K3 surfaces

lecture 15: Lefschetz hyperplane section theorem

Misha Verbitsky

IMPA, sala 236

October 21, 2024, 17:00

Smooth quartic surfaces (reminder)

DEFINITION: Smooth quartic is a smooth hypersurface in $\mathbb{C}P^n$, defined by an irreducible homogeneous polynomial of degree 3.

REMARK: By Euler formula, the canonical bundle on $\mathbb{C}P^n$ is $\Theta(-n-1)$. Adjunction formula applied to a smooth hypersurface $Z \subset \mathbb{C}P^n$ of degree m gives $N^*Z\otimes_{\mathcal{O}_Z}K_Z=K_{\mathbb{C}P^n}|_Z$, where $NZ=\mathcal{O}(m)|_Z$ is the normal bundle. This gives $K_Z = \Theta(m - n - 1)$.

COROLLARY: A smooth quartic in $\mathbb{C}P^3$ has trivial canonical bundle.

REMARK: In the sequel, "smooth quartics" will always mean smooth quartic surfaces.

THEOREM: smooth quartics are diffeomorphic

Proof: Lecture 8.

Lefschetz hyperplane section theorem (reminder)

DEFINITION: Veronese embedding is the projective embedding $\mathbb{C}P^n \longrightarrow \mathbb{P}(H^0(\mathcal{O}(k)^*),$ defined by the line system $H^0(\mathcal{O}(k)).$ In other words, the Veronese embedding takes

 $(t_0 : t_1 : ... : t_n)$ to $(P_0(t_0, ..., t_n) : P_1(t_0, ..., t_n) : ... : ...),$

where $\{P_i\}$ denotes a basis in homogeneous monomials of degree k.

CLAIM: A smooth quartic is an intersection of a hyperplane and the image of 4-th Veronese embedding of $\mathbb{C}P^3$.

THEOREM: (Lefschetz hyperplane section theorem) Let $Z \subset \mathbb{C}P^n$ be a smooth projective submanifold of dimension m , and $H \subset$ $\mathbb{C}P^n$ a hyperplane section transversal to Z. Then for any $i < m-1$, the map of homotopy groups $\pi_i(Z \cap H) \longrightarrow \pi_i(Z)$ is an isomorphism.

Proof: Later today.

COROLLARY: A smooth quartic Z is a K3 surface.

Proof: Since Z is a hyperplane section of the Veronese manifold, which is isomorphic to $\mathbb{C}P^3$, Lefschetz theorem gives $\pi_1(Z) \, = \, \pi_1(\mathbb{C}P^3) \, = \, 0;$ its canonical bundle $K_Z = \Theta(4-4)|_Z = \Theta_Z$ vanishes, as shown above. ■

Graded vector spaces and algebras

DEFINITION: A graded vector space is a space $V^* = \bigoplus_{i \in \mathbb{Z}} V^i$.

REMARK: If V^* is graded, the endomorphisms space $\text{End}(V^*) = \bigoplus_{i \in \mathbb{Z}} \text{End}^i(V^*)$ is also graded, with $\mathsf{End}^i(V^*) = \oplus_{j \in \mathbb{Z}} \mathsf{Hom}(V^j,V^{i+j})$

DEFINITION: A graded algebra (or "graded associative algebra") is an associative algebra $A^* = \bigoplus_{i \in \mathbb{Z}} A^i$, with the product compatible with the grading: $A^i \cdot A^j \subset A^{i+j}$.

REMARK: A bilinear map of graded paces which satisfies $A^i \cdot A^j \subset A^{i+j}$ is called graded, or compatible with grading.

REMARK: The category of graded spaces can be defined as a category of vector spaces with $U(1)$ -action, with the weight decomposition providing the grading. Then a graded algebra is an associative algebra in the category of spaces with $U(1)$ -action.

DEFINITION: An operator on a graded vector space is called even (odd) if it shifts the grading by even (odd) number. The **parity** \tilde{a} of an operator a is 0 if it is even, 1 if it is odd. We say that an operator is **pure** if it is even or odd.

Supercommutator

DEFINITION: A supercommutator of pure operators on a graded vector space is defined by a formula $\{a,b\} = ab - (-1)^{\tilde{a}\tilde{b}}ba$.

