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Ample bundles on quartic surfaces (reminder from lecture 10)

PROPOSITION: A K3 surface M is isomorphic to a quartic if and only if

Pic(M) contains a very ample bundle L with (L,L) = 4.

COROLLARY: Let M be a K3 surface, such that Pic(M) = Z, and L the

line bundle generating Pic(M). Assume that (L,L) > 2. Then L or L∗ is

very ample.

Corollary 1: Let M be a K3 surface, such that Pic(M) = Z, and L the line

bundle generating Pic(M). Assume that (L,L) = 4. Then M is isomorphic

to a quartic.

Proof: The bundle L is very ample by the previous corollary, hence by the

previous proposition M is a quartic.

REMARK: Today we shall prove that quartics are dense in the Te-

ichmüller space of K3 surfaces, using local Torelli theorem (which will

be proven later).
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The period space of complex structures (reminder from lecture 7)

DEFINITION: Let Teich be the Teichmüller space of complex structures
of Kähler type on a K3 surface. The corresponding period space is denoted
Per := {v ∈ PH2(M,C) |

∫
M v ∧ v = 0,

∫
M v ∧ v > 0}.

PROPOSITION: (local Torelli theorem)
Let Teich be the space of complex structures on a K3 surface, and Per :
Teich −→ Per the map taking (M, I) to the line H2,0(M) ⊂ H2(M,C). Then
Per is a local diffeomorphism.
Proof: Later in these lectures.

CLAIM: Per = SO(b2 − 3,3)/SO(2)× SO(b2 − 3,1).
Proof: Take a non-zero vector v in a line l ∈ Per. Since (v, v) = 0 and
(v, v) > 0, the vectors v and v are not proportional, hence they generate a
2-dimensional plane P ⊂ H2(M,R) which is positive, because (v, v) > 0, hence
belongs to the positive, oriented Grassmannian

Gr++(H2(M,R)) = SO(b2 − 3,3)/SO(2)× SO(b2 − 3,1).

Conversely, for any P ⊂ Gr++(H2(M,R)), its complexification P ⊗C contains
two lines l1, l2 which belong to the quadric q(v, v) = 0. These two lines are
distinguished by their orientation. This implies that the correspondence
Per → SO(b2 − 3,3)/SO(2) × SO(b2 − 3,1) taking Ω ∈ Q to ⟨Reω, ImΩ⟩ ∈
Gr++(H2(M,R)) is bijective.
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Noether-Lefschetz locus in the period space

DEFINITION: Let M be a K3, η ∈ H2(M,R) be a non-zero class, and

Perη ⊂ Per = {v ∈ PH2(M,C) |
∫
M v ∧ v = 0,

∫
M v ∧ v > 0}. the set of all

points such that η⊥v, or, equivalently, η ∈ H1,1(M, I) for any I ∈ Teich

such that Per(I) = v. Then Perη is called the Noether-Lefschetz locus

corresponding to η.

REMARK: Clearly, Perη is an intersection of a complex hyperplane Pη⊥ ⊂
PH2(M,C) and Per, hence Perη is a complex divisor in Per. This divisor is

clearly smooth (all homogeneous varieties are smooth).

REMARK: For the same reason, given any subspace V ⊂ H2(M,R), the

period space Per(V ) := {v ∈ PV ⊗R C |
∫
M v ∧ v = 0,

∫
M v ∧ v > 0} is

a complex submanifold of Per, with dimC Per(V ) = 2dimRM − 2. However,

Per(V ) is empty if V does not contain positive 2-planes. The submanifold

Per(V ) is also called the Noether-Lefschetz locus.
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The set of quartics with Picard rank 1

REMARK: Given v ∈ Per, let H1,1(M, v) be the space ⟨Re v, Im v⟩⊥ ⊂ H2(M,R).
Clearly, H1,1(M, v) = H1,1(M, I) whenever v = Per(I). We denote by

Pic(M, v) the lattice H1,1(M, v)∩H2(M,Z); clearly, it coincides with Pic(M, I)

whenever v = Per(I).

CLAIM: Let η ∈ H2(M,Z) and Per0η be the space of all v ∈ Perη such that

rkPic(M, v) = 1. Then Per0η is dense in Perη.

Proof: Let S be the set of all rank 2 subgroups of H2(M,Z) containing η.

Then Per(V ) ⊂ Perη is a smooth divisor in Perη. Since

Perη \Per0η =
⋃

S∈S
Per(V )

the complement Perη \Per0η is a countable union of divisors, hence it has

measure 0.
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Set of all quartics is dense

THEOREM: Let M be a K3 and R ⊂ H2(M,Z) the set of all vectors η such

that (η, η) = 4. Then
⋃
η∈R Perη is dense Per.

Proof: Later today.

Using this result and local Torelli, we prove

Corollary 2: Let Q ⊂ Teich be the set of all K3 with Picard group of rank 1

generated by a vector x with (x, x) = 4 Then Q is dense in Teich.

Proof: In a neighbourhood of each point v ∈ Per there is a point w ∈ Perη,
where η ∈ R. Since w is a limit of points wi ∈ Per0η ⊂ Q, every neighbourhood

of v contains a point in Q.

