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Ample bundles on quartic surfaces (reminder from lecture 10)

PROPOSITION: A K3 surface M is isomorphic to a quartic if and only if
Pic(M) contains a very ample bundle L with (L,L) = 4.

COROLLARY: Let M be a K3 surface, such that Pic(M) = Z, and L the
line bundle generating Pic(M). Assume that (L,L) > 2. Then L or L* is
very ample. m

Corollary 1: Let M be a K3 surface, such that Pic(M) = Z, and L the line
bundle generating Pic(M). Assume that (L,L) = 4. Then M is isomorphic
to a quartic.

Proof: The bundle L is very ample by the previous corollary, hence by the
previous proposition M is a quartic. =

REMARK: Today we shall prove that quartics are dense Iin the Te-
ichmuller space of K3 surfaces, using local Torelli theorem (which will
be proven later).
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The period space of complex structures (reminder from lecture 7)

DEFINITION: Let Teich be the Teichmuller space of complex structures
of Kahler type on a K3 surface. The corresponding period space is denoted
Per := {v € PH?(M,C) | [yvAv=0,[;vAT>O0}.

PROPOSITION: (local Torelli theorem)

Let Teich be the space of complex structures on a K3 surface, and Per :
Teich — Per the map taking (M, I) to the line H29(M) c H2(M,C). Then
Per is a local diffeomorphism.

Proof: Later in these lectures.

CLAIM: Per = SO(by — 3,3)/50(2) x SO(by — 3,1).

Proof: Take a non-zero vector v in a line [ € Per. Since (v,v) = 0 and
(v,v) > 0, the vectors v and v are not proportional, hence they generate a
2-dimensional plane P ¢ H?(M,R) which is positive, because (v,v) > 0, hence
belongs to the positive, oriented Grassmannian

Gro (H?(M,R)) = SO(by — 3,3)/SO(2) x SO(by — 3, 1).

Conversely, for any P C Gr_|_+(H2(M, R)), its complexification P ® C contains
two lines [1,l> which belong to the quadric g(v,v) = 0. These two lines are
distinguished by their orientation. This implies that the correspondence
Per — SO(by — 3,3)/50(2) x SO(by — 3,1) taking 2 € Q to (Rew,ImQ) €
Gry (H?(M,R)) is bijective. m

3



K3 surfaces, 2024, lecture 11 M. Verbitsky

Noether-Lefschetz locus in the period space

DEFINITION: Let M be a K3, n € H?(M,R) be a non-zero class, and
Per, C Per = {v € PH?(M,C) | [yvAv=0,[y,;vAT > 0}. the set of all
points such that nlv, or, equivalently, n ¢ Hb1(M, 1) for any I € Teich
such that Per(I) = v. Then Per, is called the Noether-Lefschetz locus
corresponding to 7.

REMARK: Clearly, Per, is an intersection of a complex hyperplane IP’nL C
PH2(M,C) and Per, hence Pery 1s @ complex divisor in Per. This divisor is
clearly smooth (all homogeneous varieties are smooth).

REMARK: For the same reason, given any subspace V C HQ(M,IR{), the
period space Per(V) = {v € PV Qr C | JpyvAv =0, [jyvAv > 0} is
a complex submanifold of Per, with dimgPer(V) = 2dimr M — 2. However,
Per(V) is empty if V does not contain positive 2-planes. The submanifold
Per(V) is also called the Noether-Lefschetz locus.
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The set of quartics with Picard rank 1

REMARK: Given v € Per, let HL:1(M, v) be the space (Rev,Imv)L ¢ H2(M,R).
Clearly, H11(M,v) = HVI(M,I) whenever v = Per(I). We denote by
Pic(M,v) the lattice HL1 (M, v)NH2(M,Z); clearly, it coincides with Pic(M, I)
whenever v = Per([]).

CLAIM: Let n € H2(M,Z) and Per) be the space of all v € Per; such that
rk Pic(M,v) = 1. Then Perp is dense in Per,.

Proof: Let & be the set of all rank 2 subgroups of H2(M,Z) containing n.
Then Per(V) C Pery is @ smooth divisor in Per,. Since

IP’ern\IP’erg = J Per(V)
Se6

the complement Pern\Perg IS a countable union of divisors, hence it has
measure 0. =
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Set of all quartics is dense

THEOREM: Let M be a K3 and R € H2(M,Z) the set of all vectors mn such
that (n,n) = 4. Then U,y Pery is dense Per.

Proof: Later today.
Using this result and local Torelli, we prove

Corollary 2: Let Q C Teich be the set of all K3 with Picard group of rank 1
generated by a vector x with (z,2z) =4 Then 9 is dense in Teich.

Proof: In a neighbourhood of each point v € Per there is a point w € Pery,
where n € R. Since w is a limit of points w; € Per) C Q, every neighbourhood
of v contains a point in Q. =

REMARK: By Corollary 1, all such x correspond to quartics; therefore,
Corollary 2 implies that quartics are dense in Teich.

