K3 surfaces

lecture 17, local Torelli theorem: local surjectivity of the period map

Misha Verbitsky

IMPA, sala 236

October 28, 2024, 17:00

C-symplectic structures (reminder)

DEFINITION: Let M be a smooth 4n-dimensional manifold. A closed complex-valued form Ω on M is called **C-symplectic** if $\Omega^{n+1} = 0$ and $\Omega^n \wedge \overline{\Omega}^n$ is a non-degenerate volume form.

THEOREM: Let $\Omega \in \Lambda^2(M, \mathbb{C})$ be a C-symplectic form, and $T^{0,1}_{\Omega}(M)$ be equal to ker Ω , where

 $\ker \Omega := \{ v \in TM \otimes \mathbb{C} \mid \Omega \lrcorner v = 0 \}.$

Then $T_{\Omega}^{0,1}(M) \oplus \overline{T_{\Omega}^{0,1}(M)} = TM \otimes_{\mathbb{R}} \mathbb{C}$, hence the sub-bundle $T_{\Omega}^{0,1}(M)$ defines an almost complex structure I_{Ω} on M. If, in addition, Ω is closed, I_{Ω} is integrable, and Ω is holomorphically symplectic on (M, I_{Ω}) .

DEFINITION: Let CSymp be the space of all C-symplectic forms on a manifold M, equipped with the C^{∞} -topology, and Diff₀ the connected component of the group of diffeomorphisms. The **holomorphically symplectic Teichmüller space** CTeich is the quotient $\frac{CSymp}{Diff_0}$.

K3 surfaces, 2024, lecture 17

M. Verbitsky

Period map for holomorphically symplectic manifolds (reminder)

DEFINITION: Let (M, I, Ω) be a holomorphically symplectic manifold, and CSymp the space of all C-symplectic forms. The quotient CTeich := $\frac{\text{CSymp}}{\text{Diff}_0}$ is called **the holomorphically symplectic Teichmüller space**, and the map CTeich $\longrightarrow H^2(M, \mathbb{C})$ taking (M, I, Ω) to the cohomology class $[\Omega] \in H^2(M, \mathbb{C})$ **the holomorphically symplectic period map**.

THEOREM: (Local Torelli theorem, due to Bogomolov)

Let (M, I, Ω) be a complex, Kähler, holomorphically symplectic surface with $H^{0,1}(M) = 0$, that is, a K3 surface. Consider the period map

Per : CTeich $\longrightarrow H^2(M, \mathbb{C})$

taking (M, I, Ω) to the cohomology class $[\Omega] \in H^2(M, \mathbb{C})$. Then Per is a **local diffeomorpism** of CTeich to the **period space**

$$Q := \left\{ v \in H^2(M, \mathbb{C}) \mid \int_M v \wedge v = 0, \int_M v \wedge \overline{v} > 0 \right\}.$$

Proof: Injectivity: lecture 16, surjectivity: this lecture.

A caution: CTeich is smooth, but non-Hausdorff. The non-Hausdorff points are well understood and correspond to the partition of the "positive cone" $\{v \in H_I^{1,1}(M,\mathbb{R}) \mid \int_M v \wedge v > 0\}$ onto "Kähler chambers" (to be explained later).

C-symplectic structures on surfaces (reminder)

CLAIM: In real dimension 4, C-symplectic structure is determined by a pair $\omega_1 = \operatorname{Re}\Omega, \omega_2 = \operatorname{Im}\Omega$ of symplectic forms which satisfy $\omega_1^2 = \omega_2^2$ and $\omega_1 \wedge \omega_2 = 0$.

Proof: Let Ω be a C-symplectic form, $\omega_1 = \operatorname{Re}\Omega$ and $\omega_2 = \operatorname{Im}\Omega$. Then $\Omega \wedge \Omega = \omega_1^2 + \omega_2^2 + 2\sqrt{-1} \omega_1 \wedge \omega_2 = 0$, hence $\omega_1^2 = \omega_2^2$ and $\omega_1 \wedge \omega_2 = 0$. The form $\Omega \wedge \overline{\Omega} = \omega_1^2 + \omega_2^2$ is non-degenerate, hence $\omega_1^2 = \omega_2^2$ is non-degenerate.

