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Smooth quartic surfaces (reminder)

DEFINITION: Smooth quartic is a smooth hypersurface in CPn, defined

by an irreducible homogeneous polynomial of degree 3.

REMARK: By Euler formula, the canonical bundle on CPn is O(−n − 1).

Adjunction formula applied to a smooth hypersurface Z ⊂ CPn of degree m

gives N∗Z⊗OZ
KZ = KCPn|Z , where NZ = O(m)|Z is the normal bundle. This

gives KZ = O(m− n− 1).

COROLLARY: A smooth quartic in CP3 has trivial canonical bundle.

REMARK: In the sequel, “smooth quartics” will always mean smooth

quartic surfaces.

THEOREM: smooth quartics are diffeomorphic

Proof: Lecture 8.
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Lefschetz hyperplane section theorem (reminder)

DEFINITION: Veronese embedding is the projective embedding
CPn −→ P(H0(O(k)∗), defined by the line system H0(O(k)). In other words,
the Veronese embedding takes

(t0 : t1 : ... : tn) to(P0(t0, ..., tn) : P1(t0, ..., tn) : ... : ...),

where {Pi} denotes a basis in homogeneous monomials of degree k.

CLAIM: A smooth quartic is an intersection of a hyperplane and the
image of 4-th Veronese embedding of CP3.

THEOREM: (Lefschetz hyperplane section theorem)
Let Z ⊂ CPn be a smooth projective submanifold of dimension m, and H ⊂
CPn a hyperplane section transversal to Z. Then for any i < m−1, the map
of homotopy groups πi(Z ∩H)−→ πi(Z) is an isomorphism.

Proof: Later today.

COROLLARY: A smooth quartic Z is a K3 surface.

Proof: Since Z is a hyperplane section of the Veronese manifold, which is
isomorphic to CP3, Lefschetz theorem gives π1(Z) = π1(CP3) = 0; its
canonical bundle KZ = O(4− 4)|Z = OZ vanishes, as shown above.
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Graded vector spaces and algebras

DEFINITION: A graded vector space is a space V ∗ =
⊕

i∈Z V i.

REMARK: If V ∗ is graded, the endomorphisms space End(V ∗) =
⊕

i∈ZEndi(V ∗)
is also graded, with Endi(V ∗) =

⊕
j∈ZHom(V j, V i+j)

DEFINITION: A graded algebra (or “graded associative algebra”) is an as-
sociative algebra A∗ =

⊕
i∈ZAi, with the product compatible with the grading:

Ai ·Aj ⊂ Ai+j.

REMARK: A bilinear map of graded paces which satisfies Ai · Aj ⊂ Ai+j is
called graded, or compatible with grading.

REMARK: The category of graded spaces can be defined as a category of
vector spaces with U(1)-action, with the weight decomposition providing
the grading. Then a graded algebra is an associative algebra in the
category of spaces with U(1)-action.

DEFINITION: An operator on a graded vector space is called even (odd)
if it shifts the grading by even (odd) number. The parity ã of an operator a

is 0 if it is even, 1 if it is odd. We say that an operator is pure if it is even
or odd.
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Supercommutator

DEFINITION: A supercommutator of pure operators on a graded vector
space is defined by a formula {a, b} = ab− (−1)ã̃bba.

DEFINITION: A graded associative algebra is called graded commutative
(or “supercommutative”) if its supercommutator vanishes.

EXAMPLE: The Grassmann algebra is supercommutative.

DEFINITION: A graded Lie algebra (Lie superalgebra) is a graded vector
space g∗ equipped with a bilinear graded map {·, ·} : g∗ × g∗ −→ g∗ which
is graded anticommutative: {a, b} = −(−1)ã̃b{b, a} and satisfies the super
Jacobi identity {c, {a, b}} = {{c, a}, b}+ (−1)ãc̃{a, {c, b}}

EXAMPLE: Consider the algebra End(A∗) of operators on a graded vector
space, with supercommutator as above. Then End(A∗), {·, ·} is a graded
Lie algebra.

