2-sheeted cover. Since L is ample, $H^1(L) = 0$, hence the Riemann-Roch formula gives $\chi(L) =$ $2+\frac{(L,L)}{2}=3=$ dim $H^0(L)$. Then $\mathbb{P} H^0(M,L)^*$ is 2-dimensional, and Ψ : $M \longrightarrow \overline{\mathbb{P}H^0(M,L)^*}$ is a ramified cover.

K3 surfaces with $Pic(M) = \mathbb{Z}$: L or L^* is ramified in a sextic if $(L, L) = 2$

Step 3: It remains to show that Ψ is ramified in a sextic. Let $R \subset M$ be the ramification divisor. Since R is the fixed set of a holomorphic involution, it is smooth. Then $K_M = \Psi^* K_{\mathbb{C}P^2} \otimes \mathcal{O}(R) = \mathcal{O}_M$, and the self-intersection of $c_1(\Psi^*K_{\mathbb{C}P^2})$ is 18, because $c_1(K_{\mathbb{C}P^2})^2=$ 9. This implies that $\Psi^*K_{\mathbb{C}P^2}=L^{\otimes 3}$ and $[R] = 3c_1(L)$. Let $R_0 = \Psi(R)$. The intersection of R_0 with a transversal hyperplane section has the same number of points as $R \cap D = 6$, hence R_0 is a sextic.

REMARK: Converse is also true, by the same formula $K_M = \Psi^* K_{CP^2} \otimes$ $\mathcal{O}(R)=\mathcal{O}_M$: a double cover of $\mathbb{C}P^2$ ramified in sextic is a K3.

Corollary 3: Let M be a K3 surface, such that $Pic(M) = \mathbb{Z}$, and L the line bundle generating Pic (M) . Assume that $(L, L) > 2$. Then L or L^* is very ample.

Ample bundles on quartic surfaces

PROPOSITION: A K3 surface M is isomorphic to a quartic if and only if Pic(M) contains a very ample bundle L with $(L, L) = 4$.

Proof. Step 1: Suppose that M is isomorphic to a quartic, let $\Phi : M \longrightarrow \mathbb{C}P^3$ be the projective embedding, and $L := \Phi^*(\Theta(1))$. Then $(L, L) = \int_M c_1(L) \wedge$ $c_1(L) = \int_{{\mathbb C} P^3}[M] {\wedge} [H] {\wedge} [H]$, where $[H]$ is the fundamental class of a hyperplane section. Since M is a quartic, $[M] = 4[H]$, which gives $(L, L) = 4$.

Step 2: Conversely, let L be a very ample bundle on a K3 such that $(L, L) = 4$. Riemann-Roch-Hirzebruch give $h^0(L) = h^0(L) - h^1(L) + h^2(L) = \chi(L) =$ $2 + \frac{(L,L)}{2} = 4$. The corresponding embedding $M \longrightarrow \mathbb{P} H^0(M,L)^*$ takes M to a hypersurface of degree $\int_{\mathbb{C}P^3}[M] \wedge [H] \wedge [H] = (L, L) = 4$.

COROLLARY: Let M be a K3 surface, such that $Pic(M) = \mathbb{Z}$, and L the line bundle generating Pic(M). Assume that $(L, L) = 4$. Then M is isomorphic to a quartic.

Proof: It is very ample by Corollary 3, hence by the previous proposition M is a quartic. \blacksquare