K3 surfaces

lecture 11: Density of quartics deduced from Ratner theory

Misha Verbitsky

IMPA, sala 236

October 7, 2024, 17:00

M. Verbitsky

Ample bundles on quartic surfaces (reminder from lecture 10)

PROPOSITION: A K3 surface M is isomorphic to a quartic if and only if Pic(M) contains a very ample bundle L with (L, L) = 4.

COROLLARY: Let *M* be a K3 surface, such that $Pic(M) = \mathbb{Z}$, and *L* the line bundle generating Pic(M). Assume that (L, L) > 2. Then *L* or L^* is very ample.

Corollary 1: Let *M* be a K3 surface, such that $Pic(M) = \mathbb{Z}$, and *L* the line bundle generating Pic(M). Assume that (L, L) = 4. Then *M* is isomorphic to a quartic.

Proof: The bundle L is very ample by the previous corollary, hence by the previous proposition M is a quartic.

REMARK: Today we shall prove that **quartics are dense in the Teichmüller space of K3 surfaces,** using local Torelli theorem (which will be proven later).

The period space of complex structures (reminder from lecture 7)

DEFINITION: Let Teich be the Teichmüller space of complex structures of Kähler type on a K3 surface. The corresponding period space is denoted $\mathbb{P}er := \{v \in \mathbb{P}H^2(M, \mathbb{C}) \mid \int_M v \wedge v = 0, \int_M v \wedge \overline{v} > 0\}.$

PROPOSITION: (local Torelli theorem)

Let Teich be the space of complex structures on a K3 surface, and Per : Teich \longrightarrow Per the map taking (M, I) to the line $H^{2,0}(M) \subset H^2(M, \mathbb{C})$. Then Per is a local diffeomorphism.

Proof: Later in these lectures.

CLAIM: \mathbb{P} er = $SO(b_2 - 3, 3)/SO(2) \times SO(b_2 - 3, 1)$.

Proof: Take a non-zero vector v in a line $l \in \mathbb{P}$ er. Since (v, v) = 0 and $(v, \overline{v}) > 0$, the vectors v and \overline{v} are not proportional, hence they generate a 2-dimensional plane $P \subset H^2(M, \mathbb{R})$ which is positive, because $(v, \overline{v}) > 0$, hence belongs to the positive, oriented Grassmannian

$$\operatorname{Gr}_{++}(H^2(M,\mathbb{R})) = SO(b_2 - 3, 3)/SO(2) \times SO(b_2 - 3, 1).$$

Conversely, for any $P \subset \text{Gr}_{++}(H^2(M,\mathbb{R}))$, its complexification $P \otimes \mathbb{C}$ contains two lines l_1, l_2 which belong to the quadric q(v, v) = 0. These two lines are distinguished by their orientation. This implies that **the correspondence** $\mathbb{P}\text{er} \to SO(b_2 - 3, 3)/SO(2) \times SO(b_2 - 3, 1)$ **taking** $\Omega \in Q$ **to** $\langle \text{Re}\omega, \text{Im} \Omega \rangle \in$ $\text{Gr}_{++}(H^2(M,\mathbb{R}))$ is bijective.

Noether-Lefschetz locus in the period space

DEFINITION: Let M be a K3, $\eta \in H^2(M, \mathbb{R})$ be a non-zero class, and $\mathbb{P}er_{\eta} \subset \mathbb{P}er = \{v \in \mathbb{P}H^2(M, \mathbb{C}) \mid \int_M v \wedge v = 0, \int_M v \wedge \overline{v} > 0\}$. the set of all points such that $\eta \perp v$, or, equivalently, $\eta \in H^{1,1}(M, I)$ for any $I \in \text{Teich}$ such that Per(I) = v. Then $\mathbb{P}er_{\eta}$ is called the Noether-Lefschetz locus corresponding to η .

REMARK: Clearly, $\mathbb{P}er_{\eta}$ is an intersection of a complex hyperplane $\mathbb{P}\eta^{\perp} \subset \mathbb{P}H^2(M,\mathbb{C})$ and $\mathbb{P}er$, hence $\mathbb{P}er_{\eta}$ is a complex divisor in $\mathbb{P}er$. This divisor is clearly smooth (all homogeneous varieties are smooth).

REMARK: For the same reason, given any subspace $V \subset H^2(M, \mathbb{R})$, the period space $\mathbb{P}er(V) := \{v \in \mathbb{P}V \otimes_{\mathbb{R}} \mathbb{C} \mid \int_M v \wedge v = 0, \int_M v \wedge \overline{v} > 0\}$ is a complex submanifold of $\mathbb{P}er$, with $\dim_{\mathbb{C}} \mathbb{P}er(V) = 2 \dim_{\mathbb{R}} M - 2$. However, $\mathbb{P}er(V)$ is empty if V does not contain positive 2-planes. The submanifold $\mathbb{P}er(V)$ is also called the Noether-Lefschetz locus.

