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C-symplectic structures (reminder)

DEFINITION: Let M be a smooth 4n-dimensional manifold. A closed

complex-valued form Ω on M is called C-symplectic if Ωn+1 = 0 and Ωn∧Ωn

is a non-degenerate volume form.

THEOREM: Let Ω ∈ Λ2(M,C) be a C-symplectic form, and T
0,1
Ω (M) be

equal to kerΩ, where

kerΩ := {v ∈ TM ⊗ C | Ω⌟v = 0}.

Then T
0,1
Ω (M)⊕T

0,1
Ω (M) = TM⊗RC, hence the sub-bundle T

0,1
Ω (M) defines

an almost complex structure IΩ on M. If, in addition, Ω is closed, IΩ is

integrable, and Ω is holomorphically symplectic on (M, IΩ).

DEFINITION: Let CSymp be the space of all C-symplectic forms on a

manifold M , equipped with the C∞-topology, and Diff0 the connected com-

ponent of the group of diffeomorphisms. The holomorphically symplectic

Teichmüller space CTeich is the quotient CSymp
Diff0

.
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Period map for holomorphically symplectic manifolds (reminder)

DEFINITION: Let (M, I,Ω) be a holomorphically symplectic manifold, and
CSymp the space of all C-symplectic forms. The quotient CTeich := CSymp

Diff0
is called the holomorphically symplectic Teichmüller space, and the map
CTeich −→H2(M,C) taking (M, I,Ω) to the cohomology class [Ω] ∈ H2(M,C)
the holomorphically symplectic period map.

THEOREM: (Local Torelli theorem, due to Bogomolov)
Let (M, I,Ω) be a complex, Kähler, holomorphically symplectic surface with
H0,1(M) = 0, that is, a K3 surface. Consider the period map

Per : CTeich −→H2(M,C)
taking (M, I,Ω) to the cohomology class [Ω] ∈ H2(M,C). Then Per is a
local diffeomorpism of CTeich to the period space

Q :=
{
v ∈ H2(M,C) |

∫
M

v ∧ v = 0,
∫
M

v ∧ v > 0
}
.

Proof: Injectivity: lecture 16, surjectivity: this lecture.

A caution: CTeich is smooth, but non-Hausdorff. The non-Hausdorff
points are well understood and correspond to the partition of the “positive
cone” {v ∈ H

1,1
I (M,R) |

∫
M v ∧ v > 0} onto “Kähler chambers” (to be

explained later).
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C-symplectic structures on surfaces (reminder)

CLAIM: In real dimension 4, C-symplectic structure is determined by a

pair ω1 = ReΩ, ω2 = ImΩ of symplectic forms which satisfy ω2
1 = ω2

2 and

ω1 ∧ ω2 = 0.

Proof: Let Ω be a C-symplectic form, ω1 = ReΩ and ω2 = ImΩ. Then

Ω ∧ Ω = ω2
1 + ω2

2 + 2
√
−1 ω1 ∧ ω2 = 0, hence ω2

1 = ω2
2 and ω1 ∧ ω2 = 0. The

form Ω ∧Ω = ω2
1 + ω2

2 is non-degenerate, hence ω2
1 = ω2

2 is non-degenerate.

Conversely, if ω2
1 = ω2

2 and ω1∧ω2 = 0, we have Ω∧Ω = 0, and Ω∧Ω = ω2
1+ω2

2
is non-degenerate if ωi is non-degenerate.

REMARK: For K3 surface, the local Torelli theorem is equivalent to the

following statement: the period map Per : CTeich −→H2(M,C) which takes

ω1, ω2 to their cohomology classes which satisfy [ω1]
2 = [ω2]

2 and [ω1]∧[ω2] =

0 is locally a diffeomorphism.
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ddc-lemma

THEOREM: Let η be a form on a compact Kähler manifold, satisfying one
of the following conditions.
(1). η is an exact (p, q)-form. (2). η is d-exact, dc-closed.
(3). η is ∂-exact, ∂-closed.
Then η ∈ im ddc = im ∂∂.

Proof: Notice immediately that in all three cases η is closed and orthogonal
to the kernel of ∆, hence its cohomology class vanishes. Indeed, ker∆ is
orthogonal to the image of ∂, ∂ and d. Since η is exact, it lies in the image of
∆. Operator G∆ := ∆−1 is defined on im∆ = ker∆⊥ and commutes with
d, dc.

In case (1), η is d-exact, and I(η) = (
√
−1 )p−qη is d-closed, hence η is d-

exact, dc-closed like in (2). Then η = dα, where α := G∆d∗η. Since G∆ and
d∗ commute with dc, the form α is dc-closed; since it belongs to im∆ = imG∆,
it is dc-exact, α = dcβ which gives η = ddcβ.

In case (3), we have η = ∂α, where α := G∆∂∗η. Since G∆ and ∂∗ commute
with ∂, the form α is ∂-closed; since it belongs to im∆, it is ∂-exact, α = ∂β

which gives η = ∂∂β.
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Massey products

As an application of ddc-lemma, I would prove a theorem about topology of
compact Kähler manifolds.

Let a, b, c ∈ Λ∗(M) be closed forms on a manifold M with cohomology classes
[a], [b], [c] satisfying [a][b] = [b][c] = 0, and α, γ ∈ Λ∗(M) forms which satisfy
d(α) = a ∧ b, d(γ) = b ∧ c. Denote by L[a], L[c] : H∗(M)−→H∗(M) the
operation of multiplication by the cohomology classes [a], [c].

