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Smooth quartic surfaces (reminder)

DEFINITION: Smooth quartic is a smooth hypersurface in CP", defined
by an irreducible homogeneous polynomial of degree 3.

REMARK: By Euler formula, the canonical bundle on CP"™ is O(—n — 1).
Adjunction formula applied to a smooth hypersurface Z C CP™ of degree m
gives N*Z®g, Kz = Kcpr|z, where NZ = O(m)|z is the normal bundle. This
gives K; = OO(m —n —1).

COROLLARY: A smooth quartic in CP3 has trivial canonical bundle.
[ |

REMARK: In the sequel, ‘“smooth quartics’ will always mean smooth
quartic surfaces.

THEOREM: smooth quartics are diffeomorphic

Proof: Lecture 8. m
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Lefschetz hyperplane section theorem (reminder)

DEFINITION: Veronese embedding is the projective embedding
CP™ — P(HO(O(k)*), defined by the line system HO(O(k)). In other words,
the VVeronese embedding takes

(tg :t1 : ... i tn) to(Po(tg,....tn) : P1(tg, ..., tn) & ... i ..L),
where {F;} denotes a basis in homogeneous monomials of degree k.

CLAIM: A smooth quartic is an intersection of a hyperplane and the
image of 4-th Veronese embedding of CP3.

THEOREM: (Lefschetz hyperplane section theorem)

Let Z C CP™ be a smooth projective submanifold of dimension m, and H C
CP™ a hyperplane section transversal to Z. Then for any : < m—1, the map
of homotopy groups =;(ZNH) — m;(Z) is an isomorphism.

Proof: Later today.
COROLLARY: A smooth quartic 7 is a K3 surface.

Proof: Since Z is a hyperplane section of the Veronese manifold, which is
isomorphic to CP3, Lefschetz theorem gives 71(Z) = n1(CP3) = 0; its
canonical bundle Ky, = O(4 — 4)|, = Oy vanishes, as shown above. =
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Graded vector spaces and algebras
DEFINITION: A graded vector space is a space V* = @,z V.

REMARK: If V* is graded, the endomorphisms space End(V*) = @;cz End*(V*)
is also graded, with End*(V*) = @,cz Hom(V7, Viti)

DEFINITION: A graded algebra (or “graded associative algebra™) is an as-
sociative algebra A* = @,z A", with the product compatible with the grading:
Al. AT C AV,

REMARK: A bilinear map of graded paces which satisfies A*- A7 ¢ A7 is
called graded, or compatible with grading.

REMARK: The category of graded spaces can be defined as a category of
vector spaces with U(1)-action, with the weight decomposition providing
the grading. Then a graded algebra is an associative algebra in the
category of spaces with U(1)-action.

DEFINITION: An operator on a graded vector space is called even (odd)
if it shifts the grading by even (odd) number. The parity a of an operator a
is O if it is even, 1 if it is odd. We say that an operator is pure if it is even
or odd.
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Supercommutator

DEFINITION: A supercommutator of pure 9~perators on a graded vector
space is defined by a formula {a,b} = ab — (—1)%ba.

DEFINITION: A graded associative algebra is called graded commutative
(or “supercommutative”) if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.

DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector
space g* equipped with a bilinear graded map {-,-} : g* x g* — g* which
is graded anticommutative: {a,b} = —(—1)?{b,a} and satisfies the super
Jacobi identity {c, {a,b}} = {{c,a},b} + (—1)%{a, {c, b}}

EXAMPLE: Consider the algebra End(A*) of operators on a graded vector
space, with supercommutator as above. Then End(A*),{-,-} is a graded
Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying {d,d} =
0, and L an even or odd element. Then {{L,d},d} = 0.

Proof: 0= {L,{d,d}} = {{L,d},d} + (—1)L{d, {L,d}} = 2{{L,d},d}. m
5
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The twisted differential d°
DEFINITION: The twisted differential is defined as d¢ := Idl 1.

CLAIM: Let (M,I) be a complex manifold. Then 0 = CH‘VQ_ldC, 0 =
d=v=1d" are the Hodge components of d, § = d'9, 9 = d01.

Proof: The Hodge components of d are expressed as d1:0 = d+V2_1 d” 401 —
d=V21d Indeed, 1(TV1LY -1 = STV LE hence TRV 14 has Hodge

type (1,0); the same argument works for 0. m

CLAIM: Let W be the Weil operator, W‘,\p,q(M) = +v—-1(p—-—q). On any
complex manifold, one has d¢ = [W,d].