Lemma 1: Let d be an odd element of a Lie superalgebra, satisfying {d, d} =
0, and L an even or odd element. Then {{L, d}, d} = 0.

Proof: 0 = {L, {d, d}} = {{L, d}, d}+ (−1)L̃{d, {L, d}} = 2{{L, d}, d}.
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The twisted differential dc

DEFINITION: The twisted differential is defined as dc := IdI−1.

CLAIM: Let (M, I) be a complex manifold. Then ∂ := d+
√
−1 dc

2 , ∂ :=
d−

√
−1 dc

2 are the Hodge components of d, ∂ = d1,0, ∂ = d0,1.

Proof: The Hodge components of d are expressed as d1,0 = d+
√
−1 dc

2 , d0,1 =
d−

√
−1 dc

2 . Indeed, I(d+
√
−1 dc

2 )I−1 =
√
−1d+

√
−1 dc

2 , hence d+
√
−1 dc

2 has Hodge

type (1,0); the same argument works for ∂.

CLAIM: Let W be the Weil operator, W
∣∣∣Λp,q(M) =

√
−1 (p − q). On any

complex manifold, one has dc = [W,d].

Proof: Clearly, [W,d1,0] =
√
−1d1,0 and [W,d0,1] = −

√
−1d0,1. Then [W,d] =√

−1 d1,0 −
√
−1 d0,1 = IdI−1.

COROLLARY: {d, dc} = {d, {d,W}} = 0

Proof: Implied by Lemma 1.
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Plurilaplacian

THEOREM: Let (M, I) be a complex manifold. Then 1. ∂2 = 0.
2. ∂

2
= 0.

3. ddc = −dcd

4. ddc = 2
√
−1 ∂∂.

Proof: The first is vanishing of (2,0)-part of d2, and the second is vanishing
of its (0,2)-part. Now, {d, dc} = −{d, {d,W}} = 0 (Lemma 1), this gives
ddc = −dcd. Finally, 2

√
−1∂∂ = 1

2(d+
√
−1dc)(d−

√
−1dc) = 1

2(dd
c−dcd) = ddc.

DEFINITION: The operator ddc is called the pluri-Laplacian.

REMARK: The pluri-Laplacian takes real functions to real (1,1)-forms
on M.

EXERCISE: Prove that on a Riemannian surface (M, I, ω), one has
ddc(f) = ∆(f)ω.

DEFINITION: The Hodge U(1)-action on differential forms on a complex
manifold defined by ρ(t)(η) = etW (η). On (p, q)-forms, it acts as a scalar
ρ(t)

∣∣∣Λp,q(M) = e(p−q)
√
−1 Id; the (p, p)-forms are clearly invariant.
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Positive (1,1)-forms

CLAIM: Consider a real (1,1)-form η ∈ Λ1,1(M) ∩ Λ2(M,R). Then the
bilinear form gη(x, y) := η(x, Iy) is symmetric.

Proof: Clearly, 0 = W (η)(x, y) = η(W (x), y)+η(x,W (y)) = η(Ix, y)+η(x, Iy).
This gives η(x, Iy) = −η(Ix, y) = η(y, Ix).

REMARK: This construction is reversible, and defines a bijection between
U(1)-invariant symmetric forms g ∈ Sym2(T ∗M) and sections of Λ1,1(M)∩
Λ2(M,R).

DEFINITION: A real (1,1)-form η is called positive if η(x, Ix) ⩾ 0 for any x ∈
TM . By this convention, 0 is a positive (1,1)-form (“French positive”)

DEFINITION: A (1,1)-form is called Hermitian if it is positive and non-
degenerate, that is, when η(x, Ix) > 0 for any x ∈ TM\0.

REMARK: The above construction gives a bijective correspondence be-
tween the Hermitian (1,1)-forms and U(1)-invariant Riemannian metric
tensors on M.

EXAMPLE: For any (1,0)-form ξ, the form
√
−1 ξ ∧ ξ is positive (prove

this).
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Pluri-harmonic functions

DEFINITION: A function f on a complex manifold is called pluri-harmonic
if dd2f = 0.