Conversely, if $\omega_1^2 = \omega_2^2$ and $\omega_1 \wedge \omega_2 = 0$, we have $\Omega \wedge \Omega = 0$, and $\Omega \wedge \overline{\Omega} = \omega_1^2 + \omega_2^2$ is non-degenerate if ω_i is non-degenerate.

REMARK: For K3 surface, the local Torelli theorem is equivalent to the following statement: the period map Per : CTeich $\longrightarrow H^2(M, \mathbb{C})$ which takes ω_1, ω_2 to their cohomology classes which satisfy $[\omega_1]^2 = [\omega_2]^2$ and $[\omega_1] \wedge [\omega_2] = 0$ is locally a diffeomorphism.

dd^c-lemma

THEOREM: Let η be a form on a compact Kähler manifold, satisfying one of the following conditions. (1). η is an exact (p,q)-form. (2). η is *d*-exact, *d^c*-closed. (3). η is ∂ -exact, $\overline{\partial}$ -closed.

Then $\eta \in \operatorname{im} dd^c = \operatorname{im} \partial\overline{\partial}$.

Proof: Notice immediately that in all three cases η is closed and orthogonal to the kernel of Δ , hence its cohomology class vanishes. Indeed, ker Δ is orthogonal to the image of $\partial, \overline{\partial}$ and d. Since η is exact, it lies in the image of Δ . Operator $G_{\Delta} := \Delta^{-1}$ is defined on im $\Delta = \ker \Delta^{\perp}$ and commutes with d, d^c .

In case (1), η is *d*-exact, and $I(\eta) = (\sqrt{-1})^{p-q}\eta$ is *d*-closed, hence η is *d*-exact, d^c -closed like in (2). Then $\eta = d\alpha$, where $\alpha := G_{\Delta}d^*\eta$. Since G_{Δ} and d^* commute with d^c , the form α is d^c -closed; since it belongs to im $\Delta = \operatorname{im} G_{\Delta}$, it is d^c -exact, $\alpha = d^c\beta$ which gives $\eta = dd^c\beta$.

In case (3), we have $\eta = \partial \alpha$, where $\alpha := G_{\Delta} \partial^* \eta$. Since G_{Δ} and ∂^* commute with $\overline{\partial}$, the form α is $\overline{\partial}$ -closed; since it belongs to im Δ , it is $\overline{\partial}$ -exact, $\alpha = \overline{\partial}\beta$ which gives $\eta = \partial \overline{\partial} \beta$.

Massey products

As an application of dd^c -lemma, I would prove a theorem about topology of compact Kähler manifolds.

Let $a, b, c \in \Lambda^*(M)$ be closed forms on a manifold M with cohomology classes [a], [b], [c] satisfying [a][b] = [b][c] = 0, and $\alpha, \gamma \in \Lambda^*(M)$ forms which satisfy $d(\alpha) = a \wedge b$, $d(\gamma) = b \wedge c$. Denote by $L_{[a]}, L_{[c]} : H^*(M) \longrightarrow H^*(M)$ the operation of multiplication by the cohomology classes [a], [c].

Then $\alpha \wedge c - a \wedge \gamma$ is a closed form, and its cohomology class is well-defined modulo im $L_{[a]} + \operatorname{im} L_{[c]}$.

DEFINITION: Cohomology class $\alpha \wedge c - a \wedge \gamma$ is called **Massey product of** a, b, c.

PROPOSITION: On a Kähler manifold, Massey products vanish.

Proof: Let a, b, c be harmonic forms of pure Hodge type, that is, of type (p,q) for some p,q. Then ab and bc are exact pure forms, hence $ab, bc \in \operatorname{im} dd^c$ by dd^c -lemma. This implies that $\alpha := d^*G_{\Delta}(ab)$ and $\gamma := d^*G_{\Delta}(bc)$ are d^c -exact. Therefore $\mu := \alpha \wedge c - a \wedge \gamma$ is a d^c -exact, d-closed form. Applying dd^c -lemma again, we obtain that μ is dd^c -exact, hence its cohomology class vanish.

