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Summary from the last lecture

Let (V7,q) be a non-degenerate quadratic lattice of signature (a,b) with a >
3,b>1, and g € Z a number such that there exists x € V; such that ¢q(x,z) # 0.
Denote by Vg the tensor product Vp (= V7 ®7 R. As usual, we denote the
Grassmannian of positive, oriented 2-planes by Gr_|_7_|_(VR) and the null-quadriv

{l e P(Vg) | q(,1) =0} by Null(Vg).

In lecture 12, we reduced density of the quartics in the Teichmuller
space of K3 surfaces to the following statement.

Theorem 1: Let R C V the set of all vectors n such that (n,n) = ¢, and
Z(R) C Gry 4 (VR) the set of all 2-planes orthogonal to some n € R. Then
Z(R) is dense in Gry 4 (VR).

and reduced it further to
Theorem 3: Let ;R C V; the set of all vectors n such that (n,n) = g¢g. Then
the closure of PR C PV contains Null(VR).

Also, the following result was used implicitly. We will deduce it from
Mevyers' theorem today.

THEOREM: Let V; = H2(M,Z) be the intersection lattice of a K3 surface.
Then there exists x € V; such that (z,z) = 4.
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Quadratic form representing 0

REMARK: Recall that an element of a lattice A = Z" is called primitive if
it is not divisible by an integer. For any primitive element x € A, the quotient
lattice A/(x) is torsion-free. Therefore, we can find a basis in A starting from
z, and there exists n € A* such that (n,z) = 1.

DEFINITION: Let (A,q) be a quadratic lattice. We say that A (or q) rep-
resents n € Z if there exists x € V; such that (z,z) = n.

THEOREM: (Meyer)
Let ¢ be an indefinite rational quadratic form on aspaceV =Q", »r > 5. Then
q represents O.

Proof: A. Meyer, Ueber einen Satz von Dirichlet, Journal fiir Mathematik
vol. 103 (1888) p. 98. m

REMARK: In the modern literature, Meyer’s theorem is deduced from the
Hasse-Minkowski theorem,

https://mathoverflow.net/questions/384352/a-1ist-of-proofs-of-the-hasse-minkowski-theorem
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Quadratic form representing 4

O 1
1 O

sents 4. Indeed, (2z +y,2z +y) = 4(z,y) = 4.

EXAMPLE: Let Uy = ( be the hyperbolic lattice 2x2. Then it repre-

Claim 0: Let (A,q) be a unimodular even quadratic lattice which represents
0. Then A contains U> (and hence represents 4).

Proof: Since A is unimodular, the natural map ¢ : A — A* is an isomorphism.
Then for any primitive x € A there exists y € A such that g(x,y) = 1. Assume
that g(x,z) = 0. Then ¢q(y + kx,y + kx) = q(y,y) + 2kq(y,z); choosing
k= —q(yT’y), we obtain an element ¢y := y + kx such that the ¢(z,z) =
0,q(y,y) =0, and gq(z,y') =1. =

THEOREM: Let V; = H2(M,Z) be the intersection lattice of a K3 surface.
Then there V; represents 4.

Proof: From the classification of even unimodular form it follows that V7 is
a product of 2 F_g and three U, and the latter represents 4. Even without
using the classification, we can apply Meyer's theorem. Indeed, rkV,; = 22,
and the intersection form is even and indefinite. Together with Claim O,
Meyer’'s theorem implies that V; represents 4. =
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Discriminant of a quadratic lattice

DEFINITION: Let (Vz,q) be a quadratic lattice, and Vg := Vz ®7z Q. The
dual lattice V; the set of all x € Vy such that ¢(x,V7z) C Z.

REMARK: Let ej,...,en be a basis in Vz, and e} € V@ be the dual basis iIn
V@, that is, 1-forms which satisfy (ei,ep = ¢;;. Using q to identify Vy and V@,
we obtain that {e}} is a basis in V;, hence V; is a lattice of the same rank
as Vz.

REMARK: Clearly, V; D V7.
DEFINITION: The discriminant group of V7 is Discy, := V;/V7.

REMARK: Let A{ C A be a sublattice in a quadratic lattice (A,q), rk\ =
rk A1. We have the following family of sublattices A7 D A* D A D Aj. This
defines a natural map A;{ - Disc(A1).

Claim 1: Let '{ = SO(A1) and ', C '] be its subgroup consisting of all
maps preserving A D Aq1. Then 5 is a group of all v € SO(A1) such that
~ preserves the image of A in Disc(Aq).

Proof: It is clear that any element of ', preserves a(A). Conversely, any
~v € SO(A1) which preserves a(A) also preserves A :=a " 1(a(A)) m
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Commensurability

DEFINITION: Two subgroups GG1,G> C GL(n,R) are called commensurable
if G1 N Go has finite index in G1 and in Go.

PROPOSITION: Let Aq C A be quadratic lattices of the same rank. Then
SO(A1) and SO(A) are commensurable.