DEFINITION: A graded associative algebra is called graded commutative (or "supercommutative") if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.

DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector space \mathfrak{g}^* equipped with a bilinear graded map $\{\cdot,\cdot\}$: $\mathfrak{g}^* \times \mathfrak{g}^* \longrightarrow \mathfrak{g}^*$ which is graded anticommutative: $\{a, b\} = -(-1)^{\tilde{a}\tilde{b}}\{b, a\}$ and satisfies the super **Jacobi identity** $\{c, \{a, b\}\} = \{\{c, a\}, b\} + (-1)^{\tilde{a}\tilde{c}}\{a, \{c, b\}\}\$

EXAMPLE: Consider the algebra $End(A^*)$ of operators on a graded vector space, with supercommutator as above. Then $End(A^*), {\{\cdot,\cdot\}}$ is a graded Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying $\{d, d\}$ = 0, and L an even or odd element. Then $\{\{L, d\}, d\} = 0$.

Proof:
$$
0 = \{L, \{d, d\}\} = \{\{L, d\}, d\} + (-1)^{\tilde{L}}\{d, \{L, d\}\} = 2\{\{L, d\}, d\}.
$$

The twisted differential d^c

DEFINITION: The **twisted differential** is defined as $d^c := IdI^{-1}$.

CLAIM: Let (M, I) be a complex manifold. Then $\partial := \frac{d+1}{d}$ √ $\overline{-1} d^c$ $\frac{1}{2} \frac{d^c}{2}$, $\overline{\partial}$:= $d-\sqrt{-1} d^c$ √ $\frac{1}{2}d^2$ are the Hodge components of d , $\partial=d^{1,0},\ \overline{\partial}=d^{0,1}.$

Proof: The Hodge components of d are expressed as $d^{1,0} = \frac{d+1}{2}$ √ $\overline{-1} d^c$ $\frac{a}{2}^{c}$, $d^{0,1}$ = $d-$ √ $\overline{-1} d^c$ $\frac{\sqrt{-1} \, d^c}{2}$. Indeed, $I(\frac{d+1}{2})$ √ $\overline{-1} d^c$ $\frac{(-1)^{c}}{2}$ I^{-1} = √ -1 ^{d+} √ $\overline{-1} d^c$ $\frac{\sqrt{-1} \, d^c}{2}$, hence $\frac{d+1}{2}$ √ $\overline{-1} d^c$ $\frac{2}{2}$ has Hodge type (1,0); the same argument works for $\overline{\partial}$. ■

CLAIM: Let W be the Weil operator, W $|_{\mathsf{\Lambda}^{p,q}(M)}=$ √ $\overline{-1}$ $(p-q).$ On any complex manifold, one has $d^c = [W, d]$.

Proof: Clearly, $[W, d^{1,0}] = \sqrt{-1} d^{1,0}$ and $[W, d^{0,1}] = -$ √ $\overline{-1}\,d^{\overline{0},1}.$ Then $[W,d]=$ √ $\overline{-1} d^{1,0} -$ √ $\overline{-1} d^{0,1} = IdI^{-1}.$

COROLLARY: $\{d, d^c\} = \{d, \{d, W\}\} = 0$

Proof: Implied by Lemma 1. \blacksquare

Plurilaplacian

THEOREM: Let (M, I) be a complex manifold. **Then 1.** $\partial^2 = 0$. 2. $\overline{\partial}^2=0$. 3. $dd^c = -d^c d$ 3. $\ddot{a}a = -a \dot{a}$
4. $dd^c = 2\sqrt{-1} \partial \overline{\partial}$.

Proof: The first is vanishing of (2,0)-part of d^2 , and the second is vanishing of its (0,2)-part. Now, $\{d, d^c\} = -\{d, \{d, W\}\} = 0$ (Lemma 1), this gives dd^c = $-d^c d$. Finally, $2\sqrt{-1} \partial \overline{\partial} = \frac{1}{2} (d + \sqrt{-1}d^c)(d - \sqrt{-1}d^c) = \frac{1}{2} (dd^c - d^c d) = dd^c$. $\{\frac{u}{y}, \frac{u}{y}, \frac{w}{y}\}$ –

DEFINITION: The operator dd^c is called the pluri-Laplacian.

