# **K3** surfaces

lecture 13: Quadratic lattices and Pelle's equation

Misha Verbitsky

IMPA, sala 236

October 14, 2024, 17:00

### Summary from the last lecture

Let  $(V_{\mathbb{Z}}, q)$  be a non-degenerate quadratic lattice of signature (a, b) with  $a \ge 3, b \ge 1$ , and  $g \in \mathbb{Z}$  a number such that there exists  $x \in V_{\mathbb{Z}}$  such that  $q(x, x) \ne 0$ . Denote by  $V_{\mathbb{R}}$  the tensor product  $V_{\mathbb{R}} := V_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{R}$ . As usual, we denote the Grassmannian of positive, oriented 2-planes by  $\operatorname{Gr}_{+,+}(V_{\mathbb{R}})$  and the null-quadriv  $\{l \in \mathbb{P}(V_{\mathbb{R}}) \mid q(l,l) = 0\}$  by  $\operatorname{Null}(V_{\mathbb{R}})$ .

In lecture 12, we reduced density of the quartics in the Teichmüller space of K3 surfaces to the following statement.

**Theorem 1:** Let  $\mathfrak{R} \subset V_{\mathbb{Z}}$  the set of all vectors  $\eta$  such that  $(\eta, \eta) = g$ , and  $Z(\mathfrak{R}) \subset \operatorname{Gr}_{+,+}(V_{\mathbb{R}})$  the set of all 2-planes orthogonal to some  $\eta \in \mathfrak{R}$ . Then  $Z(\mathfrak{R})$  is dense in  $\operatorname{Gr}_{+,+}(V_{\mathbb{R}})$ .

and reduced it further to **Theorem 3:** Let  $\mathfrak{R} \subset V_{\mathbb{Z}}$  the set of all vectors  $\eta$  such that  $(\eta, \eta) = g$ . Then the closure of  $\mathbb{P}\mathfrak{R} \subset \mathbb{P}V_{\mathbb{R}}$  contains  $\mathrm{Null}(V_{\mathbb{R}})$ .

Also, the following result was used implicitly. We will deduce it from Meyers' theorem today.

**THEOREM:** Let  $V_{\mathbb{Z}} = H^2(M, \mathbb{Z})$  be the intersection lattice of a K3 surface. **Then there exists**  $x \in V_{\mathbb{Z}}$  **such that** (x, x) = 4.

# Quadratic form representing 0

**REMARK:** Recall that an element of a lattice  $\Lambda = \mathbb{Z}^n$  is called **primitive** if it is not divisible by an integer. For any primitive element  $x \in \Lambda$ , the quotient lattice  $\Lambda/\langle x \rangle$  is torsion-free. Therefore, we can find a basis in  $\Lambda$  starting from x, and **there exists**  $\eta \in \Lambda^*$  **such that**  $\langle \eta, x \rangle = 1$ .

**DEFINITION:** Let  $(\Lambda, q)$  be a quadratic lattice. We say that  $\Lambda$  (or q) represents  $n \in \mathbb{Z}$  if there exists  $x \in V_{\mathbb{Z}}$  such that (x, x) = n.

# THEOREM: (Meyer)

Let q be an indefinite rational quadratic form on a space  $V = \mathbb{Q}^r$ ,  $r \ge 5$ . Then q represents 0.

**Proof:** A. Meyer, Ueber einen Satz von Dirichlet, Journal für Mathematik vol. 103 (1888) p. 98. ■

**REMARK:** In the modern literature, Meyer's theorem is deduced from the Hasse-Minkowski theorem,

https://mathoverflow.net/questions/384352/a-list-of-proofs-of-the-hasse-minkowski-theorem

### **Quadratic form representing 4**

**EXAMPLE:** Let  $U_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$  be the hyperbolic lattice 2x2. Then it represents 4. Indeed, (2x + y, 2x + y) = 4(x, y) = 4.

**Claim 0:** Let  $(\Lambda, q)$  be a unimodular even quadratic lattice which represents 0. Then  $\Lambda$  contains  $U_2$  (and hence represents 4).

