K3 surfaces

lecture 13: Quadratic lattices and Pelle's equation

Misha Verbitsky

IMPA, sala 236

October 14, 2024, 17:00

Summary from the last lecture

Let $(V_{\mathbb{Z}}, q)$ be a non-degenerate quadratic lattice of signature (a, b) with $a \geqslant$ $3, b \geqslant 1$, and $g \in \mathbb{Z}$ a number such that there exists $x \in V_{\mathbb{Z}}$ such that $q(x, x) \neq 0$. Denote by $V_{\mathbb{R}}$ the tensor product $V_{\mathbb{R}} := V_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{R}$. As usual, we denote the Grassmannian of positive, oriented 2-planes by $Gr_{+,+}(V_{\mathbb{R}})$ and the null-quadriv $\{l \in \mathbb{P}(V_{\mathbb{R}}) \mid q(l, l) = 0\}$ by Null $(V_{\mathbb{R}})$.

In lecture 12, we reduced density of the quartics in the Teichmüller space of K3 surfaces to the following statement.

Theorem 1: Let $\mathfrak{R} \subset V_{\mathbb{Z}}$ the set of all vectors η such that $(\eta, \eta) = g$, and $Z(\mathfrak{R}) \subset \mathrm{Gr}_{+,+}(V_{\mathbb{R}})$ the set of all 2-planes orthogonal to some $\eta \in \mathfrak{R}$. Then $Z(\mathfrak{R})$ is dense in $Gr_{+,+}(V_{\mathbb{R}})$.

and reduced it further to **Theorem 3:** Let $\mathfrak{R} \subset V_{\mathbb{Z}}$ the set of all vectors η such that $(\eta, \eta) = g$. Then the closure of $\mathbb{P} \mathfrak{R} \subset \mathbb{P} V_{\mathbb{R}}$ contains $\text{Null}(V_{\mathbb{R}})$.

Also, the following result was used implicitly. We will deduce it from Meyers' theorem today.

THEOREM: Let $V_{\mathbb{Z}} = H^2(M, \mathbb{Z})$ be the intersection lattice of a K3 surface. Then there exists $x \in V_{\mathbb{Z}}$ such that $(x, x) = 4$.

Quadratic form representing 0

REMARK: Recall that an element of a lattice $\Lambda = \mathbb{Z}^n$ is called *primitive* if it is not divisible by an integer. For any primitive element $x \in \Lambda$, the quotient lattice $\Lambda/\langle x \rangle$ is torsion-free. Therefore, we can find a basis in Λ starting from x, and there exists $\eta \in \Lambda^*$ such that $\langle \eta, x \rangle = 1$.

DEFINITION: Let (Λ, q) be a quadratic lattice. We say that Λ (or q) represents $n \in \mathbb{Z}$ if there exists $x \in V_{\mathbb{Z}}$ such that $(x, x) = n$.

THEOREM: (Meyer)

Let q be an indefinite rational quadratic form on a space $V = \mathbb{Q}^r$, $r \geqslant 5$. Then q represents 0.

Proof: A. Meyer, Ueber einen Satz von Dirichlet, Journal für Mathematik vol. 103 (1888) p. 98.

REMARK: In the modern literature, Meyer's theorem is deduced from the Hasse-Minkowski theorem,

https://mathoverflow.net/questions/384352/a-list-of-proofs-of-the-hasse-minkowski-theorem

Quadratic form representing 4

EXAMPLE: Let U_2 = $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ be the hyperbolic lattice 2x2. Then it represents 4. Indeed, $(2x + y, 2x + y) = 4(x, y) = 4$.

Claim 0: Let (Λ, q) be a unimodular even quadratic lattice which represents 0. Then Λ contains U_2 (and hence represents 4).