REMARK: The pluri-Laplacian takes real functions to real $(1,1)$ -forms on M.

EXERCISE: Prove that on a Riemannian surface (M, I, ω) , one has $dd^c(f) = \Delta(f)\omega$.

DEFINITION: The Hodge $U(1)$ -action on differential forms on a complex manifold defined by $\rho(t)(\eta) = e^{tW}(\eta)$. On (p,q) -forms, it acts as a scalar $\rho(t)$ $\big|_{\mathsf{\Lambda}^{p,q}(M)}=e^{(p-q)\sqrt{-1}}$ Id; the (p,p) -forms are clearly invariant.

Positive (1,1)-forms

CLAIM: Consider a real (1,1)-form $\eta \in \Lambda^{1,1}(M) \cap \Lambda^2(M,\mathbb{R})$. Then the bilinear form $g_{\eta}(x, y) := \eta(x, Iy)$ is symmetric.

Proof: Clearly, $0 = W(\eta)(x, y) = \eta(W(x), y) + \eta(x, W(y)) = \eta(Ix, y) + \eta(x, Iy)$. This gives $\eta(x, Iy) = -\eta(Ix, y) = \eta(y, Ix)$.

REMARK: This construction is reversible, and defines a bijection between $U(1)$ -invariant symmetric forms $g\in \text{Sym}^2(T^*M)$ and sections of $\Lambda^{1,1}(M)\cap$ $\Lambda^2(M,\mathbb{R})$.

DEFINITION: A real $(1,1)$ -form η is called **positive** if $\eta(x, Ix) \ge 0$ for any $x \in$ TM. By this convention, 0 is a positive $(1,1)$ -form ("French positive")

DEFINITION: A (1,1)-form is called Hermitian if it is positive and nondegenerate, that is, when $\eta(x, Ix) > 0$ for any $x \in TM \backslash 0$.

REMARK: The above construction gives a bijective correspondence between the Hermitian $(1,1)$ -forms and $U(1)$ -invariant Riemannian metric tensors on M.

EXAMPLE: For any (1,0)-form ξ , the form $\sqrt{-1} \xi \wedge \overline{\xi}$ is positive (prove this).

Pluri-harmonic functions

DEFINITION: A function f on a complex manifold is called **pluri-harmonic** if $dd^2 f = 0$.

REMARK: A function f is called **holomorphic** if $\overline{\partial}f = 0$, and **antiholomorphic** if $\partial f = 0$. Since $dd^c = 2\sqrt{-1} \partial \overline{\partial} = -2\sqrt{-1} \overline{\partial}\partial$, any holomorphic and √ any antiholomorphic function is pluri-harmonic.

THEOREM: Any pluriharmonic function is locally expressed as a sum of holomorphic and antiholomorphic function.

Proof: Let f be a pluriharmonic function on a ball, and $\alpha = \partial f$. Since $\overline{\partial}(\alpha)$ = 0, this form is holomorphic; since $\partial^2 = 0$, it is also closed. Poincaré lemma applied to holomorphic functions implies that $\alpha = du$, where u is holomorphic. Then $d(f-u)$ is a (0,1)-form, hence $v := f-u$ is antiholomorphic. We obtain that $f = u + v$, where u is holomorphic, and v is antiholomorphic. \blacksquare

In our proof, we use the following lemma.

LEMMA: Let $B \subset \mathbb{C}^n$ be an open ball, and η a closed holomorphic $(d, 0)$ -form Then $\eta = d\alpha$, where α is a holomorphic $(d-1, 0)$ -form.

Proof: It follows from the Poincaré lemma directly. \blacksquare

Morse functions

DEFINITION: Let f be a smooth function on a manifold M, and $x \in M$ its critical point. Choose a coordinate system $x_1, ..., x_n$ in a neighbourhood of x. The hessian of a function f in x is a symmetric matrix Hess $(f) :=$ $\sum_{\bm{i}}$ d^2f $\frac{d^2f}{dx_idx_j}\cdot dx_i\otimes dx_j\in \operatorname{\mathsf{Sym}}^2 M.$

CLAIM: The form Hess(f) is coordinate-independent, and defines a symmetric 2-form on T_xM .