Heisenberg group

REMARK: In the class, we constructed this space explicitly as a cell complex, without using the Lie algebra, and computed the Massey product in its cohomology. Here are the notes taken from a lecture given elsewhere, which explain the same construction in a different, more algebraic way.

DEFINITION: The **Heisenberg group** G group of strictly upper triangular matrices (3x3),

$$\begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}$$

The integer Heisenberg group $G_{\mathbb{Z}}$ is the same group with integer entries. The Heisenberg nilmanifold is $G/G_{\mathbb{Z}}$. The Heisenberg nilmanifold is fibered over the torus T^2 with the fiber S^1 (it is a non-trivial principal S^1 -bundle). This fibration corresponds to the exact sequence

$$\{e\} \longrightarrow \mathbb{Z} \longrightarrow G_{\mathbb{Z}} \longrightarrow \mathbb{Z}^2 \longrightarrow \{e\}$$

where $\ensuremath{\mathbb{Z}}$ is the center.

Massey products in Heisenberg nilmanifold

CLAIM: Masey products on $G/G_{\mathbb{Z}}$ are non-zero.

Proof. Step 1: *G* acts on $\Lambda^*(G)$ from the right. It is not hard to see that the all cohomology classes on $G/G_{\mathbb{Z}}$ can be represented by right *G*-invariant forms, and, moreover, the cohomology of $G/G_{\mathbb{Z}}$ is equal to the cohomology of the complex of right-*G*-invariant forms on *G*.

Step 2: This is the same complex as **the Chevalley-Eilenberg complex** for the Lie algebra \mathfrak{g} of $G: 0 \longrightarrow \Lambda^1(\mathfrak{g}^*) \xrightarrow{d} \Lambda^2(\mathfrak{g}^*) \xrightarrow{d} \dots$ with the differential in the first term $d: \mathfrak{g}^* \longrightarrow \Lambda^2(\mathfrak{g}^*)$ dual to the commutator. We extend this differential to $\Lambda^*(\mathfrak{g}^*)$ by the Leibniz rule. The corresponding cohomology is called **the Lie algebra cohomology** and denoted by $H^*(\mathfrak{g})$.

Step 3: Let a, b, t be the basis in \mathfrak{g} , with the only non-trivial commutator [a, b] = t, and α , β , τ the dual basis in \mathfrak{g}^* , with the only non-trivial differential $d\tau = \alpha \wedge \beta$. This gives a basis $\alpha \wedge \beta$, $\alpha \wedge \tau$, $\beta \wedge \tau$ in $\Lambda^2(\mathfrak{g}^*)$, with $d|_{\Lambda^2 \mathfrak{g}^*} = 0$, giving rk $H^1(G/G_{\mathbb{Z}}) = 2$ and rk $H^2(G/G_{\mathbb{Z}}) = 2$.

Step 4: Let $M(\alpha, \beta, \alpha)$ denote the Massey product of α, β, α . Since $\alpha \wedge \beta = d\tau$, $M(\alpha, \beta, \alpha) = \tau \wedge \alpha - \alpha \wedge \tau = 2\tau \wedge \alpha$. The image of L_{α} : $H^{1}(\mathfrak{g}) \longrightarrow H^{2}(\mathfrak{g})$ is generated by $\alpha \wedge \beta$, hence $M(\alpha, \beta, \alpha)$ is non-zero modulo im L_{α} .

Local Torelli theorem: surjectivity of the period map

THEOREM: Let (M, I, Ω) be a compact complex holomorphically symplectic surface. Then for any sufficiently small cohomology class $[\eta] \in H^{1,1}(M)$, there exists a C-symplectic form $\Omega_{\eta} := \Omega + \rho$, where $\rho \in \Lambda^{1,1}M + \Lambda^{0,2}M$ is a closed form which satisfies $\rho^{1,1} \wedge \rho^{1,1} = -\Omega \wedge \rho^{0,2}$, and $\rho^{1,1}$ is ∂ cohomologous to $[\eta]$.