The set of quartics with Picard rank 1

REMARK: Given $v \in \mathbb{P}$ er, let $H^{1,1}(M, v)$ be the space $\langle \operatorname{Re} v, \operatorname{Im} v \rangle^{\perp} \subset H^2(M, \mathbb{R})$. **Clearly,** $H^{1,1}(M, v) = H^{1,1}(M, I)$ whenever $v = \operatorname{Per}(I)$. We denote by $\operatorname{Pic}(M, v)$ the lattice $H^{1,1}(M, v) \cap H^2(M, \mathbb{Z})$; clearly, it coincides with $\operatorname{Pic}(M, I)$ whenever $v = \operatorname{Per}(I)$.

CLAIM: Let $\eta \in H^2(M,\mathbb{Z})$ and $\mathbb{P}er_{\eta}^0$ be the space of all $v \in \mathbb{P}er_{\eta}$ such that $\mathsf{rk}\operatorname{Pic}(M,v) = 1$. Then $\mathbb{P}er_{\eta}^0$ is dense in $\mathbb{P}er_{\eta}$.

Proof: Let \mathfrak{S} be the set of all rank 2 subgroups of $H^2(M,\mathbb{Z})$ containing η . **Then** $\mathbb{P}er(V) \subset \mathbb{P}er_{\eta}$ is a smooth divisor in $\mathbb{P}er_{\eta}$. Since

$$\mathbb{P}\mathrm{er}_{\eta} \setminus \mathbb{P}\mathrm{er}_{\eta}^{\mathsf{O}} = \bigcup_{S \in \mathfrak{S}} \mathbb{P}\mathrm{er}(V)$$

the complement $\mathbb{P}er_{\eta} \setminus \mathbb{P}er_{\eta}^{0}$ is a countable union of divisors, hence it has measure 0.

Set of all quartics is dense

THEOREM: Let M be a K3 and $\mathfrak{R} \subset H^2(M,\mathbb{Z})$ the set of all vectors η such that $(\eta, \eta) = 4$. Then $\bigcup_{\eta \in \mathfrak{R}} \mathbb{P}er_{\eta}$ is dense $\mathbb{P}er$.

Proof: Later today.

Using this result and local Torelli, we prove

Corollary 2: Let $\mathfrak{Q} \subset$ Teich be the set of all K3 with Picard group of rank 1 generated by a vector x with (x, x) = 4 Then \mathfrak{Q} is dense in Teich.

Proof: In a neighbourhood of each point $v \in \mathbb{P}$ er there is a point $w \in \mathbb{P}$ er_{η}, where $\eta \in \mathbb{R}$. Since w is a limit of points $w_i \in \mathbb{P}$ er⁰_{η} $\subset \mathfrak{Q}$, every neighbourhood of v contains a point in \mathfrak{Q} .

REMARK: By Corollary 1, all such *x* correspond to quartics; therefore, Corollary 2 implies that quartics are dense in Teich.

COROLLARY: Every K3 is diffeomorphic to a smooth quartic.

Set of all quartics is dense (2)

It remains to prove

THEOREM: Let M be a K3 and $\mathfrak{R} \subset H^2(M,\mathbb{Z})$ the set of all vectors η such that $(\eta, \eta) = 4$. Then $\bigcup_{\eta \in \mathfrak{R}} \mathbb{P}er_{\eta}$ is dense $\mathbb{P}er$.

Using the identification $\mathbb{P}er = Gr_{++}(H^2(M,\mathbb{R}))$ we reformulate this theorem as follows.

Theorem 2: Let M be a K3, $\Re \subset H^2(M, \mathbb{Z})$ the set of all vectors η such that $(\eta, \eta) = 4$, and $W_{\Re} \subset \operatorname{Gr}_{+,+}(H^2(M, \mathbb{R}))$ the set of all 2-planes orthogonal to some $\eta \in \Re$. Then W_{\Re} is dense in $\operatorname{Gr}_{+,+}(H^2(M, \mathbb{R}))$.

REMARK: There are 2 proofs. Today we will deduce Theorem 2 from Ratner's theorems (a deep and fundamental result of homogeneous dynamics). Next lecture we prove it directly using an elementary argument.