Proof: Do this as an exercise.

DEFINITION: A smooth function $f : M \rightarrow \mathbb{R}$ is called **Morse** if it is proper (that is, the preimage of a closed interval is compact), its critical points are isolated, and for each of these critical point, the form $Hess(f)$ is nondegenerate.

CLAIM: Every manifold admits a Morse function. Moreover, the set of Morse functions is dense and open in the space of all proper smooth functions taken with C^2 or C^{∞} -topology.

Proof: Milnor, "Morse theory." ■

The Hessian and torsion-free connections

DEFINITION: Let Alt : $\Lambda^1 M \otimes \Lambda^1 M \longrightarrow \Lambda^2 M$ denote the antisymmetrization map $x \otimes y \mapsto x \wedge y$. A connection $\nabla : \Lambda^1 M \longrightarrow \Lambda^1 M \otimes \Lambda^1 M$ is called torsion**free**, if Alt($\nabla \theta$) = $d\theta$ for any 1-form θ on M.

CLAIM: Let (M, ∇) be a manifold with a torsion-free connection, and φ a function. Then the 2-form $Hess(\varphi) := \nabla (d\varphi) \in \Lambda^1 M \otimes \Lambda^1 M$ is symmetric. Proof: Clear. \blacksquare

REMARK: This claim immediately implies that the form $\nabla(df)$ is symmetric for any function f on M .

CLAIM: Let f be a smooth function on a manifold, and x its critical point. Then $\nabla(df)$ = Hess(f) on T_xM . **Proof.** Step 1: A difference of two connections $\nabla - \nabla_1$ is a 1-form $A \in$ $\Lambda^1(M)\otimes \text{End}(\Lambda^1M)$. Since $df|x=0$, we have $\nabla+A(df)|_x=\nabla(df)+A(df)|_x=0$ $\nabla(df)|_x$. Therefore, $\nabla(df)|_x$ is independent from ∇ .

Step 2: Fix the coordinate system $\{x_i\}$ in a neighbourhood of x, and take the connection $\nabla_1(\theta) \vcentcolon= \Sigma_i$ $d\theta$ $\frac{d\theta}{dx_{i}}\otimes dx_{i}$, where $\frac{d\theta}{dx_{i}}$ $\overline{dx_i}$ denotes the derivative of all coefficients. By definition, $\nabla_1 (df)|_x \, = \, \sum_i$ d^2f $\frac{d^2J}{dx_idx_j}\cdot dx_i\otimes dx_j|_{{\mathcal X}}\,=\, \text{\rm Hess}(f)$. By Step 1, this quantity is equal to $\nabla(df)|_x$.

Levi-Civita connection

DEFINITION: Let (M, q) be a Riemannian manifold. **A Levi-Civita con**nection is a connection on TM which is torsion-free and orthogonal, that is, satisfies $\nabla(g) = 0$.

THEOREM: The Levi-Civita connection exists and is unique on any Riemannian manifold.

Proof: http://verbit.ru/IMPA/HK-2023/slides-hk-2023-02.pdf ■

THEOREM: Let (M, I, g) be a Kähler manifold. Then the Levi-Civita connection satisfies $\nabla(I) = 0$. Conversely, if the Levi-Civita connection on an almost complex Hermitian manifold (M, I, g) satisfies $\nabla(I) = 0$, this manifold is Kähler.

Proof: http://verbit.ru/MATH/KAHLER-2020/slides-Kahler-2020-10.pdf ■

Torsion-free connections preserving the complex structure

EXERCISE: Let (M, I) be an almost complex manifold, and ∇ a torsion-free connection on TM preserving I, that is, satisfying $\nabla(I) = 0$. Prove that I is integrable.

EXERCISE: Let (M, I) be a complex manifold. **Prove that** M admits a torsion-free connection ∇ preserving I .

REMARK: Locally in M, this statement is trivial, because the same trivial connection written in coordinates as above,

$$
\nabla_1(\theta) := \sum_i \frac{d\theta}{dx_i} \otimes dx_i
$$

preserves the complex structure.