Proof: By Claim 1, 'y := SO(A1) N SO(A) has finite index in SO(Aq1); in-
deed, the discriminant group is finite, and ', is a subgroup of SO(A1) which
preserves a finite subset of Disc(A1). To see that ', is commensurable with
SO(N), we consider a lattice NA, for N a sufficiently big integer, such that
A1 C NA. Then SO(A) = SO(NA) has finite index in ', = SO(A1)NSO(NN).
u
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Extending isometries of a lattice

Corollary 2: Let (B,q) be a non-degenerate quadratic lattice, and A C B a
non-degenerate sublatice of smaller rank. Denote by ' 4 C SO(A) the group
of all isometries of A which can be extended to an isometry of B. Then [ 4
Is of finite index in SO(A).

Proof: Consider the lattice By := A @ A+ C B; clearly, it has finite index,
hence SO(Bj) is commensurable to SO(B). This implies that the group
St4(SO(B)) C SO(B) of all elements preserving A is commensurable with
St4(SO(B1)) C SO(B71). However, any element of SO(A) is extended to
an element of SO(B7), hence the natural map St4(SO(B71)) — SO(A) is
surjective. Then the restriction map St 4(SO(B1))NSt4(SO(B)) — SO(A)
has finite index. =
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Pell’s equation

DEFINITION: Let w € Z>9 be a integer which is not divisible by a square
of an integer > 1. We say that w is square-free.

Let w > 1 be a square-free integer, and K the set of numbers a + b\/w, where
a,b are rational. Since the norm N(a + by/w) := a2 — wb? is multiplicative on
K, the solutions of an equation N(a + b/w) = 1 form a multiplicative
group. Denote by I' its quotient by +1.

THEOREM: (Legendre, Pell, Dirichlet) This group is isomorphic to Z.
Proof: Next slide.

REMARK: Let ¢ : K — K be the automorphism of K given as a + by/w —
a — by/w. Since N(z) = zo(z), we have 21 = zN(z)~!. Therefore, z is
invertible in O :=7Z + Z+y/w if and only if N(z) = 1. If N(x) = —1 has a
solution, the group of solutions of the Pell equation ¢? — wb? = 1 is an
index 2 subgroup in the group O3 of invertible elements in the ring O,
otherwise it coincides with OF..

REMARK: Consider O as a lattice equipped with the quadratic form ¢(z) =

N(z), and let £ € O be a solution of the Pell equation N(¢) = 1. Then the

map z — £z induces an isometry on the lattice (Og,q). In other words,

solutions of Pell’'s equation are identified with integer points in SO(q).
3
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John Pell (1611-1685)

John Pell (1611-1685)

John Pell’s connection with the equation is that he revised Thomas Branker's translation of
Johann Rahn’'s 1659 book “Teutsche Algebra” into English, with a discussion of Brouncker’s
solution of the equation. Leonhard Euler mistakenly thought that this solution was due to
Pell, as a result of which he named the equation after Pell.
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Lagrange theorem (1)

REMARK: To prove that the group of solutions of N(x + yv/w) = 1 is
isomorphic to Z it suffices to produce a single non-trivial solution. Indeed,

the set of solution is the set of all matrices < v yﬁ) with determinant 1
TAVATIR

and (xz,y) integer. Such points form a discrete subgroup in the connected
component of SO(1,1,R) which is isomorphic to R.

THEOREM: (Lagrange)
Let w > 1 be a square-free integer. Then the equation z2 — y?w = 1 has
non-trivial integer solutions.

We use the following lemma.
Lemma 1: There exists infinitely many y > 0 such that |z — y/w| < %

Proof: Consider the interval [0, 1] as the union of m intervals

[0,1/m][, [1/m,2/m][, ..., [m —1/m,1][.

By the pigeonhole principle, there exist integers a,b € [0,m] such that the
fractional parts of a/w and by/w belong to the same interval, giving
[(a—b)y/w—c| <L, where|a—b<m. =
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Lagrange theorem (2)

THEOREM: (Lagrange)
Let w > 1 be a square-free integer. Then the equation z2 — y?w = 1 has
non-trivial integer solutions.

Proof. Step 1: Lemma 1 implies that for some integer M > 0, the
equation z2 — y?w = M has infinitely many solutions. Indeed, consider
a solution of |z — y/w| < % Then z = z — yv/w + yv/w < yv/w + 1, hence
r < yy/w-+ 1. Then

1
22 — wy?| = |z — yvwl|(z + yvw) < SVuF1+yv/w) <2Vw + 1.

Therefore, there are infinitely many solutions of |:132 — y2w| < 2y/w + 1.

Step 2: Let M > 0 be an integer such that there are infinitely many z €&
7.+ Z~/w with N(z) = M. Then there are numbers zq,z, € Z + Z+/w such
that 21 = 2o mod M and N(z1) = N(z0) = M. This gives z1 = Mz3 + 2o,
for some z3 € Z + Z+/w. Let o(a + by/w) := a — by/w. Then

z1 = 200(22)23 + 22 = 20(230(22) + 1) = 202, (*)
where z = z30(25)+1. Applying the norm to both sides of (*), we obtain

M = N(z1) = N(z>)N(z), hence N(z) = 1. =
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