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Very ample bundles (reminder)

DEFINITION: Very ample bundle on M is a line bundle obtained as

φ∗(O(1)), where φ : M ↪→ CPn is a projective embedding. Ample bun-

dle is a line bundle L such that its tensor power nL := L⊗n, n ⩾ 1 is very

ample.

THEOREM: (Kodaira) A bundle L is ample if and only if c1(L) is a

Kähler class.

COROLLARY: Any line bundle of positive degree on a compact com-

plex curve is ample.

COROLLARY: Let L be a bundle on a compact complex manifold X. Then

the following are equivalent:

(i) L is very ample

(ii) for any two distinct points x, y ∈ X, the natural maps

H0(X,L)−→H0
(
X,L⊗ OX

mx∩my

)
and H0(X,L)−→H0(X,L⊗OX/m2

x) are sur-

jective.
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Very ample bundles 2 (reminder)

COROLLARY: Let L be a bundle on a compact complex manifold X, such

that H1(X,L ⊗ OX/m2
x) = 0 and H0

(
X,L⊗ OX

mx∩my

)
= 0. Then L is very

ample.

THEOREM: (Kodaira-Nakano vanishing)
Let L be a line bundle on a compact complex manifold X, and KX its canonical
bundle, Assume that L⊗K−1

X is ample. Then Hi(L) = 0 for all i > 0.

COROLLARY: Let L be a line bundle on a compact complex curve C of
genus g, and degL > 2g. Then L is very ample.

Theorem 1: Let C be a compact complex curve of genus ⩾ 2, and K its
canonical bundle. Then the holomorphic sections of K have no base
points, and the canonical map Ψ : C −→ PH0(K) is an embedding or a
two-sheeted ramified covering with Ψ(C) = CP1.

REMARK: In the second case C is called a hyperelliptic curve.

CLAIM: Any curve admitting a two-sheeted ramified covering to CP1

is hyperelliptic.
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Finite morphisms (reminder)

DEFINITION: Let Φ : X −→ Y be a morphism of complex varieties (or

schemes). We say that Φ is finite if for any open set U ⊂ Y the ring Φ∗OU

is finite generated as OV -module, where V = Φ−1(U).

THEOREM: A morphism Φ : X −→ Y of complex varieties (or algebraic

varieties, or schemes of finite type) is finite if and only if Φ is proper, and

preimage of any point is finite.

Proof: EGA IV, part 3, 8.11.1; Hartshorne, III, Exercise 11.2, http://verbit.

ru/IMPA/CV-2023/slides-cv-25.pdf, Proposition 2.
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Ampleness and cohomology (reminder)

THEOREM: Let L be a line bundle on a scheme (or on a complex variety)

X. Then the L is ample if and only if or any coherent sheaf F , there

exists d > 0 such that Hi(F ⊗ L⊗k) = 0 for all i > 0 and all k ⩾ d.

Proof: See e.g. Hartshorne.

THEOREM: Let f : X −→ Y be a finite morphism, and F a coherent sheaf

on Y . Then Hi(f−1(U), F ) = Hi(U, f∗F ) for any open set U ⊂ Y ; in other

words, Rif∗f = 0 for all i > 0.

Proof: Ravi Vakil “Rising sea”, Theorem 18.7.5.

Corollary 1: Let L be a line bundle on a complex variety X such that the

standard map f : X −→ PH0(X,L)∗ is finite. Then L is ample.

THEOREM: (Nakai-Moishezon)

Let X be a compact projective variety, and L a line bundle on X. Assume

that for any subvariety Z ⊂ X, dimZ = d, one has
∫
Z c1(L)

d > 0. Then L is

ample.
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Singular curve in a K3 surface

CLAIM: Let C ⊂ M be a curve in a smooth complex surface. Then there

exists a surface M̃
π−→ M obtained by successive blow-ups of M such

that the proper preimage C̃ of C is smooth.

