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Summary from the last lecture

Let (VZ, q) be a non-degenerate quadratic lattice of signature (a, b) with a ⩾
3, b ⩾ 1, and g ∈ Z a number such that there exists x ∈ VZ such that q(x, x) ̸= 0.
Denote by VR the tensor product VR := VZ ⊗Z R. As usual, we denote the
Grassmannian of positive, oriented 2-planes by Gr+,+(VR) and the null-quadriv
{l ∈ P(VR) | q(l, l) = 0} by Null(VR).

In lecture 12, we reduced density of the quartics in the Teichmüller
space of K3 surfaces to the following statement.

Theorem 1: Let R ⊂ VZ the set of all vectors η such that (η, η) = g, and
Z(R) ⊂ Gr+,+(VR) the set of all 2-planes orthogonal to some η ∈ R. Then
Z(R) is dense in Gr+,+(VR).

and reduced it further to
Theorem 3: Let R ⊂ VZ the set of all vectors η such that (η, η) = g. Then
the closure of PR ⊂ PVR contains Null(VR).

Also, the following result was used implicitly. We will deduce it from
Meyers’ theorem today.

THEOREM: Let VZ = H2(M,Z) be the intersection lattice of a K3 surface.
Then there exists x ∈ VZ such that (x, x) = 4.
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Quadratic form representing 0

REMARK: Recall that an element of a lattice Λ = Zn is called primitive if

it is not divisible by an integer. For any primitive element x ∈ Λ, the quotient

lattice Λ/⟨x⟩ is torsion-free. Therefore, we can find a basis in Λ starting from

x, and there exists η ∈ Λ∗ such that ⟨η, x⟩ = 1.

DEFINITION: Let (Λ, q) be a quadratic lattice. We say that Λ (or q) rep-

resents n ∈ Z if there exists x ∈ VZ such that (x, x) = n.

THEOREM: (Meyer)

Let q be an indefinite rational quadratic form on a space V = Qr, r ⩾ 5. Then

q represents 0.

Proof: A. Meyer, Ueber einen Satz von Dirichlet, Journal für Mathematik

vol. 103 (1888) p. 98.

REMARK: In the modern literature, Meyer’s theorem is deduced from the

Hasse-Minkowski theorem,

https://mathoverflow.net/questions/384352/a-list-of-proofs-of-the-hasse-minkowski-theorem
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Quadratic form representing 4

EXAMPLE: Let U2 =

(
0 1
1 0

)
be the hyperbolic lattice 2x2. Then it repre-

sents 4. Indeed, (2x+ y,2x+ y) = 4(x, y) = 4.

Claim 0: Let (Λ, q) be a unimodular even quadratic lattice which represents
0. Then Λ contains U2 (and hence represents 4).

Proof: Since Λ is unimodular, the natural map q : Λ−→ Λ∗ is an isomorphism.
Then for any primitive x ∈ Λ there exists y ∈ Λ such that q(x, y) = 1. Assume
that q(x, x) = 0. Then q(y + kx, y + kx) = q(y, y) + 2kq(y, x); choosing
k = −q(y,y)

2 , we obtain an element y′ := y + kx such that the q(x, x) =
0, q(y′, y′) = 0, and q(x, y′) = 1.

THEOREM: Let VZ = H2(M,Z) be the intersection lattice of a K3 surface.
Then there VZ represents 4.

Proof: From the classification of even unimodular form it follows that VZ is
a product of 2 E−8 and three U2, and the latter represents 4. Even without
using the classification, we can apply Meyer’s theorem. Indeed, rkVZ = 22,
and the intersection form is even and indefinite. Together with Claim 0,
Meyer’s theorem implies that VZ represents 4.
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Discriminant of a quadratic lattice

DEFINITION: Let (VZ, q) be a quadratic lattice, and VQ := VZ ⊗Z Q. The
dual lattice V ∗

Z the set of all x ∈ VQ such that q(x, VZ) ⊂ Z.

REMARK: Let e1, ..., en be a basis in VZ, and e∗i ∈ V ∗
Q be the dual basis in

V ∗
Q, that is, 1-forms which satisfy ⟨ei, e∗j⟩ = δij. Using q to identify VQ and V ∗

Q,
we obtain that {e∗i } is a basis in V ∗

Z , hence V ∗
Z is a lattice of the same rank

as VZ.

REMARK: Clearly, V ∗
Z ⊃ VZ.

DEFINITION: The discriminant group of VZ is DiscVZ := V ∗
Z/VZ.

REMARK: Let Λ1 ⊂ Λ be a sublattice in a quadratic lattice (Λ, q), rkΛ =
rkΛ1. We have the following family of sublattices Λ∗

1 ⊃ Λ∗ ⊃ Λ ⊃ Λ1. This
defines a natural map Λ1

a−→ Disc(Λ1).

Claim 1: Let Γ1 = SO(Λ1) and Γ2 ⊂ Γ1 be its subgroup consisting of all
maps preserving Λ ⊃ Λ1. Then Γ2 is a group of all γ ∈ SO(Λ1) such that
γ preserves the image of Λ in Disc(Λ1).

Proof: It is clear that any element of Γ2 preserves a(Λ). Conversely, any
γ ∈ SO(Λ1) which preserves a(Λ) also preserves Λ := a−1(a(Λ))
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Commensurability

DEFINITION: Two subgroups G1, G2 ⊂ GL(n,R) are called commensurable

if G1 ∩G2 has finite index in G1 and in G2.

PROPOSITION: Let Λ1 ⊂ Λ be quadratic lattices of the same rank. Then

SO(Λ1) and SO(Λ) are commensurable.

