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Ample bundles on quartic surfaces (reminder from lecture 10)

PROPOSITION: A K3 surface M is isomorphic to a quartic if and only if
Pic(M) contains a very ample bundle L with (L,L) = 4.

COROLLARY: Let M be a K3 surface, such that Pic(M) = Z, and L the
line bundle generating Pic(M). Assume that (L,L) > 2. Then L or L∗ is
very ample.

Corollary 1: Let M be a K3 surface, such that Pic(M) = Z, and L the line
bundle generating Pic(M). Assume that (L,L) = 4. Then M is isomorphic
to a quartic.
Proof: The bundle L is very ample by the previous corollary, hence by the
previous proposition M is a quartic.

In Lecture 11, we deduced density of quartics from Torelli theorem, and the
following result.
Theorem 2: Let M be a K3, R ⊂ H2(M,Z) the set of all vectors η such that
(η, η) = 4, and Z(R) ⊂ Gr+,+(H2(M,R)) the set of all 2-planes orthogonal to
some η ∈ R. Then Z(R) is dense in Gr+,+(H2(M,R)).

REMARK: There are 2 proofs. In Lecture 11 we deduced Theorem 2 from
Ratner’s theorems (a deep and fundamental result of homogeneous dynam-
ics). Today we will prove it directly using a more elementary argument.
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Quadratic lattices

We will prove a more general result about quadraic lattices. Recall that a
quadratic lattice is Zn equipped with an integer-valued quadratic form.

DEFINITION: Let k be an integer. We say that an integer quadratic lattice
(Λ, q) represents k if there exists u ∈ Λ such that q(u, u) = k.

Let (VZ, q) be a non-degenerate quadratic lattice of signature (a, b) with a ⩾
3, b ⩾ 1, and g ∈ Z a number such that there exists x ∈ VZ such that q(x, x) ̸= 0.
Denote by VR the tensor product VR := VZ ⊗Z R.

We can now forget about K3 and consider Theorem 2 as a special case of
the following
Theorem 1: Let R ⊂ VZ the set of all vectors η such that (η, η) = g, where
g is a positive integer represented by q, and Z(R) ⊂ Gr+,+(VR) the set of all
2-planes orthogonal to some η ∈ R. Then Z(R) is dense in Gr+,+(VR).

Its proof takes the rest of today’s lecture.
Geometric idea of the proof: Let Γ := SO(VZ, q). Clearly, R coincides
with its Γ-orbit. Consider the set Null(V ) ⊂ P(VR) of all vectors x such that
q(x, x) = 0. It is well known that Null(V ) belongs to the closure of an orbit
Γ · x for any x ∈ P(VR). We will prove that the closure of Z(R) coincides
with Z(its closure in P(VR)), which contains Z(Null(V )) = Gr+,+(VR).
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Closures and the sets of orthogonal 2-planes

Let A ⊂ PVR be a subset. Denote by Z(A) ⊂ Gr++(VR) the set of all 2-planes
orthogonal to some a ∈ A.

CLAIM: Let U ⊂ Gr++(VR) be an open subset, and P (U) be the set of all
vectors v ∈ VR such that v⊥W for some W ∈ U . Then P (U) is open in VR.

Proof: Left as an exercise.

Lemma 1: Let B ⊂ PVR be the closure of A ⊂ PVR. Then Z(B) is the
closure of Z(A).

Proof. Step 1: Let {ai} ⊂ PVR be a sequence, {Wi ∈ Z(ai)} a sequence of
2-planes orthogonal to ai, and W ∈ Gr++(VR) its limit. Since PVR is compact,
we can replace {ai} by its subsequence which converges to b ∈ PVR. Since
the scalar product is continuous, W⊥b, hence Z(A) ⊂ Z(B).

Step 2: Conversely, let {ai} ⊂ PVR be a sequence which converges to b ∈ PVR,
and W ∈ Z(b). Given an open subset U ∋ W in Gr++(VR), the set {x ∈
PVR | Z(x)∩U ̸= ∅} is open by the previous claim, hence it contains almost
all {ai}. Therefore, W is a limit of a sequence Wi ∈ Z(ai). This implies that
Z(B) ⊂ Z(A).
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The null-quadric

DEFINITION: The light cone, or null-quadric Null(V ) ⊂ PVR is the set
{l ∈ PVR, (l, l) = 0}.

REMARK: Z(Null(VR)) = Gr+,+(VR). Indeed, for any positive 2-plane in VR,
its orthogonal complement contains a null-vector, because the signature of V
is at least (3,1).

REMARK: To prove Theorem 1, we will show that Null(V ) ⊂ R. Then
Lemma 1 gives Z(R) ⊃ Z(Null(V )) = Gr+,+(VR)

We have just reduced Theorem 1 to Theorem 3 below.

Theorem 1: Let R ⊂ VZ the set of all vectors η such that (η, η) = g, and
Z(R) ⊂ Gr+,+(VR) the set of all 2-planes orthogonal to some η ∈ R. Then
Z(R) is dense in Gr+,+(VR).

Theorem 3: Let R ⊂ VZ the set of all vectors η such that (η, η) = g. Then
the closure of PR ⊂ PVR contains Null(VR).

Proof: Next lecture.
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