**Proof:** Since  $\Lambda$  is unimodular, the natural map  $q : \Lambda \longrightarrow \Lambda^*$  is an isomorphism. Then for any primitive  $x \in \Lambda$  there exists  $y \in \Lambda$  such that q(x, y) = 1. Assume that q(x, x) = 0. Then q(y + kx, y + kx) = q(y, y) + 2kq(y, x); choosing  $k = -\frac{q(y,y)}{2}$ , we obtain an element y' := y + kx such that the q(x, x) = 0, q(y', y') = 0, and q(x, y') = 1.

**THEOREM:** Let  $V_{\mathbb{Z}} = H^2(M, \mathbb{Z})$  be the intersection lattice of a K3 surface. **Then there**  $V_{\mathbb{Z}}$  **represents 4.** 

**Proof:** From the classification of even unimodular form it follows that  $V_{\mathbb{Z}}$  is a product of 2  $E_{-8}$  and three  $U_2$ , and the latter represents 4. Even without using the classification, we can apply Meyer's theorem. Indeed,  $\operatorname{rk} V_{\mathbb{Z}} = 22$ , and the intersection form is even and indefinite. Together with Claim 0, Meyer's theorem implies that  $V_{\mathbb{Z}}$  represents 4.

#### M. Verbitsky

# **Discriminant of a quadratic lattice**

**DEFINITION:** Let  $(V_{\mathbb{Z}}, q)$  be a quadratic lattice, and  $V_{\mathbb{Q}} := V_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Q}$ . The dual lattice  $V_{\mathbb{Z}}^*$  the set of all  $x \in V_{\mathbb{Q}}$  such that  $q(x, V_{\mathbb{Z}}) \subset \mathbb{Z}$ .

**REMARK:** Let  $e_1, ..., e_n$  be a basis in  $V_{\mathbb{Z}}$ , and  $e_i^* \in V_{\mathbb{Q}}^*$  be **the dual basis in**  $V_{\mathbb{Q}}^*$ , that is, 1-forms which satisfy  $\langle e_i, e_j^* \rangle = \delta_{ij}$ . Using q to identify  $V_{\mathbb{Q}}$  and  $V_{\mathbb{Q}}^*$ , we obtain that  $\{e_i^*\}$  is a basis in  $V_{\mathbb{Z}}^*$ , hence  $V_{\mathbb{Z}}^*$  is a lattice of the same rank as  $V_{\mathbb{Z}}$ .

**REMARK: Clearly,**  $V_{\mathbb{Z}}^* \supset V_{\mathbb{Z}}$ .

**DEFINITION:** The discriminant group of  $V_{\mathbb{Z}}$  is  $\text{Disc}_{V_{\mathbb{Z}}} := V_{\mathbb{Z}}^*/V_{\mathbb{Z}}$ .

**REMARK:** Let  $\Lambda_1 \subset \Lambda$  be a sublattice in a quadratic lattice  $(\Lambda, q)$ ,  $rk\Lambda = rk\Lambda_1$ . We have the following family of sublattices  $\Lambda_1^* \supset \Lambda^* \supset \Lambda \supset \Lambda_1$ . This defines a natural map  $\Lambda_1 \xrightarrow{a} \text{Disc}(\Lambda_1)$ .

**Claim 1:** Let  $\Gamma_1 = SO(\Lambda_1)$  and  $\Gamma_2 \subset \Gamma_1$  be its subgroup consisting of all maps preserving  $\Lambda \supset \Lambda_1$ . Then  $\Gamma_2$  is a group of all  $\gamma \in SO(\Lambda_1)$  such that  $\gamma$  preserves the image of  $\Lambda$  in  $Disc(\Lambda_1)$ .

