K3 surfaces

lecture 11: Density of quartics deduced from Ratner theory

Misha Verbitsky

IMPA, sala 236

October 7, 2024, 17:00

Ample bundles on quartic surfaces (reminder from lecture 10)

PROPOSITION: A K3 surface M is isomorphic to a quartic **if and only if** Pic(M) contains a very ample bundle L with $(L, L) = 4$.

COROLLARY: Let M be a K3 surface, such that $Pic(M) = \mathbb{Z}$, and L the line bundle generating Pic (M) . Assume that $(L, L) > 2$. Then L or L^* is very ample. \blacksquare

Corollary 1: Let M be a K3 surface, such that $Pic(M) = \mathbb{Z}$, and L the line bundle generating Pic(M). Assume that $(L, L) = 4$. Then M is isomorphic to a quartic.

Proof: The bundle L is very ample by the previous corollary, hence by the previous proposition M is a quartic. \blacksquare

REMARK: Today we shall prove that quartics are dense in the Teichmüller space of K3 surfaces, using local Torelli theorem (which will be proven later).

The period space of complex structures (reminder from lecture 7)

DEFINITION: Let Teich be the Teichmüller space of complex structures of Kähler type on a K3 surface. The corresponding period space is denoted $\mathbb{P}\mathrm{er}:=\{v\in \mathbb{P} H^2(M,\mathbb{C})\quad|\quad \int_M v\wedge v=0, \int_M v\wedge \overline{v}>0\}.$

PROPOSITION: (local Torelli theorem)

Let Teich be the space of complex structures on a K3 surface, and Per : Teich \longrightarrow Per the map taking (M, I) to the line $H^{2,0}(M) \subset H^2(M, \mathbb{C})$. Then Per is a local diffeomorphism.

Proof: Later in these lectures.

CLAIM: $Per = SO(b_2 - 3, 3)/SO(2) \times SO(b_2 - 3, 1)$.

Proof: Take a non-zero vector v in a line $l \in \mathbb{P}$ er. Since $(v, v) = 0$ and $(v, \overline{v}) > 0$, the vectors v and \overline{v} are not proportional, hence they generate a 2-dimensional plane $P \subset H^2(M,\mathbb{R})$ which is positive, because $(v,\overline{v}) > 0$, hence belongs to the positive, oriented Grassmannian

$$
Gr_{++}(H^2(M,\mathbb{R})) = SO(b_2-3,3)/SO(2) \times SO(b_2-3,1).
$$

Conversely, for any $P \subset \mathrm{Gr}_{++}(H^2(M,\mathbb{R}))$, its complexification $P \otimes \mathbb{C}$ contains two lines l_1, l_2 which belong to the quadric $q(v, v) = 0$. These two lines are distinguished by their orientation. This implies that the correspondence Per $\rightarrow SO(b_2-3,3)/SO(2)\times SO(b_2-3,1)$ taking $\Omega \in Q$ to \langle Re ω , Im $\Omega \rangle \in$ $Gr_{++}(H^2(M,\mathbb{R}))$ is bijective. \blacksquare

Noether-Lefschetz locus in the period space

DEFINITION: Let M be a K3, $\eta \in H^2(M,\mathbb{R})$ be a non-zero class, and ${\mathbb P}$ er $\eta\subset {\mathbb P}$ er $=\{v\in {\mathbb P} H^2(M,{\mathbb C})\quad\vert\quad \int_M v\wedge v=0, \int_M v\wedge \overline{v}>0\}.$ the set of all points such that $\eta\perp v$, or, equivalently, $\eta \in H^{1,1}(M,I)$ for any $I \in$ Teich such that $Per(I) = v$. Then Per_{η} is called the Noether-Lefschetz locus corresponding to η .

REMARK: Clearly, $\mathbb{P}\text{er}_\eta$ is an intersection of a complex hyperplane $\mathbb{P}\eta^\perp \subset$ $\mathbb{P}H^2(M,\mathbb{C})$ and Per, hence Per_n is a complex divisor in Per. This divisor is clearly smooth (all homogeneous varieties are smooth).

REMARK: For the same reason, given any subspace $V \subset H^2(M,\mathbb{R})$, the period space $\mathbb{P}\mathsf{er}(V) \,:=\, \{ v \,\in\, \mathbb{P} V \otimes_\mathbb{R} \mathbb{C} \quad \mid \quad \int_M v \wedge v \,=\, 0, \int_M v \wedge \overline{v} \,>\, 0 \}$ is a complex submanifold of Per, with dim_C Per(V) = 2 dim_R $M - 2$. However, $Per(V)$ is empty if V does not contain positive 2-planes. The submanifold $Per(V)$ is also called the Noether-Lefschetz locus.