Proof: By Claim 1, Γ2 := SO(Λ1) ∩ SO(Λ) has finite index in SO(Λ1); in-

deed, the discriminant group is finite, and Γ2 is a subgroup of SO(Λ1) which

preserves a finite subset of Disc(Λ1). To see that Γ2 is commensurable with

SO(Λ), we consider a lattice NΛ, for N a sufficiently big integer, such that

Λ1 ⊂ NΛ. Then SO(Λ) = SO(NΛ) has finite index in Γ2 = SO(Λ1)∩SO(NΛ).
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Extending isometries of a lattice

Corollary 2: Let (B, q) be a non-degenerate quadratic lattice, and A ⊂ B a

non-degenerate sublatice of smaller rank. Denote by ΓA ⊂ SO(A) the group

of all isometries of A which can be extended to an isometry of B. Then ΓA

is of finite index in SO(A).

Proof: Consider the lattice B1 := A ⊕ A⊥ ⊂ B; clearly, it has finite index,

hence SO(B1) is commensurable to SO(B). This implies that the group

StA(SO(B)) ⊂ SO(B) of all elements preserving A is commensurable with

StA(SO(B1)) ⊂ SO(B1). However, any element of SO(A) is extended to

an element of SO(B1), hence the natural map StA(SO(B1))−→ SO(A) is

surjective. Then the restriction map StA(SO(B1))∩StA(SO(B))−→ SO(A)

has finite index.
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Pell’s equation

DEFINITION: Let w ∈ Z>0 be a integer which is not divisible by a square
of an integer > 1. We say that w is square-free.

Let w > 1 be a square-free integer, and K the set of numbers a+ b
√
w, where

a, b are rational. Since the norm N(a+ b
√
w) := a2 − wb2 is multiplicative on

K, the solutions of an equation N(a + b
√
w) = 1 form a multiplicative

group. Denote by Γ its quotient by ±1.

THEOREM: (Legendre, Pell, Dirichlet) This group is isomorphic to Z.
Proof: Next slide.

REMARK: Let σ : K −→K be the automorphism of K given as a+ b
√
w 7→

a − b
√
w. Since N(x) = xσ(x), we have x−1 = xN(x)−1. Therefore, x is

invertible in OK := Z + Z
√
w if and only if N(x) = ±1. If N(x) = −1 has a

solution, the group of solutions of the Pell equation a2 − wb2 = 1 is an
index 2 subgroup in the group O∗

K of invertible elements in the ring OK,
otherwise it coincides with O∗

K.

REMARK: Consider OK as a lattice equipped with the quadratic form q(z) =
N(z), and let ξ ∈ OK be a solution of the Pell equation N(ξ) = 1. Then the
map z 7→ ξz induces an isometry on the lattice (OK, q). In other words,
solutions of Pell’s equation are identified with integer points in SO(q).
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John Pell (1611-1685)

John Pell (1611-1685)

John Pell’s connection with the equation is that he revised Thomas Branker’s translation of

Johann Rahn’s 1659 book “Teutsche Algebra” into English, with a discussion of Brouncker’s

solution of the equation. Leonhard Euler mistakenly thought that this solution was due to

Pell, as a result of which he named the equation after Pell.
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Lagrange theorem (1)

REMARK: To prove that the group of solutions of N(x + y
√
w) = 1 is

isomorphic to Z it suffices to produce a single non-trivial solution. Indeed,

the set of solution is the set of all matrices

(
x y

√
w

y
√
w x

)
with determinant 1

and (x, y) integer. Such points form a discrete subgroup in the connected
component of SO(1,1,R) which is isomorphic to R.

THEOREM: (Lagrange)
Let w > 1 be a square-free integer. Then the equation x2 − y2w = 1 has
non-trivial integer solutions.

We use the following lemma.

Lemma 1: There exists infinitely many y > 0 such that |x− y
√
w| < 1

y .

Proof: Consider the interval [0,1[ as the union of m intervals

[0,1/m[, [1/m,2/m[, ..., [m− 1/m,1[.

By the pigeonhole principle, there exist integers a, b ∈ [0,m] such that the
fractional parts of a

√
w and b

√
w belong to the same interval, giving

|(a− b)
√
w − c| < 1

m, where |a− b| < m.
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Lagrange theorem (2)

THEOREM: (Lagrange)
Let w > 1 be a square-free integer. Then the equation x2 − y2w = 1 has
non-trivial integer solutions.

Proof. Step 1: Lemma 1 implies that for some integer M > 0, the
equation x2 − y2w = M has infinitely many solutions. Indeed, consider
a solution of |x − y

√
w| < 1

y . Then x = x − y
√
w + y

√
w ⩽ y

√
w + 1, hence

x ⩽ y
√
w +1. Then

|x2 − wy2| = |x− y
√
w|(x+ y

√
w) <

1

y
(y

√
w +1+ y

√
w) ⩽ 2

√
w +1.

Therefore, there are infinitely many solutions of |x2 − y2w| < 2
√
w +1.

Step 2: Let M > 0 be an integer such that there are infinitely many z ∈
Z + Z

√
w with N(z) = M . Then there are numbers z1, z2 ∈ Z + Z

√
w such

that z1 ≡ z2 mod M and N(z1) = N(z2) = M. This gives z1 = Mz3 + z2,
for some z3 ∈ Z+ Z

√
w. Let σ(a+ b

√
w) := a− b

√
w. Then

z1 = z2σ(z2)z3 + z2 = z2(z3σ(z2) + 1) = z2z, (∗)
where z = z3σ(z2)+1. Applying the norm to both sides of (*), we obtain
M = N(z1) = N(z2)N(z), hence N(z) = 1.
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