**Proof:** It is clear that any element of  $\Gamma_2$  preserves  $a(\Lambda)$ . Conversely, any  $\gamma \in SO(\Lambda_1)$  which preserves  $a(\Lambda)$  also preserves  $\Lambda := a^{-1}(a(\Lambda)) \blacksquare$ 

# Commensurability

**DEFINITION:** Two subgroups  $G_1, G_2 \subset GL(n, \mathbb{R})$  are called **commensurable** if  $G_1 \cap G_2$  has finite index in  $G_1$  and in  $G_2$ .

**PROPOSITION:** Let  $\Lambda_1 \subset \Lambda$  be quadratic lattices of the same rank. Then  $SO(\Lambda_1)$  and  $SO(\Lambda)$  are commensurable.

**Proof:** By Claim 1,  $\Gamma_2 := SO(\Lambda_1) \cap SO(\Lambda)$  has finite index in  $SO(\Lambda_1)$ ; indeed, the discriminant group is finite, and  $\Gamma_2$  is a subgroup of  $SO(\Lambda_1)$  which preserves a finite subset of  $Disc(\Lambda_1)$ . To see that  $\Gamma_2$  is commensurable with  $SO(\Lambda)$ , we consider a lattice  $N\Lambda$ , for N a sufficiently big integer, such that  $\Lambda_1 \subset N\Lambda$ . Then  $SO(\Lambda) = SO(N\Lambda)$  has finite index in  $\Gamma_2 = SO(\Lambda_1) \cap SO(N\Lambda)$ .

### **Extending isometries of a lattice**

**Corollary 2:** Let (B,q) be a non-degenerate quadratic lattice, and  $A \subset B$  a non-degenerate sublatice of smaller rank. Denote by  $\Gamma_A \subset SO(A)$  the group of all isometries of A which can be extended to an isometry of B. Then  $\Gamma_A$  is of finite index in SO(A).

**Proof:** Consider the lattice  $B_1 := A \oplus A^{\perp} \subset B$ ; clearly, it has finite index, hence  $SO(B_1)$  is commensurable to SO(B). This implies that the group  $St_A(SO(B)) \subset SO(B)$  of all elements preserving A is commensurable with  $St_A(SO(B_1)) \subset SO(B_1)$ . However, any element of SO(A) is extended to an element of  $SO(B_1)$ , hence the natural map  $St_A(SO(B_1)) \longrightarrow SO(A)$  is surjective. Then the restriction map  $St_A(SO(B_1)) \cap St_A(SO(B)) \longrightarrow SO(A)$ has finite index.

# Pell's equation

**DEFINITION:** Let  $w \in \mathbb{Z}^{>0}$  be a integer which is not divisible by a square of an integer > 1. We say that w is square-free.

Let w > 1 be a square-free integer, and K the set of numbers  $a + b\sqrt{w}$ , where a, b are rational. Since the norm  $N(a + b\sqrt{w}) := a^2 - wb^2$  is multiplicative on K, the solutions of an equation  $N(a + b\sqrt{w}) = 1$  form a multiplicative group. Denote by  $\Gamma$  its quotient by  $\pm 1$ .

THEOREM: (Legendre, Pell, Dirichlet) This group is isomorphic to  $\mathbb{Z}$ . Proof: Next slide.

**REMARK:** Let  $\sigma: K \longrightarrow K$  be the automorphism of K given as  $a + b\sqrt{w} \mapsto a - b\sqrt{w}$ . Since  $N(x) = x\sigma(x)$ , we have  $x^{-1} = xN(x)^{-1}$ . Therefore, x is invertible in  $\mathcal{O}_K := \mathbb{Z} + Z\sqrt{w}$  if and only if  $N(x) = \pm 1$ . If N(x) = -1 has a solution, the group of solutions of the Pell equation  $a^2 - wb^2 = 1$  is an index 2 subgroup in the group  $\mathcal{O}_K^*$  of invertible elements in the ring  $\mathcal{O}_K$ , otherwise it coincides with  $\mathcal{O}_K^*$ .