The set of quartics with Picard rank 1

REMARK: Given $v \in \mathbb{P}$ er, let $H^{1,1}(M,v)$ be the space $\langle \text{Re } v, \text{Im } v \rangle^{\perp} \subset H^{2}(M,\mathbb{R})$. **Clearly,** $H^{1,1}(M, v) = H^{1,1}(M, I)$ whenever $v = \text{Per}(I)$. We denote by Pic(M, v) the lattice $H^{1,1}(M,v) \cap H^2(M,\mathbb{Z})$; clearly, it coincides with Pic(M, I) whenever $v = Per(I)$.

CLAIM: Let $\eta \in H^2(M, \mathbb{Z})$ and $\mathbb{P}\text{er}^0_{\eta}$ be the space of all $v \in \mathbb{P}\text{er}_{\eta}$ such that rk Pic $(M,v)=1$. Then $\mathbb{P}\text{er}^{\mathsf{O}}_{\eta}$ is dense in $\mathbb{P}\text{er}_{\eta}$.

Proof: Let G be the set of all rank 2 subgroups of $H^2(M, \mathbb{Z})$ containing η . Then $\mathbb{P}\text{er}(V) \subset \mathbb{P}\text{er}_{\eta}$ is a smooth divisor in $\mathbb{P}\text{er}_{\eta}$. Since

$$
\mathbb{P}\text{er}_{\eta} \setminus \mathbb{P}\text{er}_{\eta}^0 = \bigcup_{S \in \mathfrak{S}} \mathbb{P}\text{er}(V)
$$

the complement $\mathbb{P}\text{er}_\eta \setminus \mathbb{P}\text{er}_\eta^\mathsf{O}$ is a countable union of divisors, hence it has measure 0. ■

Set of all quartics is dense

THEOREM: Let M be a K3 and $\mathfrak{R} \subset H^2(M, \mathbb{Z})$ the set of all vectors η such that $(\eta, \eta) = 4$. Then $\bigcup_{\eta \in \mathfrak{R}} \mathbb{P}\text{er}_{\eta}$ is dense $\mathbb{P}\text{er}_{\eta}$.

Proof: Later today.

Using this result and local Torelli, we prove

Corollary 2: Let $\mathfrak{Q} \subset \mathsf{T}$ eich be the set of all K3 with Picard group of rank 1 generated by a vector x with $(x, x) = 4$ Then Ω is dense in Teich.

Proof: In a neighbourhood of each point $v \in \mathbb{P}$ er there is a point $w \in \mathbb{P}$ er_{η}, where $\eta\in\mathbb{R}.$ Since w is a limit of points $w_i\in\mathbb{P}\mathrm{er}^{\mathsf{O}}_{\eta}\subset\mathfrak{Q},$ every neighbourhood of v contains a point in \mathfrak{Q} .

REMARK: By Corollary 1, all such x correspond to quartics; therefore, Corollary 2 implies that quartics are dense in Teich.

COROLLARY: Every K3 is diffeomorphic to a smooth quartic. ■

Set of all quartics is dense (2)

It remains to prove

THEOREM: Let M be a K3 and $\mathfrak{R} \subset H^2(M, \mathbb{Z})$ the set of all vectors η such that $(\eta, \eta) = 4$. Then $\bigcup_{\eta \in \mathfrak{R}} \mathbb{P}\text{er}_{\eta}$ is dense $\mathbb{P}\text{er}_{\eta}$.

Using the identification \mathbb{P} er = Gr₊₊($H^2(M, \mathbb{R})$) we reformulate this theorem as follows.

Theorem 2: Let M be a K3, $\Re \subset H^2(M, \mathbb{Z})$ the set of all vectors η such that $(\eta, \eta) = 4$, and $W_{\mathfrak{R}} \subset \mathrm{Gr}_{+,+}(H^2(M, \mathbb{R}))$ the set of all 2-planes orthogonal to some $\eta \in \mathfrak{R}$. Then $W_{\mathfrak{R}}$ is dense in $Gr_{+,+}(H^2(M,\mathbb{R}))$.

REMARK: There are 2 proofs. Today we will deduce Theorem 2 from Ratner's theorems (a deep and fundamental result of homogeneous dynamics). Next lecture we prove it directly using an elementary argument.