Proof: Clearly, [W,d1 9] =+/=14%0 and [W,d%!] = —v/=1d%1. Then [W,d] =
vV—1d0—/=1Td0l =145 1. =

COROLLARY: {d,d°} = {d,{d,W}} =0

Proof: Implied by Lemma 1. =
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Plurilaplacian

THEOREM: Let (M,I) be a complex manifold. Then 1. 82 = 0.
2. 9° =o0.

3. dd¢ = —d°d

4. dd¢ = 2/—100.

Proof: The first is vanishing of (2,0)-part of d2, and the second is vanishing

of its (0,2)-part. Now, {d,d‘} = —{d,{d,W}} = 0 (Lemma 1), this gives
dd® = —d°d. Finally, 2¢/=190 = 3(d++/—1d°)(d—+/—1d°¢) = 3(dd®—d°d) = dd°.
|

DEFINITION: The operator dd°€ is called the pluri-Laplacian.

REMARK: The pluri-Laplacian takes real functions to real (1,1)-forms
on M.

EXERCISE: Prove that on a Riemannian surface (M,I,w), one has

dd°(f) = A(f)w.

DEFINITION: The Hodge U(1)-action on differential forms on a complex
manifold defined by p(t)(n) = eW(n). On (p,q)-forms, it acts as a scalar
p(t)‘/\p,q(M) = (P~0OV~-11d: the (p,p)-forms are clearly invariant.

’
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Positive (1,1)-forms

CLAIM: Consider a real (1,1)-form n € ALY(M) N A2(M,R). Then the
bilinear form g,(z,y) := n(x, Iy) is symmetric.

Proof: Clearly, 0 = W(n)(z,y) = n(W(=),y) +n(z, W(y)) = n(z,y) +n(z, Iy).
This gives n(x,Iy) = —n(Ux,y) = n(y,[x). =

REMARK: This construction is reversible, and defines a bijection between
U(1)-invariant symmetric forms g € Sym2(7T*M) and sections of AL1(M)N
A2(M,R).

DEFINITION: A real (1,1)-form n is called positive if n(xz,Iz) > 0 for any x €
TM. By this convention, 0 is a positive (1,1)-form (“French positive”)

DEFINITION: A (1,1)-form is called Hermitian if it is positive and non-
degenerate, that is, when n(x, Ix) > 0 for any x € TM\O.

REMARK: The above construction gives a bijective correspondence be-
tween the Hermitian (1,1)-forms and U(1)-invariant Riemannian metric
tensors on M.

EXAMPLE: For any (1,0)-form ¢, the form /—1 & A € is positive (prove
this).
8
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Pluri-harmonic functions

DEFINITION: A function f on a complex manifold is called pluri-harmonic
if dd2f = 0.

REMARK: A function f is called holomorphic if 8f = 0, and antiholomor-
phic if 8f = 0. Since dd¢ = 2y/—1 00 = —2+/—1 80, any holomorphic and
any antiholomorphic function is pluri-harmonic.

THEOREM: Any pluriharmonic function is locally expressed as a sum of
holomorphic and antiholomorphic function.

Proof: Let f be a pluriharmonic function on a ball, and o = 8f. Since 8(a) =
0, this form is holomorphic; since 2 = 0, it is also closed. Poincaré lemma
applied to holomorphic functions implies that a = du, where u is holomorphic.
Then d(f—wu) is a (0,1)-form, hence v := f—u is antiholomorphic. We obtain
that f = u + v, where u is holomorphic, and v is antiholomorphic. =

In our proof, we use the following lemma.

LEMMA: Let B C C" be an open ball, and n a closed holomorphic (d,0)-form
Then n = da, where « is a holomorphic (d — 1,0)-form.

Proof: It follows from the Poincaré lemma directly. =
9
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Morse functions

DEFINITION: Let f be a smooth function on a manifold M, and x € M
its critical point. Choose a coordinate system x1,...,xn in @ neighbourhood
of x. The hessian of a function f in x is a symmetric matrix Hess(f) =

d2
D d:cz-dij cdxr; ® dxj € Sym2 M.

CLAIM: The form Hess(f) is coordinate-independent, and defines a sym-
metric 2-form on T, M.

Proof: Do this as an exercise. m

DEFINITION: A smooth function f: M — R is called Morse if it is proper
(that is, the preimage of a closed interval is compact), its critical points
are isolated, and for each of these critical point, the form Hess(f) Is non-
degenerate.

CLAIM: Every manifold admits a Morse function. Moreover, the set of
Morse functions is dense and open in the space of all proper smooth
functions taken with C2? or C°°-topology.