Proof: Let us blow up a singular point p of C, obtaining a resolution M1
π1−→

M , and let C be the proper preimage of C. Let E ⊂ M1 be the exceptional

divisor. The intersection index of C and a curve L passing through p is

equal to the intersection index of C̃ + E with its proper preimage L̃, hence

(C̃, L̃) < (C,L). Therefore, the multiplicity of the singularity of C̃ in the

preimages of p is smaller than in p. Using induction by multiplicity, we

obtain that successive blow-ups resolve the singularity.
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Singular curve in a K3 surface (2)

Let C be a curve in a K3 surface M , C̃ its proper preimage in a resolution

M̃
π−→ M obtained by successive blowing up the singularities of C, and E

the exceptional divisor of π. Denote by L the pullback of O(C) to M̃ . Then

N(C̃) = O(C̃) = L ⊗ O(−E) and KM̃ = O(E). Adjunction formula implies

KC̃ = O(E)⊗ L⊗O(−E) = L.

Corollary 2: Let C be a curve of genus > 0 in a K3 surface M . Then O(C)|C
is globally generated.

Proof: Since π : C̃ −→ C is finite, it would suffice to show that π∗O(C) is

globally generated. However, KC̃ = π∗O(C) is globally generated by Theorem

1.
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K3 surfaces with Pic(M) = Z: either L or L∗ is globally generated

THEOREM: Let M be a K3 surface, such that Pic(M) = Z, and L the line
bundle generating Pic(M). Assume that (L,L) ⩾ 0. Then L or L∗ is globally
generated.
Proof. Step 1: Riemann-Roch-Hirzebruch gives h0(L) − h1(L) + h2(L) =
χ(L) = 2 + (L,L)

2 , and Serre duality gives H0(L∗)∗ = H2(L ⊗ KM) = H2(L),
hence h0(L∗) = h2(L). Therefore, h0(L)+h0(L∗) ⩾ 2, hence either L or L∗

have have non-zero holomorphic sections. Replacing L by L∗ if necessary,
we can assume that h0(L) > 1.

Step 2: Let D be the zero divisor of a a general section of L. Since [D]
generates H1,1(M) ∩ H2(M,Z) = Pic(M), the divisor D is irreducible. From
the exact sequence 0−→OM −→ L−→ L|D −→ 0 and H1(OM) = 0 it follows
that the restriction mao Ψ : H0(M,L)−→H0(D,L|D) is surjective: every
section of L|D can be restricted to a section of L.

Step 3: The bundle L|D is base point free by Corollary 1. Since h0(L) > 1,
the union of all zero divisors of sections of L is M; then Step 2 implies
that L is base point free.

Remark 1: Let (M̃, D̃)
π−→ (M,D) be a resolution of singularities of D.

Since π∗L = KD̃, the restriction π∗L
∣∣∣D̃ is very ample if and only if D is

not hyperelliptic.
8



K3 surfaces, 2024, lecture 10 M. Verbitsky

K3 surfaces with Pic(M) = Z: L or L∗ is ample

DEFINITION: Let L be a line bundle. The line system defined by L is the
set of all zero divisors of all holomorphic sections of L. We denote this set
as |L|. The base set of L is

⋂
D∈|L|D; L is globally generated if this set is

empty.

THEOREM: Let M be a K3 surface, such that Pic(M) = Z, and L a line
bundle generating Pic(M). Assume that (L,L) > 2. Then L or L∗ is ample,
base point free, and the map Ψ : M −→ PH0(M,L)∗ is an embedding or
a 2-sheeted ramified cover.

Proof. Step 1: As usual, we replace L by L∗ if it has no sections. Let Ψ :
M −→ PH0(M,L)∗ be the standard map; it is holomorphic as shown above.
Ψ does not contract curves, because Pic(M) = Z, hence L = Ψ∗(O(1))
restricted to any curve is non-trivial. If Ψ glues together points x ̸= y, any
curve D ∈ |L| passing through x and y is hyperelliptic (Remark 1).

Step 2: Every such D is obtained as a preimage of a hyperplane section
containing Ψ(x). The union of all such D is M . Therefore, if |L| contains
at least one hyperelliptic curve, Ψ is 2-sheeted, and all curves D ∈ |L|
are hyperelliptic.

Step 3: The bundle L is ample by Corollary 1.
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Hyperelliptic curves

Lemma 1: Let C be a hyperellptic curve of genus g. Then the hyperelliptic

involution has 2g fixed points on C.

Proof: Let f be the number of the fixed points, and e(C) the Euler charac-

teristic. Riemann-Hurwitz formula gives 2−2g = e(C) = 2e(CP1)− f = 2− f .