Proof: Since Λ is unimodular, the natural map $q: \Lambda \longrightarrow \Lambda^*$ is an isomorphism. Then for any primitive $x \in \Lambda$ there exists $y \in \Lambda$ such that $q(x, y) = 1$. Assume that $q(x, x) = 0$. Then $q(y + kx, y + kx) = q(y, y) + 2kq(y, x)$; choosing $k = -\frac{\hat{q}(y, y)}{2}$ $\frac{(y,y)}{2}$, we obtain an element $y':=y+kx$ such that the $q(x,x)=y$ $0, q(y', y') = 0,$ and $q(x, y') = 1$.

THEOREM: Let $V_{\mathbb{Z}} = H^2(M, \mathbb{Z})$ be the intersection lattice of a K3 surface. Then there $V_{\mathbb{Z}}$ represents 4.

Proof: From the classification of even unimodular form it follows that $V_{\mathbb{Z}}$ is a product of 2 E_{-8} and three U_2 , and the latter represents 4. Even without using the classification, we can apply Meyer's theorem. Indeed, $rk V_{\mathbb{Z}} = 22$, and the intersection form is even and indefinite. Together with Claim 0, Meyer's theorem implies that $V_{\mathbb{Z}}$ represents 4. \blacksquare

Discriminant of a quadratic lattice

DEFINITION: Let $(V_{\mathbb{Z}}, q)$ be a quadratic lattice, and $V_{\mathbb{Q}} := V_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Q}$. The dual lattice $V^*_{\mathbb{Z}}$ $Z^*_{{\mathbb Z}}$ the set of all $x\in V_{\mathbb Q}$ such that $q(x,V_{\mathbb Z})\subset \tilde{{\mathbb Z}}.$

REMARK: Let $e_1, ..., e_n$ be a basis in $V_{\mathbb{Z}}$, and $e_i^* \in V_{\mathbb{Q}}^*$ $\mathrm{C}^*_\mathbb{O}$ be the dual basis in $V_{\mathbb{O}}^*$ $V^*_\mathbb{Q}$, that is, 1-forms which satisfy $\langle e_i,e_j^*\rangle=\delta_{ij}.$ Using $\stackrel{\vee}{q}$ to identify $V_\mathbb{Q}$ and $V^*_\mathbb{Q}$ $\overset{**}{\mathbb{O}}$, we obtain that $\{e_i^*\}$ $_i^*\}$ is a basis in $V_{\mathbb{Z}}^*$ $V^*_{\mathbb Z}$, hence $V^*_{\mathbb Z}$ \mathbb{Z}^* is a lattice of the same rank as $V_{\mathbb{Z}}$.

REMARK: Clearly, $V^*_{\mathbb{Z}}\supset V_{\mathbb{Z}}$.

DEFINITION: The discriminant group of $V_{\mathbb{Z}}$ is $Disc_{V_{\mathbb{Z}}} := V_{\mathbb{Z}}^*$ $\mathbb{Z}^*/V_{\mathbb{Z}}$.

REMARK: Let $\Lambda_1 \subset \Lambda$ be a sublattice in a quadratic lattice (Λ, q) , rk $\Lambda =$ rk Λ_1 . We have the following family of sublattices $\Lambda_1^* \supset \Lambda^* \supset \Lambda \supset \Lambda_1$. This defines a natural map $\Lambda_1 \stackrel{a}{\longrightarrow} \text{Disc}(\Lambda_1)$.

Claim 1: Let $\Gamma_1 = SO(\Lambda_1)$ and $\Gamma_2 \subset \Gamma_1$ be its subgroup consisting of all maps preserving $\Lambda \supset \Lambda_1$. Then Γ_2 is a group of all $\gamma \in SO(\Lambda_1)$ such that γ preserves the image of Λ in Disc(Λ_1).

Proof: It is clear that any element of Γ_2 preserves $a(\Lambda)$. Conversely, any $\gamma \in SO(\Lambda_1)$ which preserves $a(\Lambda)$ also preserves $\Lambda := a^{-1}(a(\Lambda))$

Commensurability

 \blacksquare

DEFINITION: Two subgroups $G_1, G_2 \subset GL(n, \mathbb{R})$ are called **commensurable** if $G_1 \cap G_2$ has finite index in G_1 and in G_2 .