Ergodic measures

DEFINITION: Let (M, μ) be a space with a measure, and G a group acting on M preserving μ . This action is **ergodic** if all G-invariant measurable subsets $M' \subset M$ satisfy $\mu(M') = 0$ or $\mu(M \backslash M') = 0$.

REMARK: Ergodic measures are extremal rays in the cone of all G-invariant measures.

REMARK: By Choquet's theorem, any G -invariant measure on M is expressed as an average of a certain set of ergodic measures. Therefore, G-invariant ergodic measures always exist.

CLAIM: Let M be a manifold, μ a Lebesgue measure, and G a group acting on (M, μ) ergodically. Then the set of non-dense orbits has measure 0.

Proof: Consider a non-empty open subset $U \subset M$. Then $\mu(U) > 0$, hence $M' := G \cdot U$ satisfies $\mu(M \setminus M') = 0$. For any orbit $G \cdot x$ not intersecting U, $x \in M\backslash M'$. Therefore the set of such orbits has measure 0.

Ratner theory

DEFINITION: Let G be a connected Lie group equipped with a Haar measure. A lattice $\Gamma \subset G$ is a discrete subgroup of finite covolume (that is, G/Γ has finite volume).

EXAMPLE: By Borel and Harish-Chandra theorem, any integer lattice in a simple Lie group has finite covolume.

THEOREM: (Calvin C. Moore, 1966) Let Γ be an arithmetic lattice in a non-compact simple Lie group G with finite center, and $H \subset G$ a non-compact subgroup. Then the left action of Γ on G/H is **ergodic,** that is, for all Γ invariant measurable subsets $Z \subset G/H$, either Z has measure 0, or $G/H\backslash Z$ has measure 0.

THEOREM: (Marina Ratner)

Let $H \subset G$ be a Lie subroup generated by unipotents, and $\Gamma \subset G$ a lattice. Then a closure of any H-orbit in G/Γ is an orbit of a closed, connected subgroup $S \subset G$, such that $S \cap \Gamma$ is a lattice in S.

REMARK: Let $x \in G/H$ be a point in a homogeneous space, and $\Gamma \cdot x$ its Γ-orbit, where Γ is an arithmetic lattice. Then its closure is an orbit of a group S containing stabilizer of x. Moreover, S is a smallest group defined over rationals and stabilizing x .

Oppenheim conjecture

CONJECTURE: (Oppenheim, 1929; proven by G. Margulis, 1987) Let q be an irrational quadratic form on \mathbb{R}^n of signature (a, b) , with $a, b > 0$, and $S_q := q(\mathbb{Z}^n)$. Then S is dense in R.

Proof. Step 1: Let $G = SL(n, \mathbb{R})$ and $H = SO(a, b) \subset G$, and $\Gamma = SL(n, \mathbb{Z})$. Points of G/H classify quadratic forms of signature (a, b) . Consider the function $F: G/H \longrightarrow \mathbb{R}$ taking a frame $e_1, ..., e_n$ to $q(e_1)$. Clearly, $F(\Gamma \cdot (e_1, ..., e_n)) \subset$ S_q when e_1 is integer, hence it suffices to show that the orbit $\Gamma \cdot q$ is dense.

Step 2: There are no intermediate subgroups between $SO(a, b)$ and $SL(n, \mathbb{R})$ (an exercise). Then, by Ratner's theorem, a point $q \in G/H$ has a closed orbit (and in this case q is preserved by a sublattice $H_{\mathbb{Z}} = G_{\mathbb{Z}} \cap H$; in other words, q is a rational quadratic form), or a dense orbit, and in this case S_q is dense. ■

K3 surfaces, 2024, lecture 11 M. Verbitsky

Orbits of $SO(H^2(M,\mathbb{Z}))$ on $Gr_{+,+}(H^2(M,\mathbb{R}))$

EXERCISE: Let $G = SO(a, b)$ and $H \subset G$ the stabilizer of a point $W \in$ $Gr_{++}(\mathbb{R}^{a,b})$. Then there is only one type of intermediate subgroups between G and H: it is the stabilizer of a non-zero vector $x \in W$.

Therefore, Ratner theorem implies

PROPOSITION: Let $v \in \mathbb{P}$ er be a point corresponding to a 2-plane $W \in$ $Gr_{++}(H^2(M,\mathbb{R}))$ with no rational vectors. Then its $SO(H^2(M,\mathbb{Z}))$ -orbit in $Gr_{++}(H^2(M,\mathbb{R}))$ is dense.

Now, Theorem 2 **easily follows from this proposition**, because a general point $v \in \mathbb{P}$ er_n has no rational vectors.

Marina Ratner (1979).

11