PROPOSITION: All curves of genus 2 are hyperelliptic.

Proof: Let C be a genus 2 curve. Serre duality implies χ(KC) = −χ(OC) =

g−1. Also Serre duality implies that H1(KC) = C, which gives dimH0(KC) =

χ(KC) + 1 = g = 2. Since KC is base point free, the natural map Φ :

C −→ PH0(KC)
∗ is a holomorphic map to PH0(KC)

∗ = CP1. This map

cannot be an isomorphism, hence it is a 2-sheeted covering.
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K3 surfaces with Pic(M) = Z: L or L∗ is very ample if (L,L) > 2

THEOREM: Let M be a K3 surface, such that Pic(M) = Z, and L the

line bundle generating Pic(M). Then the map Ψ : M −→ PH0(M,L)∗ is a

2-sheeted ramified cover if (L,L) = 2 and an embedding otherwise; in

the first case, M is a 2-sheeted covering of CP2 ramified in a sextic.

Proof. Step 1: As usual, we replace L by L∗ if it has no sections. Since L

is base point free, a general element D of |L| is smooth by Bertini theorem.

Since KD = L|D , the genus g(D) = (L,L)
2 +1. Let R ⊂ M be the ramification

divisor. A general D meets R in 2g(D) points by Lemma 1, hence (L,L) + 2

is divisible by (L,L). Since (L,L) is even, this is possible only when

(L,L) = 2.

Step 2: If (L,L) = 2, the genus of all curves D ∈ |L| is 2, hence they

are hyperelliptic. Then Ψ : M −→ PH0(M,L)∗ is a 2-sheeted cover. Since

L is ample, H1(L) = 0, hence the Riemann-Roch formula gives χ(L) =

2 + (L,L
2 = 3 = dimH0(L). Then PH0(M,L)∗ is 2-dimensional, and Ψ :

M −→ PH0(M,L)∗ is a ramified cover.
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K3 surfaces with Pic(M) = Z: L or L∗ is ramified in a sextic if (L,L) = 2

Step 3: It remains to show that Ψ is ramified in a sextic. Let R ⊂ M be the

ramification divisor. Since R is the fixed set of a holomorphic involution, it

is smooth. Then KM = Ψ∗KCP2 ⊗ O(R) = OM , and the self-intersection of

c1(Ψ
∗KCP2) is 18, because c1(KCP2)2 = 9. This implies that Ψ∗KCP2 = L⊗3

and [R] = 3c1(L). Let R0 = Ψ(R). The intersection of R0 with a transversal

hyperplane section has the same number of points as R ∩D = 6, hence R0 is

a sextic.

REMARK: Converse is also true, by the same formula KM = Ψ∗KCP2 ⊗
O(R) = OM : a double cover of CP2 ramified in sextic is a K3.

Corollary 3: Let M be a K3 surface, such that Pic(M) = Z, and L the line

bundle generating Pic(M). Assume that (L,L) > 2. Then L or L∗ is very

ample.
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Ample bundles on quartic surfaces

PROPOSITION: A K3 surface M is isomorphic to a quartic if and only if

Pic(M) contains a very ample bundle L with (L,L) = 4.

Proof. Step 1: Suppose that M is isomorphic to a quartic, let Φ : M −→ CP3

be the projective embedding, and L := Φ∗(O(1)). Then (L,L) =
∫
M c1(L) ∧

c1(L) =
∫
CP3[M ]∧[H]∧[H], where [H] is the fundamental class of a hyperplane

section. Since M is a quartic, [M ] = 4[H], which gives (L,L) = 4.

Step 2: Conversely, let L be a very ample bundle on a K3 such that (L,L) = 4.

Riemann-Roch-Hirzebruch give h0(L) = h0(L) − h1(L) + h2(L) = χ(L) =

2+ (L,L)
2 = 4. The corresponding embedding M −→ PH0(M,L)∗ takes M

to a hypersurface of degree
∫
CP3[M ] ∧ [H] ∧ [H] = (L,L) = 4.

COROLLARY: Let M be a K3 surface, such that Pic(M) = Z, and L the line

bundle generating Pic(M). Assume that (L,L) = 4. Then M is isomorphic

to a quartic.

Proof: It is very ample by Corollary 3, hence by the previous proposition M

is a quartic.
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