Ergodic measures

DEFINITION: Let (M, μ) be a space with a measure, and G a group acting on M preserving μ . This action is **ergodic** if all G-invariant measurable subsets $M' \subset M$ satisfy $\mu(M') = 0$ or $\mu(M \setminus M') = 0$.

REMARK: Ergodic measures are extremal rays in the cone of all *G*-invariant measures.

REMARK: By Choquet's theorem, any *G*-invariant measure on *M* is expressed as an average of a certain set of ergodic measures. Therefore, *G*-invariant ergodic measures always exist.

CLAIM: Let *M* be a manifold, μ a Lebesgue measure, and *G* a group acting on (M, μ) ergodically. Then the set of non-dense orbits has measure **0**.

Proof: Consider a non-empty open subset $U \subset M$. Then $\mu(U) > 0$, hence $M' := G \cdot U$ satisfies $\mu(M \setminus M') = 0$. For any orbit $G \cdot x$ not intersecting U, $x \in M \setminus M'$. Therefore the set of such orbits has measure 0.

M. Verbitsky

Ratner theory

DEFINITION: Let G be a connected Lie group equipped with a Haar measure. A lattice $\Gamma \subset G$ is a discrete subgroup of finite covolume (that is, G/Γ has finite volume).

EXAMPLE: By Borel and Harish-Chandra theorem, any integer lattice in a simple Lie group has finite covolume.

THEOREM: (Calvin C. Moore, 1966) Let Γ be an arithmetic lattice in a non-compact simple Lie group G with finite center, and $H \subset G$ a non-compact subgroup. Then the left action of Γ on G/H is ergodic, that is, for all Γ -invariant measurable subsets $Z \subset G/H$, either Z has measure 0, or $G/H \setminus Z$ has measure 0.

THEOREM: (Marina Ratner)

Let $H \subset G$ be a Lie subroup generated by unipotents, and $\Gamma \subset G$ a lattice. Then a closure of any *H*-orbit in G/Γ is an orbit of a closed, connected subgroup $S \subset G$, such that $S \cap \Gamma$ is a lattice in *S*.

REMARK: Let $x \in G/H$ be a point in a homogeneous space, and $\Gamma \cdot x$ its Γ -orbit, where Γ is an arithmetic lattice. Then its closure is an orbit of a group S containing stabilizer of x. Moreover, S is a smallest group defined over rationals and stabilizing x.

Oppenheim conjecture

CONJECTURE: (Oppenheim, 1929; proven by G. Margulis, 1987) Let q be an irrational quadratic form on \mathbb{R}^n of signature (a, b), with a, b > 0, and $S_q := q(\mathbb{Z}^n)$. Then S is dense in \mathbb{R} .

Proof. Step 1: Let $G = SL(n, \mathbb{R})$ and $H = SO(a, b) \subset G$, and $\Gamma = SL(n, \mathbb{Z})$. Points of G/H classify quadratic forms of signature (a, b). Consider the function $F : G/H \longrightarrow \mathbb{R}$ taking a frame $e_1, ..., e_n$ to $q(e_1)$. Clearly, $F(\Gamma \cdot (e_1, ..., e_n)) \subset S_q$ when e_1 is integer, hence it suffices to show that the orbit $\Gamma \cdot q$ is dense.

Step 2: There are no intermediate subgroups between SO(a,b) and $SL(n,\mathbb{R})$ (an exercise). Then, by Ratner's theorem, a point $q \in G/H$ has a closed orbit (and in this case q is preserved by a sublattice $H_{\mathbb{Z}} = G_{\mathbb{Z}} \cap H$; in other words, q is a rational quadratic form), or a dense orbit, and in this case S_q is dense. K3 surfaces, 2024, lecture 11

Orbits of $SO(H^2(M,\mathbb{Z}))$ on $Gr_{+,+}(H^2(M,\mathbb{R}))$

EXERCISE: Let G = SO(a, b) and $H \subset G$ the stabilizer of a point $W \in Gr_{++}(\mathbb{R}^{a,b})$. Then there is only one type of intermediate subgroups between G and H: it is the stabilizer of a non-zero vector $x \in W$.

Therefore, Ratner theorem implies

PROPOSITION: Let $v \in \mathbb{P}$ er be a point corresponding to a 2-plane $W \in Gr_{++}(H^2(M,\mathbb{R}))$ with no rational vectors. Then its $SO(H^2(M,\mathbb{Z}))$ -orbit in $Gr_{++}(H^2(M,\mathbb{R}))$ is dense.

Now, Theorem 2 easily follows from this proposition, because a general point $v \in \mathbb{P}er_{\eta}$ has no rational vectors.

Marina Ratner (1979).

11