K3 surfaces

lecture 13: Limit points of orbits of $SO_{\mathbb{Z}}(p,q)$

Misha Verbitsky

IMPA, sala 236

October 16, 2024, 17:00

Summary from the last lecture

Let $(V_{\mathbb{Z}}, q)$ be a non-degenerate quadratic lattice of signature (a, b) with $a \ge 3, b \ge 1$, and $g \in \mathbb{Z}$ a number such that there exists $x \in V_{\mathbb{Z}}$ such that $q(x, x) \ne 0$. Denote by $V_{\mathbb{R}}$ the tensor product $V_{\mathbb{R}} := V_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{R}$. As usual, we denote the Grassmannian of positive, oriented 2-planes by $\operatorname{Gr}_{+,+}(V_{\mathbb{R}})$ and the null-quadriv $\{l \in \mathbb{P}(V_{\mathbb{R}}) \mid q(l,l) = 0\}$ by $\operatorname{Null}(V_{\mathbb{R}})$.

In lecture 12, we reduced density of the quartics in the Teichmüller space of K3 surfaces to the following statement.

Theorem 1: Let $\mathfrak{R} \subset V_{\mathbb{Z}}$ the set of all vectors η such that $(\eta, \eta) = g$, and $Z(\mathfrak{R}) \subset \operatorname{Gr}_{+,+}(V_{\mathbb{R}})$ the set of all 2-planes orthogonal to some $\eta \in \mathfrak{R}$. Then $Z(\mathfrak{R})$ is dense in $\operatorname{Gr}_{+,+}(V_{\mathbb{R}})$.

and reduced it further to **Theorem 3:** Let $\mathfrak{R} \subset V_{\mathbb{Z}}$ the set of all vectors η such that $(\eta, \eta) = g$. **Then the closure of** $\mathbb{P}\mathfrak{R} \subset \mathbb{P}V_{\mathbb{R}}$ **contains** $\mathrm{Null}(V_{\mathbb{R}})$.

Also, we proved existence of solutions of Pelle's equation

THEOREM: (Lagrange)

Let w > 1 be a square-free integer. Then the equation $x^2 - y^2w = 1$ has non-trivial integer solutions.

Commensurability (reminder)

DEFINITION: Two subgroups $G_1, G_2 \subset GL(n, \mathbb{R})$ are called **commensurable** if $G_1 \cap G_2$ has finite index in G_1 and in G_2 .

PROPOSITION: Let $\Lambda_1 \subset \Lambda$ be quadratic lattices of the same rank. Then $SO(\Lambda_1)$ and $SO(\Lambda)$ are commensurable.

Corollary 2: Let (B,q) be a non-degenerate quadratic lattice, and $A \subset B$ a non-degenerate sublatice of smaller rank. Denote by $\Gamma_A \subset SO(A)$ the group of all isometries of A which can be extended to an isometry of B. Then Γ_A is of finite index in SO(A).

Pelle's equation (reminder)

REMARK: Let w be a square-free integer. Consider $\mathcal{O}_K := \mathbb{Z} + \mathbb{Z}w$, let σ be its automorphism $\sigma(a + b\sqrt{w}) := a - \sqrt{w}b$. Denote by $N(a + b\sqrt{w})$ the number $N(a + b\sqrt{w}) = a^2 - wb^2(a + b\sqrt{w})\sigma(a + b\sqrt{w})$ Clearly, the norm $N(z) = z\sigma(z)$ is multiplicative on \mathcal{O}_K , the product of solutions of an equation N(z) = 1 is another solution. Also, solutions of N(z) = 1 are invertible in \mathcal{O}_{+K} , because $z^1 = N(z)^{-1}\sigma(z)$.

REMARK: Let w be a square-free integer. Consider $\mathcal{O}_K = \mathbb{Z} + \mathbb{Z}w$ as a lattice equipped with the quadratic form q(z) = N(z), and let $\xi \in \mathcal{O}_K$ be a solution of the Pell equation $N(\xi) = 1$. Then the map $z \mapsto \xi z$ induces an isometry on the lattice (\mathcal{O}_K, q) . In other words, solutions of the Pelle's equation N(z) = 1 are identified with integer points in SO(q).

Quadratic lattices of rank 2

We define $PSO(\Lambda)$ as the group of isometries of Λ up to ± 1 when rank of Λ is even, and $SO(\Lambda)$ when it is odd.

EXERCISE: Let Λ be an integer lattice of signature (1,1) which represents 0. Prove that $PSO(\Lambda)$ is trivial.

Theorem 4: Let (Λ, q) be an integer lattice of signature (1,1) which does not represent 0. Then $PSO(\Lambda) \cong \mathbb{Z}$. **Proof. Step 1:** Over rational numbers, q can be represented as $q(x,y) = ax^2 - by^2$, where $x, y \in \mathbb{Q}^2 = \Lambda \otimes_{\mathbb{Z}} \mathbb{Q}$. The quadratic form aq can be represented in another rational basis as $q(x_1, y_1) = x_1^2 - wy_1^2$, where w = ab. For any

solution u of Pell equation $z^2 - t^2w = 1$, consider the matrix $\begin{pmatrix} z & t \\ tw & z \end{pmatrix}$; it is the matrix of multiplication by $z + t\sqrt{w}$ in $K := \mathbb{Q} + \mathbb{Q}\sqrt{w}$. By multiplicativity of the norm $N(x,y) = x^2 - wy^2$, this matrix induces an isometry of (Λ_1, q) , where Λ_1 is the integer lattice in coordinates (x_1, y_1) . By construction, Λ is commensurable with Λ_1 , hence $PSO(\Lambda)$ is commensurable with \mathbb{Z} .