REMARK: A function f is called holomorphic if ∂f = 0, and antiholomor-
phic if ∂f = 0. Since ddc = 2

√
−1 ∂∂ = −2

√
−1 ∂∂, any holomorphic and

any antiholomorphic function is pluri-harmonic.

THEOREM: Any pluriharmonic function is locally expressed as a sum of
holomorphic and antiholomorphic function.

Proof: Let f be a pluriharmonic function on a ball, and α = ∂f . Since ∂(α) =
0, this form is holomorphic; since ∂2 = 0, it is also closed. Poincaré lemma
applied to holomorphic functions implies that α = du, where u is holomorphic.
Then d(f−u) is a (0,1)-form, hence v := f−u is antiholomorphic. We obtain
that f = u+ v, where u is holomorphic, and v is antiholomorphic.

In our proof, we use the following lemma.

LEMMA: Let B ⊂ Cn be an open ball, and η a closed holomorphic (d,0)-form
Then η = dα, where α is a holomorphic (d− 1,0)-form.

Proof: It follows from the Poincaré lemma directly.
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Morse functions

DEFINITION: Let f be a smooth function on a manifold M , and x ∈ M

its critical point. Choose a coordinate system x1, ..., xn in a neighbourhood
of x. The hessian of a function f in x is a symmetric matrix Hess(f) :=∑

i
d2f

dxidxj
· dxi ⊗ dxj ∈ Sym2M .

CLAIM: The form Hess(f) is coordinate-independent, and defines a sym-
metric 2-form on TxM.

Proof: Do this as an exercise.

DEFINITION: A smooth function f : M −→ R is called Morse if it is proper
(that is, the preimage of a closed interval is compact), its critical points
are isolated, and for each of these critical point, the form Hess(f) is non-
degenerate.

CLAIM: Every manifold admits a Morse function. Moreover, the set of
Morse functions is dense and open in the space of all proper smooth
functions taken with C2 or C∞-topology.

Proof: Milnor, “Morse theory.”
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The Hessian and torsion-free connections

DEFINITION: Let Alt : Λ1M⊗Λ1M −→ Λ2M denote the antisymmetrization
map x⊗ y 7→ x ∧ y. A connection ∇ : Λ1M −→ Λ1M ⊗ Λ1M is called torsion-
free, if Alt(∇θ) = dθ for any 1-form θ on M .

CLAIM: Let (M,∇) be a manifold with a torsion-free connection, and φ a
function. Then the 2-form Hess(φ) := ∇(dφ) ∈ Λ1M ⊗ Λ1M is symmetric.
Proof: Clear.

REMARK: This claim immediately implies that the form ∇(df) is symmet-
ric for any function f on M.

CLAIM: Let f be a smooth function on a manifold, and x its critical point.
Then ∇(df) = Hess(f) on TxM.
Proof. Step 1: A difference of two connections ∇ − ∇1 is a 1-form A ∈
Λ1(M)⊗End(Λ1M). Since df |x = 0, we have ∇+A(df)|x = ∇(df)+A(df)|x =
∇(df)|x. Therefore, ∇(df)|x is independent from ∇.

Step 2: Fix the coordinate system {xi} in a neighbourhood of x, and take
the connection ∇1(θ) :=

∑
i
dθ
dxi

⊗ dxi, where dθ
dxi

denotes the derivative of all

coefficients. By definition, ∇1(df)|x =
∑

i
d2f

dxidxj
· dxi ⊗ dxj|x = Hess(f). By

Step 1, this quantity is equal to ∇(df)|x.
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Levi-Civita connection

DEFINITION: Let (M, g) be a Riemannian manifold. A Levi-Civita con-

nection is a connection on TM which is torsion-free and orthogonal, that is,

satisfies ∇(g) = 0.

THEOREM: The Levi-Civita connection exists and is unique on any Rie-

mannian manifold.