PROPOSITION: Let $\Lambda_1 \subset \Lambda$ be quadratic lattices of the same rank. Then $SO(\Lambda_1)$ and $SO(\Lambda)$ are commensurable.

Proof: By Claim 1, $\Gamma_2 := SO(\Lambda_1) \cap SO(\Lambda)$ has finite index in $SO(\Lambda_1)$; indeed, the discriminant group is finite, and Γ_2 is a subgroup of $SO(\Lambda_1)$ which preserves a finite subset of $Disc(\Lambda_1)$. To see that Γ_2 is commensurable with $SO(\Lambda)$, we consider a lattice $N\Lambda$, for N a sufficiently big integer, such that $\Lambda_1 \subset N\Lambda$. Then $SO(\Lambda) = SO(N\Lambda)$ has finite index in $\Gamma_2 = SO(\Lambda_1) \cap SO(N\Lambda)$.

Extending isometries of a lattice

Corollary 2: Let (B, q) be a non-degenerate quadratic lattice, and $A \subset B$ a non-degenerate sublatice of smaller rank. Denote by $\Gamma_A \subset SO(A)$ the group of all isometries of A which can be extended to an isometry of B. Then Γ_A is of finite index in $SO(A)$.

Proof: Consider the lattice $B_1 := A \oplus A^{\perp} \subset B$; clearly, it has finite index, hence $SO(B_1)$ is commensurable to $SO(B)$. This implies that the group $St_A(SO(B)) \subset SO(B)$ of all elements preserving A is commensurable with $St_A(SO(B_1)) \subset SO(B_1)$. However, any element of $SO(A)$ is extended to an element of $SO(B_1)$, hence the natural map $St_A(SO(B_1)) \longrightarrow SO(A)$ is surjective. Then the restriction map $St_A(SO(B_1)) \cap St_A(SO(B)) \longrightarrow SO(A)$ has finite index.

Pell's equation

DEFINITION: Let $w \in \mathbb{Z}^{>0}$ be a integer which is not divisible by a square of an integer > 1 . We say that w is **square-free.**

Let $w > 1$ be a square-free integer, and K the set of numbers $a + b$ √ \overline{w} , where a,b are rational. Since the norm $N(a+b)$ √ $\overline{w}) := a^2 - wb^2$ is multiplicative on K, the solutions of an equation $N(a+b\sqrt{w})=1$ form a multiplicative √ group. Denote by Γ its quotient by ± 1 .

THEOREM: (Legendre, Pell, Dirichlet) This group is isomorphic to Z. Proof: Next slide.

REMARK: Let $\sigma: K \longrightarrow K$ be the automorphism of K given as $a + b$ √ $\overline{w} \mapsto$ $a - b\sqrt{w}.$ Since $N(x) \,=\, x \sigma(x),$ we have $x^{-1} \,=\, x N(x)^{-1}.$ Therefore, x is √ invertible in $\mathcal{O}_K := \mathbb{Z} + Z\sqrt{w}$ if and only if $N(x) = \pm 1$. If $N(x) = -1$ has a √ solution, the group of solutions of the Pell equation $a^2 - wb^2 = 1$ is an index 2 subgroup in the group \mathcal{O}_K^* of invertible elements in the ring \mathcal{O}_K , otherwise it coincides with $\mathcal{O}_{K}^{*}.$

REMARK: Consider \mathcal{O}_K as a lattice equipped with the quadratic form $q(z)$ = $N(z)$, and let $\xi \in \mathcal{O}_K$ be a solution of the Pell equation $N(\xi) = 1$. Then the map $z \mapsto \xi z$ induces an isometry on the lattice (\mathcal{O}_K, q) . In other words, solutions of Pell's equation are identified with integer points in $SO(q)$.