H

The pluri-Laplacian and the Hessian

DEFINITION: Let (M, I) be a complex manifold, and $d^c := I^{-1}dI$: $\Lambda^i(M) \to$ $\Lambda^{i+1}(M)$ the twisted differential. Let $f \in C^{\infty}M$ be a real function. If $dd^c f(X, IX) \geq 0$ for all X, the function f is called **plurisubharmonic** (psh).

REMARK: Let ∇ be a flat, torsion-free connection on M, and Alt : $T^*M \otimes$ $T^*M\longrightarrow \mathsf{\Lambda}^2(M)$ be the antisymmetrizer. Then

$$
dd^c f = d(Id(f)) = Alt(\nabla I(df)) = Alt(Id \otimes I(Hess(f)),
$$

where $\text{Hess}(f) = \nabla(df) \in T^*M \otimes T^*M$.

COROLLARY 1: Consider a complex manifold equipped with a torsion-free connection preserving a complex structure I . Then

$$
dd^c f(x, Ix) = \frac{1}{2}(\text{Hess}(f)(x, x) + \text{Hess}(f)(Ix, Ix)).
$$

The Morse index of a plurisubharmonic function

DEFINITION: Let x be a Morse critical point of $f \in C^{\infty}M$, and (u, v) is signature of its Hessian. The **Morse index** of f in x is v .

PROPOSITION: Let f be a plurisubharmonic Morse function on a complex manifold M, dim_C $M = n$, and $m \in M$ its Morse point. Then its Morse index is $\leqslant n$.

Proof. Step 1: The Morse index is the dimension of the biggest subspace $W \subset T_mM$ such that Hess(f) is negative definite on W. Assume that dim $W >$ n. Then $W_1 := W \cap I(W)$ is positive-dimensional.

Step 2: For any non-zero $x \in W_1$, we have $I(x) \in W$, hence Hess $(f)(Ix, Ix) <$ 0. Then $dd^c f(x,Ix) = \frac{1}{2}(\mathsf{Hess}(f)(x,x) + \mathsf{Hess}(f)(Ix,Ix)) < 0$, giving a contradiction. \blacksquare

Stable manifold of a critical point

DEFINITION: Let f be a Morse function on a smooth manifold M , and grad f its gradient vector field. The stable manifold of a critical point m is all points $z \in M$ such that lim $t\longrightarrow\infty$ $e^{t \operatorname{grad} f}(z) = m.$

PROPOSITION: Let Z_m be a stable manifold of a critical point $m \in M$ of index p. Then Z_m is a smooth, p-dimensional submanifold in M

Proof: "Morse lemma" (see any textbook on Morse theory, such as Milnor's) claims that there is a coordinate system $x_1, ..., x_n$ in a neighbourhood of m such that $f = \sum_{i=1}^{n-p} x_i^2 - \sum_{i=n-p+1}^{n} x_i^2$ $i\overline{i}$. The map $z\rightarrow e^{t\, \text{grad }f}(z)$ as $t\rightarrow \infty$ smoothly retracts the stable manifold to the set $(0, 0, ..., 0, x_{n-p+1}, ..., x_n)$ which is smooth. \blacksquare

REMARK: Pushing this argument further, it is possible to construct the cell decomposition of M , with the p -dimensional cells in bijective correspondence with Morse points of index p ; this argument lies in the foundations of **Morse theory.**

Lefschetz hyperplane section theorem

THEOREM: (Lefschetz hyperplane section theorem)

Let $Z \subset \mathbb{C}P^n$ be a smooth projective submanifold of dimension m , and $H \subset$ $\mathbb{C}P^n$ a hyperplane section transversal to Z. Then for any $i < m-1$, the map of homotopy groups $\pi_i(Z \cap H) \longrightarrow \pi_i(Z)$ is an isomorphism.

Proof. Step 1: Consider the function $f_1 := |z^2| = \sum_i |x_i|^2 + |y_i^2|$ $_i^2$ | on $\mathbb{C}P^n\backslash H=$ \mathbb{C}^n . Since $dd^cf_1=2\sum_i dx_i\wedge dy_i$, this function is strictly plurisubharmonic. The strictly plurisubharmonic functions are open in C^2 -topology, and Morse function are dense in C^2 -topology, hence there exists a small deformation f of f_1 which is strictly plurisubharmonic and Morse on $Z \cap \mathbb{C}P^n \backslash H$.