Proof: http://verbit.ru/IMPA/HK-2023/slides-hk-2023-02.pdf

THEOREM: Let (M, I, g) be a Kähler manifold. Then the Levi-Civita

connection satisfies ∇(I) = 0. Conversely, if the Levi-Civita connection

on an almost complex Hermitian manifold (M, I, g) satisfies ∇(I) = 0, this

manifold is Kähler.

Proof: http://verbit.ru/MATH/KAHLER-2020/slides-Kahler-2020-10.pdf

12



K3 surfaces, 2024, lecture 15 M. Verbitsky

Torsion-free connections preserving the complex structure

EXERCISE: Let (M, I) be an almost complex manifold, and ∇ a torsion-free

connection on TM preserving I, that is, satisfying ∇(I) = 0. Prove that I

is integrable.

EXERCISE: Let (M, I) be a complex manifold. Prove that M admits a

torsion-free connection ∇ preserving I.

REMARK: Locally in M , this statement is trivial, because the same trivial

connection written in coordinates as above,

∇1(θ) :=
∑
i

dθ

dxi
⊗ dxi

preserves the complex structure.
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The pluri-Laplacian and the Hessian

DEFINITION: Let (M, I) be a complex manifold, and dc := I−1dI : Λi(M) →
Λi+1(M) the twisted differential. Let f ∈ C∞M be a real function. If

ddcf(X, IX) ⩾ 0 for all X, the function f is called plurisubharmonic (psh).

REMARK: Let ∇ be a flat, torsion-free connection on M , and Alt : T ∗M ⊗
T ∗M −→ Λ2(M) be the antisymmetrizer. Then

ddcf = d(Id(f)) = Alt(∇I(df)) = Alt(Id⊗I(Hess(f)),

where Hess(f) = ∇(df) ∈ T ∗M ⊗ T ∗M .

COROLLARY 1: Consider a complex manifold equipped with a torsion-free

connection preserving a complex structure I. Then

ddcf(x, Ix) =
1

2
(Hess(f)(x, x) + Hess(f)(Ix, Ix)).
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The Morse index of a plurisubharmonic function

DEFINITION: Let x be a Morse critical point of f ∈ C∞M , and (u, v) is

signature of its Hessian. The Morse index of f in x is v.

PROPOSITION: Let f be a plurisubharmonic Morse function on a complex

manifold M , dimCM = n, and m ∈ M its Morse point. Then its Morse index

is ⩽ n.

Proof. Step 1: The Morse index is the dimension of the biggest subspace

W ⊂ TmM such that Hess(f) is negative definite on W . Assume that dimW >

n. Then W1 := W ∩ I(W ) is positive-dimensional.

Step 2: For any non-zero x ∈ W1, we have I(x) ∈ W , hence Hess(f)(Ix, Ix) <

0. Then ddcf(x, Ix) = 1
2(Hess(f)(x, x) + Hess(f)(Ix, Ix)) < 0, giving a con-

tradiction.
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Stable manifold of a critical point

DEFINITION: Let f be a Morse function on a smooth manifold M , and

grad f its gradient vector field. The stable manifold of a critical point m is

all points z ∈ M such that lim
t−→∞

etgrad f(z) = m.

PROPOSITION: Let Zm be a stable manifold of a critical point m ∈ M of

index p. Then Zm is a smooth, p-dimensional submanifold in M

Proof: “Morse lemma” (see any textbook on Morse theory, such as Milnor’s)

claims that there is a coordinate system x1, .., xn in a neighbourhood of m

such that f =
∑n−p

i=1 x2i −
∑n

i=n−p+1 x
2
i . The map z → etgrad f(z) as t → ∞

smoothly retracts the stable manifold to the set (0,0, ...,0, xn−p+1, ..., xn)

which is smooth.

REMARK: Pushing this argument further, it is possible to construct the

cell decomposition of M, with the p-dimensional cells in bijective cor-

respondence with Morse points of index p; this argument lies in the foun-

dations of Morse theory.
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Lefschetz hyperplane section theorem

THEOREM: (Lefschetz hyperplane section theorem)

Let Z ⊂ CPn be a smooth projective submanifold of dimension m, and H ⊂
CPn a hyperplane section transversal to Z. Then for any i < m−1, the map

of homotopy groups πi(Z ∩H)−→ πi(Z) is an isomorphism.