REMARK: By Corollary 1, all such x correspond to quartics; therefore,

Corollary 2 implies that quartics are dense in Teich.

COROLLARY: Every K3 is diffeomorphic to a smooth quartic.
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Set of all quartics is dense (2)

It remains to prove

THEOREM: Let M be a K3 and R ⊂ H2(M,Z) the set of all vectors η such

that (η, η) = 4. Then
⋃
η∈R Perη is dense Per.

Using the identification Per = Gr++(H2(M,R)) we reformulate this theorem

as follows.

Theorem 2: Let M be a K3, R ⊂ H2(M,Z) the set of all vectors η such that

(η, η) = 4, and WR ⊂ Gr+,+(H2(M,R)) the set of all 2-planes orthogonal to

some η ∈ R. Then WR is dense in Gr+,+(H2(M,R)).

REMARK: There are 2 proofs. Today we will deduce Theorem 2 from Rat-

ner’s theorems (a deep and fundamental result of homogeneous dynamics).

Next lecture we prove it directly using an elementary argument.
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Ergodic measures

DEFINITION: Let (M,µ) be a space with a measure, and G a group acting

on M preserving µ. This action is ergodic if all G-invariant measurable subsets

M ′ ⊂ M satisfy µ(M ′) = 0 or µ(M\M ′) = 0.

REMARK: Ergodic measures are extremal rays in the cone of all G-invariant

measures.

REMARK: By Choquet’s theorem, any G-invariant measure on M is ex-

pressed as an average of a certain set of ergodic measures. Therefore,

G-invariant ergodic measures always exist.

CLAIM: Let M be a manifold, µ a Lebesgue measure, and G a group acting

on (M,µ) ergodically. Then the set of non-dense orbits has measure 0.

Proof: Consider a non-empty open subset U ⊂ M . Then µ(U) > 0, hence

M ′ := G · U satisfies µ(M\M ′) = 0. For any orbit G · x not intersecting U ,

x ∈ M\M ′. Therefore the set of such orbits has measure 0.
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Ratner theory

DEFINITION: Let G be a connected Lie group equipped with a Haar mea-
sure. A lattice Γ ⊂ G is a discrete subgroup of finite covolume (that is, G/Γ
has finite volume).

EXAMPLE: By Borel and Harish-Chandra theorem, any integer lattice in
a simple Lie group has finite covolume.

THEOREM: (Calvin C. Moore, 1966) Let Γ be an arithmetic lattice in a
non-compact simple Lie group G with finite center, and H ⊂ G a non-compact
subgroup. Then the left action of Γ on G/H is ergodic, that is, for all Γ-
invariant measurable subsets Z ⊂ G/H, either Z has measure 0, or
G/H\Z has measure 0.

THEOREM: (Marina Ratner)
Let H ⊂ G be a Lie subroup generated by unipotents, and Γ ⊂ G a lattice.
Then a closure of any H-orbit in G/Γ is an orbit of a closed, connected
subgroup S ⊂ G, such that S ∩ Γ is a lattice in S.

REMARK: Let x ∈ G/H be a point in a homogeneous space, and Γ · x its
Γ-orbit, where Γ is an arithmetic lattice. Then its closure is an orbit of a
group S containing stabilizer of x. Moreover, S is a smallest group defined
over rationals and stabilizing x.
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Oppenheim conjecture

CONJECTURE: (Oppenheim, 1929; proven by G. Margulis, 1987)

Let q be an irrational quadratic form on Rn of signature (a, b), with a, b > 0,

and Sq := q(Zn). Then S is dense in R.

Proof. Step 1: Let G = SL(n,R) and H = SO(a, b) ⊂ G, and Γ = SL(n,Z).
Points of G/H classify quadratic forms of signature (a, b). Consider the func-

tion F : G/H −→ R taking a frame e1, ..., en to q(e1). Clearly, F (Γ·(e1, ..., en)) ⊂
Sq when e1 is integer, hence it suffices to show that the orbit Γ ·q is dense.

Step 2: There are no intermediate subgroups between SO(a, b) and SL(n,R)
(an exercise). Then, by Ratner’s theorem, a point q ∈ G/H has a closed

orbit (and in this case q is preserved by a sublattice HZ = GZ ∩ H; in other

words, q is a rational quadratic form), or a dense orbit, and in this case Sq is

dense.
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Orbits of SO(H2(M,Z)) on Gr+,+(H2(M,R))

EXERCISE: Let G = SO(a, b) and H ⊂ G the stabilizer of a point W ∈
Gr++(Ra,b). Then there is only one type of intermediate subgroups
between G and H: it is the stabilizer of a non-zero vector x ∈ W .

Therefore, Ratner theorem implies
PROPOSITION: Let v ∈ Per be a point corresponding to a 2-plane W ∈
Gr++(H2(M,R)) with no rational vectors. Then its SO(H2(M,Z))-orbit in
Gr++(H2(M,R)) is dense.

Now, Theorem 2 easily follows from this proposition, because a general
point v ∈ Perη has no rational vectors.

Marina Ratner (1979).
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