Step 2: Let ${V_i \subset Z \backslash (H \cap Z)}$ be all stable sets of all critical points of f on Z. Then the intersection $Z \cap H$ is a deformational retract of $Z_0 := Z \backslash \bigcup_i V_i.$ the map $z\longrightarrow\lim_{t\to\infty}e^{t\mathop{\rm grad}\nolimits f}(z)$ retracts Z_0 to $Z\cap H.$ Indeed, the limit of $e^{t \operatorname{grad} f}(z)$ on Z is either $Z \cap H$, or a critical point of f , and in the latter case, z belongs to its stable set.

Lefschetz hyperplane section theorem (2)

THEOREM: (Lefschetz hyperplane section theorem)

Let $Z \subset \mathbb{C}P^n$ be a smooth projective submanifold of dimension m , and $H \subset$ $\mathbb{C}P^n$ a hyperplane section transversal to Z. Then for any $i < m-1$, the map of homotopy groups $\pi_i(Z \cap H) \longrightarrow \pi_i(Z)$ is an isomorphism.

Proof. Step 1 (abbreviated): Consider the function $f_1 := |z^2| = \sum_i |x_i|^2 +$ $|y_i^2|$ $\binom{2}{i}$ on $\mathbb{C}P^n\backslash H=\mathbb{C}^n.$ A small perturbation makes this function Morse.

Step 2 (abbreviated): Let ${V_i \subset Z \backslash (H \cap Z)}$ be all stable sets of all critical points of f on Z. Then the intersection $Z \cap H$ is a deformational retract of $Z_0 := Z \backslash \bigcup_i V_i$.

Step 3: Since f is strictly plurisubharmonic, the index of its critical points is \leqslant dim $_{\mathbb C} Z$. By the previous step, the space $Z_0 \,=\, Z\backslash \mathop{\cup}_i V_i$ is homotopy equivalent to $H \cap Z$. Therefore, Lefschetz hyperplane section theorem is implied by the following topological lemma.

LEMMA: Let Z be a smooth manifold, $V_i \subset Z$ a collection of smooth submanifolds of Z , codim dim $V_i \geqslant m$, and $Z_0 := Z \backslash \bigcup_j V_j$. Then the natural embedding $Z_0 \hookrightarrow Z$ induces an isomorphism of homotopy groups $\pi_i(Z_0) \cong \pi_i(Z)$ for all $i < m - 1$, and is surjective for $i = m - 1$.

How $\pi_i(M)$ is affected by removing a submanifold $Z \subset M$

LEMMA: Let Z be a smooth manifold, $V_i \subset Z$ a collection of smooth submanifolds of Z , codim dim $V_i \geqslant m$, and $Z_0 := Z \backslash \bigcup_j V_j$. Then the natural embedding $Z_0 \hookrightarrow Z$ induces an isomorphism of homotopy groups $\pi_i(Z_0) \cong \pi_i(Z)$ for all $i < m - 1$, and is surjective for $i = m - 1$.

Proof. Step 1: To show that $\pi_i(Z_0)$ ρ $\stackrel{\rho}{\longrightarrow} \pi_i(Z)$ is surjective, take any element $\pi_i(Z)$, represent it by an immersion of a sphere $S^i\longrightarrow Z$, and deform this sphere so that it becomes transversal to V_j , for all j . If codim $V_j > i$, transversality implies that $S^i\cap V_j=0$, hence the image of ρ belongs to Z_0 . This implies that the natural map $\pi_i(Z_0) \cong \pi_i(Z)$ is surjective.

Step 2: Let $\rho_0 := S^i \longrightarrow Z_0$ be a sphere map which is homotopic to zero in Z. This homotopy can be expressed as a map from an $i+1$ -dimensional ball $B^{i+1} \stackrel{\rho}{\longrightarrow} Z$, such that ρ $\overline{}$ $\vert_{\partial B^{i+1}} = \rho_0$. By transversality theorem, the map ρ can be chosen smooth and transversal to all $V_j.$ If, in addition, $i{+}1<$ codim V_i , the image of ρ does not intersect $\bigcup_j V_j$, which implies that ∂B^{i+1} is homotopic to zero in Z_0 . \blacksquare