Proof: Milnor, “Morse theory.” m
10
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T he Hessian and torsion-free connections

DEFINITION: Let Alt : ALMAIM — A2M denote the antisymmetrization
map z®y+— x Ay. A connection V: A'M — AM @ ALM is called torsion-
free, if Alt(V6O) = df for any 1-form 6 on M.

CLAIM: Let (M,V) be a manifold with a torsion-free connection, and ¢ a
function. Then the 2-form Hess(y) := V(dy) € AIM @ ALM is symmetric.
Proof: Clear. m

REMARK: This claim immediately implies that the form V(df) is symmet-
ric for any function f on M.

CLAIM: Let f be a smooth function on a manifold, and z its critical point.
Then V(df) = Hess(f) on T;M.

Proof. Step 1: A difference of two connections V — V7 is a 1-form A €
AL (M) QEnd(ALM). Since df|, = 0, we have V+ A(df)|. = V(df) + A(df) |z =
V(df)|z. Therefore, V(df)|, is independent from V.

Step 2: Fix the coordinate system {x;} in a neighbourhood of z, and take

the connection V1(0) := ZZ ® dx;, where % denotes the derivative of all

coefficients. By definition, vl(df)|a: = > dm dm - dz; ® dzj|le = Hess(f). By

Step 1, this quantity is equal to V(df)|z.
11
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Levi-Civita connection

DEFINITION: Let (M,g) be a Riemannian manifold. A Levi-Civita con-
nection is a connection on T'M which is torsion-free and orthogonal, that is,
satisfies V(g) = 0.

THEOREM: The Levi-Civita connection exists and is unique on any Rie-
mannian manifold.
Proof: nttp://verbit.ru/IMPA/HK-2023/slides-hk-2023-02.pdf W

THEOREM: Let (M,I,g9) be a Kahler manifold. Then the Levi-Civita
connection satisfies V(I) = 0. Conversely, if the Levi-Civita connection
on an almost complex Hermitian manifold (M, I, g) satisfies V(I) = 0, this
manifold is Kahler.

Proof: nttp://verbit.ru/MATH/KAHLER-2020/slides-Kahler-2020-10.pdf W
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Torsion-free connections preserving the complex structure

EXERCISE: Let (M, I) be an almost complex manifold, and V a torsion-free
connection on T'M preserving I, that is, satisfying V(I) = 0. Prove that |
IS integrable.

EXERCISE: Let (M,I) be a complex manifold. Prove that M admits a
torsion-free connection V preserving 1.

REMARK: Locally in M, this statement is trivial, because the same trivial
connection written in coordinates as above,

do
V1(0) := — ® dx;
2z, O

preserves the complex structure.

13
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The pluri-Laplacian and the Hessian

DEFINITION: Let (M, I) be a complex manifold, and d¢ := I~ 1dI : AY(M) —
ATL(M) the twisted differential. Let f € C®°M be a real function. If
dd°f(X,1X) > 0 for all X, the function f is called plurisubharmonic (psh).

REMARK: Let V be a flat, torsion-free connection on M, and Alt: T"M ®
T*M —s N2(M) be the antisymmetrizer. Then

dd°f = d(Id(f)) = Alt(VI(df)) = Alt(Id @ I(Hess(f)),
where Hess(f) =V (df) e T"M ® T*M.

COROLLARY 1: Consider a complex manifold equipped with a torsion-free
connection preserving a complex structure I. Then

dd° f(a, [x) = %(Hess(f)(x, ) + Hess(f)(Iz. Iz)),

14
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The Morse index of a plurisubharmonic function

DEFINITION: Let z be a Morse critical point of f € C°®°M, and (u,v) is
signature of its Hessian. The Morse index of f in x is v.

PROPOSITION: Let f be a plurisubharmonic Morse function on a complex
manifold M, dimg M = n, and m € M its Morse point. Then its Morse index
IS < n.

Proof. Step 1: The Morse index is the dimension of the biggest subspace
W C Ty M such that Hess(f) is negative definite on W. Assume that dimW >
n. Then Wy :=WnNI(W) is positive-dimensional.