John Pell (1611-1685)

John Pell (1611-1685)

John Pell's connection with the equation is that he revised Thomas Branker's translation of Johann Rahn's 1659 book "Teutsche Algebra" into English, with a discussion of Brouncker's solution of the equation. Leonhard Euler mistakenly thought that this solution was due to Pell, as a result of which he named the equation after Pell.

Lagrange theorem (1)

REMARK: To prove that the group of solutions of $N(x + y)$ √ $\overline{w})\,=\,1\,$ is isomorphic to Z it suffices to produce a single non-trivial solution. Indeed, the set of solution is the set of all matrices $\Big($ $x = y\sqrt{w}$ \hat{y} $\frac{d}{dx}$ $\overline{w} \left(\begin{array}{c} y \sqrt{w} \ w \end{array}\right)$ with determinant 1 and (x, y) integer. Such points form a discrete subgroup in the connected

component of $SO(1,1,\mathbb{R})$ which is isomorphic to \mathbb{R} .

THEOREM: (Lagrange)

Let $w > 1$ be a square-free integer. Then the equation $x^2 - y^2 w = 1$ has non-trivial integer solutions.

We use the following lemma.

Lemma 1: There exists infinitely many $y > 0$ such that $|x - y|$ √ $\overline{w}|<\frac{1}{y}$.

Proof: Consider the interval $[0,1]$ as the union of m intervals

$$
[0,1/m[, [1/m,2/m[, ..., [m-1/m,1[.
$$

By the pigeonhole principle, there exist integers $a, b \in [0, m]$ such that the fractional parts of $a\sqrt{w}$ and $b\sqrt{w}$ belong to the same interval, giving φ (φ = $|(a - b)$ ∣a
√ $|\overline{w} - c| < \frac{1}{m}$, where $|a - b| < m$.

Lagrange theorem (2)

THEOREM: (Lagrange)

Let $w > 1$ be a square-free integer. Then the equation $x^2 - y^2w = 1$ has non-trivial integer solutions.

Proof. Step 1: Lemma 1 implies that for some integer $M > 0$, the equation $x^2 - y^2 w = M$ has infinitely many solutions. Indeed, consider a solution of $|x-y|$ √ $\overline{w}|<\frac{1}{y}.$ Then $x=x-y$ √ $\overline{w} + y$ √ $\overline{w} \, \leqslant \, y$ ∣∪
∕ $\overline{w}+1$, hence $x\leqslant y\sqrt{w}+1.$ Then ∪ı

$$
|x^{2} - wy^{2}| = |x - y\sqrt{w}|(x + y\sqrt{w}) < \frac{1}{y}(y\sqrt{w} + 1 + y\sqrt{w}) \le 2\sqrt{w} + 1.
$$

Therefore, there are infinitely many solutions of $|x^2-y^2w| < 2$ √ $\overline{w} + 1$.

Step 2: Let $M > 0$ be an integer such that there are infinitely many $z \in$ $\mathbb{Z}+\mathbb{Z}$ √ \overline{w} with $N(z)=M$. Then there are numbers $z_1, z_2 \in \mathbb{Z} + \mathbb{Z}$ √ \overline{w} such that $z_1 \equiv z_2 \mod M$ and $N(z_1) = N(z_2) = M$. This gives $z_1 = Mz_3 + z_2$, for some $z_3 \in \mathbb{Z} + \mathbb{Z}$ √ $\overline{w}.$ Let $\sigma(a+b)$ √ $\overline{w}) := a - b$ √ $\overline{w}.$ Then

$$
z_1 = z_2 \sigma(z_2) z_3 + z_2 = z_2 (z_3 \sigma(z_2) + 1) = z_2 z, \quad (*)
$$

where $z = z_3\sigma(z_2)+1$. Applying the norm to both sides of (*), we obtain $M = N(z_1) = N(z_2)N(z)$, hence $N(z) = 1$.