**REMARK:** Consider  $\mathcal{O}_K$  as a lattice equipped with the quadratic form q(z) = N(z), and let  $\xi \in \mathcal{O}_K$  be a solution of the Pell equation  $N(\xi) = 1$ . Then the map  $z \mapsto \xi z$  induces an isometry on the lattice  $(\mathcal{O}_K, q)$ . In other words, solutions of Pell's equation are identified with integer points in SO(q).

# John Pell (1611-1685)



John Pell (1611-1685)

John Pell's connection with the equation is that he revised Thomas Branker's translation of Johann Rahn's 1659 book "Teutsche Algebra" into English, with a discussion of Brouncker's solution of the equation. Leonhard Euler mistakenly thought that this solution was due to Pell, as a result of which he named the equation after Pell.

# Lagrange theorem (1)

**REMARK:** To prove that the group of solutions of  $N(x + y\sqrt{w}) = 1$  is isomorphic to  $\mathbb{Z}$  it suffices to produce a single non-trivial solution. Indeed, the set of solution is the set of all matrices  $\begin{pmatrix} x & y\sqrt{w} \\ y\sqrt{w} & x \end{pmatrix}$  with determinant 1 and (x, y) integer. Such points form a discrete subgroup in the connected component of  $SO(1, 1, \mathbb{R})$  which is isomorphic to  $\mathbb{R}$ .

#### **THEOREM:** (Lagrange)

Let w > 1 be a square-free integer. Then the equation  $x^2 - y^2w = 1$  has non-trivial integer solutions.

We use the following lemma.

Lemma 1: There exists infinitely many y > 0 such that  $|x - y\sqrt{w}| < \frac{1}{y}$ .

**Proof:** Consider the interval [0, 1[ as the union of m intervals

[0, 1/m[, [1/m, 2/m[, ..., [m-1/m, 1[.

By the pigeonhole principle, there exist integers  $a, b \in [0, m]$  such that the fractional parts of  $a\sqrt{w}$  and  $b\sqrt{w}$  belong to the same interval, giving  $|(a-b)\sqrt{w}-c| < \frac{1}{m}$ , where |a-b| < m.

#### Lagrange theorem (2)

# **THEOREM:** (Lagrange)

Let w > 1 be a square-free integer. Then the equation  $x^2 - y^2w = 1$  has non-trivial integer solutions.

**Proof. Step 1:** Lemma 1 implies that for some integer M > 0, the equation  $x^2 - y^2w = M$  has infinitely many solutions. Indeed, consider a solution of  $|x - y\sqrt{w}| < \frac{1}{y}$ . Then  $x = x - y\sqrt{w} + y\sqrt{w} \leq y\sqrt{w} + 1$ , hence  $x \leq y\sqrt{w} + 1$ . Then

$$|x^{2} - wy^{2}| = |x - y\sqrt{w}|(x + y\sqrt{w}) < \frac{1}{y}(y\sqrt{w} + 1 + y\sqrt{w}) \le 2\sqrt{w} + 1.$$

Therefore, there are infinitely many solutions of  $|x^2 - y^2w| < 2\sqrt{w} + 1$ .

**Step 2:** Let M > 0 be an integer such that there are infinitely many  $z \in \mathbb{Z} + \mathbb{Z}\sqrt{w}$  with N(z) = M. Then **there are numbers**  $z_1, z_2 \in \mathbb{Z} + \mathbb{Z}\sqrt{w}$  such that  $z_1 \equiv z_2 \mod M$  and  $N(z_1) = N(z_2) = M$ . This gives  $z_1 = Mz_3 + z_2$ , for some  $z_3 \in \mathbb{Z} + \mathbb{Z}\sqrt{w}$ . Let  $\sigma(a + b\sqrt{w}) := a - b\sqrt{w}$ . Then

$$z_1 = z_2 \sigma(z_2) z_3 + z_2 = z_2 (z_3 \sigma(z_2) + 1) = z_2 z, \quad (*)$$

where  $z = z_3 \sigma(z_2) + 1$ . Applying the norm to both sides of (\*), we obtain  $M = N(z_1) = N(z_2)N(z)$ , hence N(z) = 1.