Proof. Step 1: Consider the function f1 := |z2| =
∑

i |xi|2+ |y2i | on CPn\H =

Cn. Since ddcf1 = 2
∑

i dxi ∧ dyi, this function is strictly plurisubharmonic.

The strictly plurisubharmonic functions are open in C2-topology, and Morse

function are dense in C2-topology, hence there exists a small deformation

f of f1 which is strictly plurisubharmonic and Morse on Z ∩ CPn\H.

Step 2: Let {Vi ⊂ Z\(H∩Z)} be all stable sets of all critical points of f on Z.

Then the intersection Z ∩H is a deformational retract of Z0 := Z\
⋃
i Vi:

the map z −→ limt→∞ etgrad f(z) retracts Z0 to Z ∩ H. Indeed, the limit of

etgrad f(z) on Z is either Z ∩H, or a critical point of f , and in the latter case,

z belongs to its stable set.
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Lefschetz hyperplane section theorem (2)

THEOREM: (Lefschetz hyperplane section theorem)
Let Z ⊂ CPn be a smooth projective submanifold of dimension m, and H ⊂
CPn a hyperplane section transversal to Z. Then for any i < m−1, the map
of homotopy groups πi(Z ∩H)−→ πi(Z) is an isomorphism.

Proof. Step 1 (abbreviated): Consider the function f1 := |z2| =
∑

i |xi|2 +
|y2i | on CPn\H = Cn. A small perturbation makes this function Morse.

Step 2 (abbreviated): Let {Vi ⊂ Z\(H ∩ Z)} be all stable sets of all critical
points of f on Z. Then the intersection Z ∩H is a deformational retract
of Z0 := Z\

⋃
i Vi.

Step 3: Since f is strictly plurisubharmonic, the index of its critical points
is ⩽ dimCZ. By the previous step, the space Z0 = Z\

⋃
i Vi is homotopy

equivalent to H ∩ Z. Therefore, Lefschetz hyperplane section theorem is
implied by the following topological lemma.

LEMMA: Let Z be a smooth manifold, Vi ⊂ Z a collection of smooth subman-
ifolds of Z, codimdimVi ⩾ m, and Z0 := Z\

⋃
j Vj. Then the natural embedding

Z0 ↪→ Z induces an isomorphism of homotopy groups πi(Z0)
∼= πi(Z) for

all i < m− 1, and is surjective for i = m− 1.
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How πi(M) is affected by removing a submanifold Z ⊂ M

LEMMA: Let Z be a smooth manifold, Vi ⊂ Z a collection of smooth subman-

ifolds of Z, codimdimVi ⩾ m, and Z0 := Z\
⋃
j Vj. Then the natural embedding

Z0 ↪→ Z induces an isomorphism of homotopy groups πi(Z0)
∼= πi(Z) for

all i < m− 1, and is surjective for i = m− 1.

Proof. Step 1: To show that πi(Z0)
ρ−→ πi(Z) is surjective, take any

element πi(Z), represent it by an immersion of a sphere Si −→ Z, and deform

this sphere so that it becomes transversal to Vj, for all j. If codimVj > i,

transversality implies that Si ∩ Vj = 0, hence the image of ρ belongs to

Z0. This implies that the natural map πi(Z0)
∼= πi(Z) is surjective.

Step 2: Let ρ0 := Si −→ Z0 be a sphere map which is homotopic to zero in Z.

This homotopy can be expressed as a map from an i+1-dimensional ball

Bi+1 ρ−→ Z, such that ρ
∣∣∣∂Bi+1 = ρ0. By transversality theorem, the map ρ

can be chosen smooth and transversal to all Vj. If, in addition, i+1 < codimVi,

the image of ρ does not intersect
⋃
j Vj, which implies that ∂Bi+1 is homotopic

to zero in Z0.
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