COROLLARY: Every K3 is diffeomorphic to a smooth quartic. m
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Set of all quartics is dense (2)

It remains to prove
THEOREM: Let M be a K3 and R € H2(M,Z) the set of all vectors n such
that (n,n) = 4. Then U, cx Pery, is dense Per.

Using the identification Per = Gr_|_+(H2(M, R)) we reformulate this theorem
as follows.

Theorem 2: Let M be a K3, R C H2(M,Z) the set of all vectors n such that
(n,n) = 4, and Wx C Gr_i_’_l_(HQ(M,IR{)) the set of all 2-planes orthogonal to
some n € R. Then Wy is dense in Gry 4 (H?(M,R)).

REMARK: There are 2 proofs. Today we will deduce Theorem 2 from Rat-
ner's theorems (a deep and fundamental result of homogeneous dynamics).
Next lecture we prove it directly using an elementary argument.
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Ergodic measures

DEFINITION: Let (M, u) be a space with a measure, and G a group acting
on M preserving p. This action is ergodic if all G-invariant measurable subsets
M' c M satisfy u(M') =0 or p(M\M'") = 0.

REMARK: Ergodic measures are extremal rays in the cone of all G-invariant
measures.

REMARK: By Choquet’s theorem, any G-invariant measure on M IS ex-
pressed as an average of a certain set of ergodic measures. T herefore,
G-invariant ergodic measures always exist.

CLAIM: Let M be a manifold, u a Lebesgue measure, and G a group acting
on (M, ) ergodically. Then the set of non-dense orbits has measure O.

Proof: Consider a non-empty open subset U C M. Then u(U) > 0, hence
M' := G - U satisfies u(M\M') = 0. For any orbit G -z not intersecting U,
x € M\M'. Therefore the set of such orbits has measure 0. m
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Ratner theory

DEFINITION: Let G be a connected Lie group equipped with a Haar mea-
sure. A lattice ' C G is a discrete subgroup of finite covolume (that is, G/I
has finite volume).

EXAMPLE: By Borel and Harish-Chandra theorem, any integer lattice in
a simple Lie group has finite covolume.

THEOREM: (Calvin C. Moore, 1966) Let I' be an arithmetic lattice in a
non-compact simple Lie group G with finite center, and H C G a nhon-compact
subgroup. Then the left action of ' on G/H is ergodic, that is, for all -
invariant measurable subsets 7 C G/H, either Z has measure 0, or
G/H\Z has measure O.

THEOREM: (Marina Ratner)

Let H C G be a Lie subroup generated by unipotents, and I C G a lattice.
Then a closure of any H-orbit in G/I" is an orbit of a closed, connected
subgroup S C G, such that SN Tl is a lattice in S.

REMARK: Let x € G/H be a point in a homogeneous space, and I - z its
[-orbit, where [ is an arithmetic lattice. Then its closure is an orbit of a
group S containing stabilizer of x. Moreover, S is a smallest group defined
over rationals and stabilizing zx.
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Oppenheim conjecture

CONJECTURE: (Oppenheim, 1929; proven by G. Margulis, 1987)
Let ¢ be an irrational quadratic form on R"™ of signature (a,b), with a,b > 0,
and S; :=q(Z™). Then S is dense in R.

Proof. Step 1: Let G = SL(n,R) and H = SO(a,b) C G, and I' = SL(n,7Z).
Points of G/H classify quadratic forms of signature (a,b). Consider the func-
tion F': G/H — R taking a frame eq, ...,en to q(eq). Clearly, F(I"-(e1,...,en)) C
Sq when ej is integer, hence it suffices to show that the orbit [ -q is dense.

Step 2: There are no intermediate subgroups between SO(a,b) and SL(n,R)
(an exercise). Then, by Ratner's theorem, a point ¢ € G/H has a closed
orbit (and in this case ¢ is preserved by a sublattice H; = Gy N H; in other
words, ¢ is a rational quadratic form), or a dense orbit, and in this case Sq 1S
dense. m
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Orbits of SO(H?(M,Z)) on Gry 4(H?(M,R))

EXERCISE: Let G = S0(a,b) and H C G the stabilizer of a point W ¢
Gr++(Ra7b). Then there is only one type of intermediate subgroups
between G and H: it is the stabilizer of a non-zero vector x ¢ W.

Therefore, Ratner theorem implies

PROPOSITION: Let v € Per be a point corresponding to a 2-plane W ¢
Gry 4 (H2(M,R)) with no rational vectors. Then its SO(H?(M,Z))-orbit in
Gryy (H?(M,R)) is dense.

Now, Theorem 2 easily follows from this proposition, because a general
point v € Per, has no rational vectors.

Marina Ratner (1979).
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