K3 surfaces

lecture 12: Density of quartics, a more elementary proof

Misha Verbitsky

IMPA, sala 236

October 9, 2024, 17:00

Ample bundles on quartic surfaces (reminder from lecture 10)

PROPOSITION: A K3 surface M is isomorphic to a quartic **if and only if** Pic(M) contains a very ample bundle L with $(L, L) = 4$.

COROLLARY: Let M be a K3 surface, such that $Pic(M) = \mathbb{Z}$, and L the line bundle generating Pic (M) . Assume that $(L, L) > 2$. Then L or L^* is very ample. \blacksquare

Corollary 1: Let M be a K3 surface, such that $Pic(M) = \mathbb{Z}$, and L the line bundle generating Pic(M). Assume that $(L, L) = 4$. Then M is isomorphic to a quartic.

Proof: The bundle L is very ample by the previous corollary, hence by the previous proposition M is a quartic. \blacksquare

In Lecture 11, we deduced density of quartics from Torelli theorem, and the following result.

Theorem 2: Let M be a K3, $\Re \subset H^2(M, \mathbb{Z})$ the set of all vectors η such that $(n, \eta) = 4$, and $Z(\mathfrak{R}) \subset \mathrm{Gr}_{+,+}(H^2(M, \mathbb{R}))$ the set of all 2-planes orthogonal to some $\eta \in \mathfrak{R}$. Then $Z(\mathfrak{R})$ is dense in $\mathsf{Gr}_{+,+}(H^2(M,\mathbb{R}))$.

REMARK: There are 2 proofs. In Lecture 11 we deduced Theorem 2 from Ratner's theorems (a deep and fundamental result of homogeneous dynamics). Today we will prove it directly using a more elementary argument.

Quadratic lattices

We will prove a more general result about quadraic lattices. Recall that **a** quadratic lattice is \mathbb{Z}^n equipped with an integer-valued quadratic form.

DEFINITION: Let k be an integer. We say that an integer quadratic lattice (A, q) represents k if there exists $u \in A$ such that $q(u, u) = k$.

Let $(V_{\mathbb{Z}}, q)$ be a non-degenerate quadratic lattice of signature (a, b) with $a \geqslant$ $3, b \geqslant 1$, and $g \in \mathbb{Z}$ a number such that there exists $x \in V_{\mathbb{Z}}$ such that $q(x, x) \neq 0$. Denote by $V_{\mathbb{R}}$ the tensor product $V_{\mathbb{R}} := V_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{R}$.

We can now forget about K3 and consider Theorem 2 as a special case of the following

Theorem 1: Let $\mathfrak{R} \subset V_{\mathbb{Z}}$ the set of all vectors η such that $(\eta, \eta) = g$, where g is a positive integer represented by q, and $Z(\mathfrak{R}) \subset \mathrm{Gr}_{+,+}(V_{\mathbb{R}})$ the set of all 2-planes orthogonal to some $\eta \in \mathfrak{R}$. Then $Z(\mathfrak{R})$ is dense in $\text{Gr}_{+,+}(V_{\mathbb{R}})$.

Its proof takes the rest of today's lecture.

Geometric idea of the proof: Let $\Gamma := SO(V_{\mathbb{Z}}, q)$. Clearly, \Re coincides with its Γ -orbit. Consider the set Null $(V) \subset \mathbb{P}(V_\mathbb{R})$ of all vectors x such that $q(x, x) = 0$. It is well known that Null(V) belongs to the closure of an orbit $\Gamma \cdot x$ for any $x \in \mathbb{P}(V_\mathbb{R})$. We will prove that the closure of $Z(\mathfrak{R})$ coincides with Z(its closure in $\mathbb{P}(V_{\mathbb{R}})$), which contains $Z(\text{Null}(V)) = \text{Gr}_{+,+}(V_{\mathbb{R}})$.

Closures and the sets of orthogonal 2-planes

Let $A \subset \mathbb{P}V_{\mathbb{R}}$ be a subset. Denote by $Z(A) \subset \mathsf{Gr}_{++}(V_{\mathbb{R}})$ the set of all 2-planes orthogonal to some $a \in A$.

CLAIM: Let $U \subset Gr_{++}(V_{\mathbb{R}})$ be an open subset, and $P(U)$ be the set of all vectors $v \in V_{\mathbb{R}}$ such that $v \bot W$ for some $W \in U$. Then $P(U)$ is open in $V_{\mathbb{R}}$.

Proof: Left as an exercise. ■

Lemma 1: Let $B \subset \mathbb{P}V_{\mathbb{R}}$ be the closure of $A \subset \mathbb{P}V_{\mathbb{R}}$. Then $Z(B)$ is the closure of $Z(A)$.

Proof. Step 1: Let $\{a_i\} \subset \mathbb{P}V_\mathbb{R}$ be a sequence, $\{W_i \in Z(a_i)\}\$ a sequence of 2-planes orthogonal to a_i , and $W\in\mathsf{Gr}_{++}(V_\mathbb{R})$ its limit. Since $\mathbb{P} V_\mathbb{R}$ is compact, we can replace $\{a_i\}$ by its subsequence which converges to $b \in \mathbb{P}V_{\mathbb{R}}$. Since the scalar product is continuous, $W \perp b$, hence $\overline{Z(A)} \subset Z(B)$.

Step 2: Conversely, let $\{a_i\} \subset \mathbb{P}V_\mathbb{R}$ be a sequence which converges to $b \in \mathbb{P}V_\mathbb{R}$, and $W \in Z(b)$. Given an open subset $U \ni W$ in $Gr_{++}(V_{\mathbb{R}})$, the set $\{x \in$ $\mathbb{P} V_{\mathbb{R}}$ | $Z(x) \cap U \neq \emptyset$ is open by the previous claim, **hence it contains almost** all $\{a_i\}$. Therefore, W is a limit of a sequence $W_i \in Z(a_i)$. This implies that $Z(B) \subset Z(A)$.

The null-quadric

DEFINITION: The light cone, or null-quadric Null(V) $\subset \mathbb{P}V_{\mathbb{R}}$ is the set $\{l \in \mathbb{P}V_{\mathbb{R}}, \ (l,l)=0\}.$

REMARK: $Z(Null(V_{\mathbb{R}})) = Gr_{+,+}(V_{\mathbb{R}})$. Indeed, for any positive 2-plane in $V_{\mathbb{R}}$, its orthogonal complement contains a null-vector, because the signature of V is at least $(3, 1)$.

REMARK: To prove Theorem 1, we will show that $Null(V) \subset \overline{\mathfrak{R}}$. Then Lemma 1 gives $Z(\mathfrak{R}) \supset Z(\text{Null}(V)) = \text{Gr}_{+,+}(V_{\mathbb{R}})$

We have just reduced Theorem 1 to Theorem 3 below.

Theorem 1: Let $\mathfrak{R} \subset V_{\mathbb{Z}}$ the set of all vectors η such that $(\eta, \eta) = g$, and $Z(\mathfrak{R}) \subset \mathrm{Gr}_{+,+}(V_{\mathbb{R}})$ the set of all 2-planes orthogonal to some $\eta \in \mathfrak{R}$. Then $Z(\mathfrak{R})$ is dense in $\text{Gr}_{+,+}(V_{\mathbb{R}})$.

Theorem 3: Let $\mathfrak{R} \subset V_{\mathbb{Z}}$ the set of all vectors η such that $(\eta, \eta) = g$. Then the closure of $\mathbb{P} \mathfrak{R} \subset \mathbb{P} V_{\mathbb{R}}$ contains $\text{Null}(V_{\mathbb{R}})$.

Proof: Next lecture.