Step 2: The Lie group $PSO(\Lambda \otimes_{\mathbb{Z}} \mathbb{R})$ is isomorphic to \mathbb{R} (prove it), and all finitely generated subgroups of $PSO(\Lambda \otimes_{\mathbb{Z}} \mathbb{R})$ are free abelian. A free abelian group commensurable with \mathbb{Z} is \mathbb{Z} . Therefore, $PSO(\Lambda) \cong \mathbb{Z}$.

K3 surfaces, 2024, lecture 14

M. Verbitsky

Rational lines intersecting a rational quadric in irrational points

Let X be a non-degenerate rational quadric in $\mathbb{R}P^2$; in an appropriate coordinate system, X can be given by an equation $P(x, y, z) = ax^2 + by^2 + cy^2 = 0$. We assume that the quadric P is indefinite; in this case X is a circle.

Proposition 1: Let \mathfrak{I} be the set of all irrational points on X obtained by intersecting X with rational lines $\mathbb{R}P^1 \subset \mathbb{R}P^2$. Then \mathfrak{I} is dense in X.

Proof. Step 1: Let $(\Lambda_{\mathbb{Q}}, P)$ be the rational quadratic lattice with P as a quadratic form. Reflections centered in rational lines belong to $SO(\Lambda_{\mathbb{Q}})$; an easy geometric argument implies that these reflections act on X with dense orbits. Therefore, it sufficies to find one irrational point $t \in \mathfrak{I}$; its $SO(\Lambda_{\mathbb{Q}})$ -orbit is dense in X.

Step 2: Reducing to affine coordinates, consider X as a quadric $ax^2 + by^2 = 1$ in \mathbb{R}^2 . If a or b are not full squares, we take a line passing through (0,0) and (0,1) or through (0,0) and (1,0); it intersects with X in a point ($\sqrt{a^{-1}}$,0) or in $(0,\sqrt{b^{-1}})$ which is irrational. If both are full squares, we will do another coordinate change, reducing X to the quadric $x^2 + y^2 = 1$, and take a line passing through (0,0) and (1,1).

The null quadric as a limit set

Theorem 3: Let $V_{\mathbb{Z}}$ be an integer quadratic lattice of signature (a, b), with $a \ge 2, b \ge 1$, representing g, and $\mathfrak{R} \subset V_{\mathbb{Z}}$ the set of all vectors η such that $(\eta, \eta) = g$. Then the closure of $\mathbb{P}\mathfrak{R} \subset \mathbb{P}V_{\mathbb{R}}$ contains $\mathrm{Null}(V_{\mathbb{R}})$.

Proof: Fix $\eta \in \mathfrak{R}$. For any $x \in \text{Null}(V_{\mathbb{R}})$ there exists a 3-dimensional subspace $S \subset V_{\mathbb{R}}$ of signature (2,1) connecting η and x. We are going to show that x belongs to the closure of the $SO(V_{\mathbb{Z}})$ -orbit of η . Since rational subspaces are dense, it suffices to prove this when S is rational. In this case, we are going to prove that x belongs to the closure of the $SO(S_{\mathbb{Z}})$ -orbit of η .

We reduced Theorem 3 to the following statement:

PROPOSITION: Let $V_{\mathbb{Z}}$ be an integer quadratic lattice of signature (2, 1), and $\eta \in \mathbb{P}V_{\mathbb{R}}$ a point with positive square. Then the closure of its $SO(V_{\mathbb{Z}})$ -orbit contains the null quadric Null $(V_{\mathbb{R}})$.

The null quadric as a limit set (2)

We reduced Theorem 3 to the following statement:

PROPOSITION: Let $V_{\mathbb{Z}}$ be an integer quadratic lattice of signature (2, 1), and $\eta \in \mathbb{P}V_{\mathbb{R}}$ a point with positive square. Then the closure of its $SO(V_{\mathbb{Z}})$ -orbit contains the null quadric Null $(V_{\mathbb{R}})$.

Proof: Let $S \subset V_{\mathbb{Z}}$ be a sublattice of signature (1,1). If $\mathbb{P}S$ intersects with Null($V_{\mathbb{R}}$) in irrational points, we apply Theorem 4, and obtain that the intersection $\{u_1, u_2\}$ of $\mathbb{P}S_{\mathbb{R}}$ and Null($V_{\mathbb{R}}$) belongs to the closure of $SO(S_{\mathbb{Z}})$ -orbit of any $x \in \mathbb{P}S_{\mathbb{R}}$. By Proposition 1, such points $\{u_1, u_2\}$ are dense in Null($V_{\mathbb{R}}$). **Therefore,** Null($V_{\mathbb{R}}$) **is contained in the closure of any orbit.**