Proof: Later today

REMARK: Clearly, the cohomology class [u] of $\Omega + \rho$ is equal to $[\Omega + \eta + u^{0,2}]$. Since M is K3, we have $H^{0,2}(M) = \mathbb{C}[\overline{\Omega}]$, which gives $[u^{0,2}] = \lambda[\overline{\Omega}]$, for some $\lambda \in \mathbb{C}$. Since $(\Omega + \rho)^2 = 0$, this gives $[\Omega \wedge u^{0,2}] = [\eta]$. Then $\lambda = -\frac{[\eta^2]}{[\Omega \wedge \overline{\Omega}]}$. **This implies that the cohomology class of** $\Omega_{\eta} := \Omega + \rho$ **is equal to** $\Omega + \eta - \frac{[\eta^2]}{[\Omega \wedge \overline{\Omega}]}\overline{\Omega}$.

REMARK: This theorem proves that the period map is surjective to a codimension 1 subvariety in $H^2(M, \mathbb{C})$. Together with injectivity, proven in lecture 16, this implies the local Torelli theorem for K3.

Local Torelli theorem for K3 (2)

THEOREM: Let (M, I, Ω) be a complex holomorphically symplectic surface with $H^{0,1}(M) = 0$, that is, a K3 surface. Then for any sufficiently small cohomology class $[\eta] \in H^{1,1}(M)$, there exists a C-symplectic form $\Omega_{\eta} :=$ $\Omega + \rho$, where $\rho \in \Lambda^{1,1}M + \Lambda^{0,2}M$ is a closed form which satisfies $\rho^{1,1} \wedge \rho^{1,1} =$ $-\Omega \wedge \rho^{0,2}$, and $\rho^{1,1}$ is ∂ -cohomologous to $[\eta]$.

REMARK: We write ρ as a Taylor series depending on $\eta \in H^{1,1}(M, \mathbb{C})$; for η sufficiently small, this term is small, and $\Omega_{\eta} := \Omega + \rho$ remains non-degenerate. **The only non-trivial condition to check is** $d\Omega_{\eta} = 0$.

REMARK: In the next slide, we need the following version of $\partial \overline{\partial}$ -lemma: for any (1,2)-form α , which is ∂ -exact and $\overline{\partial}$ -closed, $\alpha = \overline{\partial}\beta$, where β is ∂ -exact.

Local Torelli theorem for K3 (3)

Proof. Step 1: Let Λ_{Ω} be contraction with the (2,0)-bivector associated with Ω . This operation clearly commutes with $\overline{\partial}$, and is inverse to an isomorphism taking $\Lambda^{0,2}(M) \xrightarrow{\Lambda\Omega} \Lambda^{2,2}(M)$. Then $\rho^{1,1} \wedge \rho^{1,1} = -\Omega \wedge \rho^{0,2}$ is equivalent to $\Lambda_{\Omega}(\rho^{1,1} \wedge \rho^{1,1}) = -\rho^{0,2}$. To solve the equation $d\rho = 0$, we solve the equivalent equation:

$$\partial \Lambda_{\Omega}(\rho^{1,1} \wedge \rho^{1,1}) = -\overline{\partial}\rho^{1,1}, \qquad \partial \rho^{1,1} = 0 \qquad (*)$$

Let γ_0 be the harmonic (1,1)-form representing $[\eta]$. We solve the equation (*) inductively by taking

$$\overline{\partial}\gamma_n = \partial \Lambda_\Omega \left(\sum_{i+j=n-1} \gamma_i \wedge \gamma_j \right), \quad \gamma_n \text{ is } \partial \text{-exact} \quad (**)$$

Such $\gamma_n \in \Lambda^{1,1}(M, I)$ is found using $\partial \overline{\partial}$ -lemma, because the RHS of (**) is ∂ -exact and $\overline{\partial}$ -closed. The latter is clear because $\overline{\partial}$ commutes with Λ_{Ω} , and the (2,2)-forms $\gamma_i \wedge \gamma_j$ are clearly $\overline{\partial}$ -closed. Since $\overline{\partial} \sum_i \gamma_i = \partial \Lambda_{\Omega} \left(\sum_{i,j} \gamma_i \wedge \gamma_j \right)$, the sum $\rho^{1,1} := \sum \gamma_i$ is a solution of (*).