Step 2: For any non-zero x € Wy, we have I(z) € W, hence Hess(f)(Iz, Ix) <

0. Then dd¢f(x,Iz) = %(Hess(f)(:c,a;) + Hess(f)(Ixz,Iz)) < 0, giving a con-
tradiction. =
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Stable manifold of a critical point

DEFINITION: Let f be a Morse function on a smooth manifold M, and
grad f its gradient vector field. The stable manifold of a critical point m is

all points z € M such that lim et99/(2) =m.
t — o0

PROPOSITION: Let Z,, be a stable manifold of a critical point m € M of
index p. Then Z,, iIs a smooth, p-dimensional submanifold in M

Proof: “Morse lemma’” (see any textbook on Morse theory, such as Milnor’s)
claims that there is a coordinate system x1,..,xn in a neighbourhood of m
such that f = Y Px? — z;?:n_pﬂxg. The map z — €9?4f(2) as t = oo

smoothly retracts the stable manifold to the set (0,0, ..., 0, Zy_pt1; ey Tm)
which is smooth. =

REMARK: Pushing this argument further, it is possible to construct the
cell decomposition of M, with the p-dimensional cells in bijective cor-
respondence with Morse points of index p; this argument lies in the foun-
dations of Morse theory.

16
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Lefschetz hyperplane section theorem

THEOREM: (Lefschetz hyperplane section theorem)

Let Z C CP™ be a smooth projective submanifold of dimension m, and H C
CP™ a hyperplane section transversal to Z. Then for any : < m—1, the map
of homotopy groups =;(ZNH) — m;(Z) is an isomorphism.

Proof. Step 1: Consider the function fy := [2?| = ¥; |z;|2 +|y?| on CP™\H =
C". Since dd°f1 = 2> ;dx; N dy;, this function is strictly plurisubharmonic.
The strictly plurisubharmonic functions are open in Cz-topology, and Morse
function are dense in CQ-topology, hence there exists a small deformation
f of f1 which is strictly plurisubharmonic and Morse on ZNCP"™\ H.

Step 2: Let {V; C Z\(HNZ)} be all stable sets of all critical points of f on Z.
Then the intersection Z N H is a deformational retract of 7y := Z\ |; V;:
the map z — limy_0o !99(2) retracts Zy to Z N H. Indeed, the limit of
et9r3d f(2) on Z is either ZN H, or a critical point of f, and in the latter case,
z belongs to its stable set.
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Lefschetz hyperplane section theorem (2)

THEOREM: (Lefschetz hyperplane section theorem)

Let Z C CP™ be a smooth projective submanifold of dimension m, and H C
CP™ a hyperplane section transversal to Z. Then for any : < m—1, the map
of homotopy groups m;(ZNH) — m;(Z) is an isomorphism.

Proof. Step 1 (abbreviated): Consider the function fi :=|22| = %, |z;|2 +
|y,£2| on CP™"\H = C™. A small perturbation makes this function Morse.

Step 2 (abbreviated): Let {V; C Z\(H N Z)} be all stable sets of all critical
points of f on Z. Then the intersection Z N H is a deformational retract
of Zg = 2Z\U; V;.

Step 3: Since f is strictly plurisubharmonic, the index of its critical points
is < dimg Z. By the previous step, the space Zg = Z\U;V; is homotopy
equivalent to H N Z. Therefore, Lefschetz hyperplane section theorem is
implied by the following topological lemma.

LEMMA: Let Z be a smooth manifold, V; C Z a collection of smooth subman-
ifolds of Z, codimdimV,; > m, and Zg := Z\ U; Vj. Then the natural embedding
Zy — Z induces an isomorphism of homotopy groups =;(Zg) = m;(Z) for
all : <m — 1, and is surjective for : = m — 1.
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How =;(M) is affected by removing a submanifold Z C M

LEMMA: Let Z be a smooth manifold, V; C Z a collection of smooth subman-
ifolds of Z, codimdim V; > m, and Zg := Z\U; V;. Then the natural embedding
Zy — Z induces an isomorphism of homotopy groups =;(Zg) = m;(Z) for
all : <m — 1, and is surjective for : = m — 1.

Proof. Step 1: To show that m;(Zp) LN m;(Z) is surjective, take any
element 7;(Z), represent it by an immersion of a sphere S* — Z, and deform
this sphere so that it becomes transversal to V;, for all j. If codimV; > 1,
transversality implies that SN V; =0, hence the image of p belongs to
Zp. This implies that the natural map =;(Zg) = =;(Z) is surjective.

Step 2: Let pg := S* — Zy be a sphere map which is homotopic to zero in Z.
T his homotopy can be expressed as a map from an 4+ 1-dimensional ball
B+l 2, 7 such that Plopi+1 = po- By transversality theorem, the map p
can be chosen smooth and transversal to all Vj. If, in addition, 41 < codimV},
the image of p does not intersect U; V;, which implies that 0Bt is homotopic
to zero in Zp. =
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