Step 2: Since γ_i , i > 0 are ∂ -exact, the ∂ -cohomology class of $\sum \gamma_i$ is $[\gamma_0] = [\eta]$. This proves the claim of the theorem, conditional on convergence of the series $\sum \gamma_i$, which is explained in the next two slides.

Convergence of the solutions of the Mauer-Cartan equation

In the previous slide, we wrote a recursive solution $\rho^{1,1} = \sum_i \gamma_i$ of the equation

$$\partial \Lambda_{\Omega}(\rho^{1,1} \wedge \rho^{1,1}) = -\overline{\partial}\rho^{1,1}, \quad \partial \rho^{1,1} = 0 \quad (*)$$

which is given by

$$\overline{\partial}\gamma_n = \partial \Lambda_\Omega \left(\sum_{i+j=n-1} \gamma_i \wedge \gamma_j \right), \quad \gamma_n \text{ is } \partial \text{-exact} \quad (**)$$

It remains to prove its convergence.

Let G_{Δ} be the Green operator inverting the Laplacian $\Delta = \overline{\partial}\overline{\partial}^* + \overline{\partial}^*\overline{\partial}$ on forms which are orthogonal to harmonic forms. Then $G_{\overline{\partial}} := \overline{\partial}^*G_{\Delta}$ inverts $\overline{\partial}$ on $\overline{\partial}$ -exact forms. From Hodge theory it follows easily that $\Psi(x) := G_{\overline{\partial}}\partial \Lambda_{\Omega}(x)$ is continuous. Let $K := \|\Psi\|$ be its operator norm.

DEFINITION: The *n*-th Catalan number is defined as the number of distinct ways one can put *n* pair of parentheses in a word on n + 1 letters. For example, for a word *abcd*, there are exactly 5 ways to put 3 pairs of parentheses: ((ab)(cd)), ((a(bc))d), (a((bc)d)), (((ab)c)d), (a(b(cd))).

M. Verbitsky

M. Verbitsky

Convergence of the solutions of the Mauer-Cartan equation (2)

Recursive solution of Maurer-Cartan: $\overline{\partial}\gamma_n = \partial \Lambda_{\Omega} \left(\sum_{i+j=n-1} \gamma_i \wedge \gamma_j \right)$ (**).

CLAIM: Let $\gamma_n := G_{\overline{\partial}} \partial \Lambda_{\Omega} \left(\sum_{i+j=n-1} \gamma_i \wedge \gamma_j \right) = \Psi \left(\sum_{i+j=n-1} \gamma_i \wedge \gamma_j \right)$ be solutions of (**), obtained by inverting $\overline{\partial}$ through the Green operators. Then $|\gamma_n| \leq C_n |\gamma_0|^{n+1} |K|^n$, where C_n is the *n*-th Catalan number.

Proof: If we open all brackets, we obtain that γ_n is a sum of C_n terms obtained by putting n parentheses in a word $\gamma_0\gamma_0....\gamma_0\gamma_0$, with each n+1 times parenthesis encoding the expression $\Psi(...)$ and all consecutive terms wedge-multiplied. For example, the term ((a(bc))d) would correspond to $\Psi(\Psi(\gamma_0 \land \Psi(\gamma_0 \land \gamma_0)) \land \gamma_0)$. Each of these terms is clearly bounded by $|\gamma_0|^{n+1}|K|^n$

To prove the convergence of $\sum \gamma_i$, it remains to estimate $C_n = \frac{1}{n+1} {2n \choose n}$; Stirling formula easily implies that $C_n = \frac{4^n}{\sqrt{\pi n^3}}(1 + O(1/n))$, hence

$$\gamma_n \leqslant 4^n K^n |\gamma_0|^{n+1} (1 + O(1/n)),$$

and it decays faster than a geometric progression once $|\gamma_0|^{-1} > 4K$. 13