Then α∧c−a∧γ is a closed form, and its cohomology class is well-defined
modulo imL[a] + imL[c].

DEFINITION: Cohomology class α ∧ c− a ∧ γ is called Massey product of
a, b, c.

PROPOSITION: On a Kähler manifold, Massey products vanish.

Proof: Let a, b, c be harmonic forms of pure Hodge type, that is, of type (p, q)
for some p, q. Then ab and bc are exact pure forms, hence ab, bc ∈ im ddc by
ddc-lemma. This implies that α := d∗G∆(ab) and γ := d∗G∆(bc) are dc-exact.
Therefore µ := α∧ c−a∧γ is a dc-exact, d-closed form. Applying ddc-lemma
again, we obtain that µ is ddc-exact, hence its cohomology class vanish.
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Heisenberg group

REMARK: In the class, we constructed this space explicitly as a cell com-

plex, without using the Lie algebra, and computed the Massey product in its

cohomology. Here are the notes taken from a lecture given elsewhere, which

explain the same construction in a different, more algebraic way.

DEFINITION: The Heisenberg group G group of strictly upper triangular

matrices (3x3), 1 ∗ ∗
0 1 ∗
0 0 1


The integer Heisenberg group GZ is the same group with integer entries.

The Heisenberg nilmanifold is G/GZ. The Heisenberg nilmanifold is fibered

over the torus T2 with the fiber S1 (it is a non-trivial principal S1-bundle).

This fibration corresponds to the exact sequence

{e} −→ Z−→GZ −→ Z2 −→ {e}

where Z is the center.
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Massey products in Heisenberg nilmanifold

CLAIM: Masey products on G/GZ are non-zero.

Proof. Step 1: G acts on Λ∗(G) from the right. It is not hard to see that the
all cohomology classes on G/GZ can be represented by right G-invariant forms,
and, moreover, the cohomology of G/GZ is equal to the cohomology of
the complex of right-G-invariant forms on G.

Step 2: This is the same complex as the Chevalley-Eilenberg complex for
the Lie algebra g of G: 0−→ Λ1(g∗) d−→ Λ2(g∗) d−→ ... with the differential
in the first term d : g∗ −→ Λ2(g∗) dual to the commutator. We extend this
differential to Λ∗(g∗) by the Leibniz rule. The corresponding cohomology is
called the Lie algebra cohomology and denoted by H∗(g).

Step 3: Let a, b, t be the basis in g, with the only non-trivial commutator
[a, b] = t, and α, β, τ the dual basis in g∗, with the only non-trivial differential
dτ = α ∧ β. This gives a basis α ∧ β, α ∧ τ , β ∧ τ in Λ2(g∗), with d

∣∣∣Λ2g∗ = 0,

giving rkH1(G/GZ) = 2 and rkH2(G/GZ) = 2.

Step 4: Let M(α, β, α) denote the Massey product of α, β, α. Since α∧β = dτ ,
M(α, β, α) = τ ∧ α − α ∧ τ = 2τ ∧ α. The image of Lα : H1(g)−→H2(g) is
generated by α ∧ β, hence M(α, β, α) is non-zero modulo imLα.
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Local Torelli theorem: surjectivity of the period map

THEOREM: Let (M, I,Ω) be a compact complex holomorphically symplectic

surface. Then for any sufficiently small cohomology class [η] ∈ H1,1(M),

there exists a C-symplectic form Ωη := Ω+ ρ, where ρ ∈ Λ1,1M +Λ0,2M

is a closed form which satisfies ρ1,1 ∧ ρ1,1 = −Ω ∧ ρ0,2, and ρ1,1 is ∂-

cohomologous to [η].

Proof: Later today

REMARK: Clearly, the cohomology class [u] of Ω+ρ is equal to [Ω+η+u0,2].

Since M is K3, we have H0,2(M) = C[Ω], which gives [u0,2] = λ[Ω], for some

λ ∈ C. Since (Ω + ρ)2 = 0, this gives [Ω ∧ u0,2] = [η]. Then λ = − [η2]
[Ω∧Ω]

.

This implies that the cohomology class of Ωη := Ω + ρ is equal to

Ω+ η − [η2]
[Ω∧Ω]

Ω.

REMARK: This theorem proves that the period map is surjective to a codi-

mension 1 subvariety in H2(M,C). Together with injectivity, proven in lecture

16, this implies the local Torelli theorem for K3.
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Local Torelli theorem for K3 (2)

THEOREM: Let (M, I,Ω) be a complex holomorphically symplectic surface

with H0,1(M) = 0, that is, a K3 surface. Then for any sufficiently small

cohomology class [η] ∈ H1,1(M), there exists a C-symplectic form Ωη :=

Ω+ρ, where ρ ∈ Λ1,1M+Λ0,2M is a closed form which satisfies ρ1,1∧ρ1,1 =

−Ω ∧ ρ0,2, and ρ1,1 is ∂-cohomologous to [η].

REMARK: We write ρ as a Taylor series depending on η ∈ H1,1(M,C); for η

sufficiently small, this term is small, and Ωη := Ω+ρ remains non-degenerate.

The only non-trivial condition to check is dΩη = 0.

REMARK: In the next slide, we need the following version of ∂∂-lemma:

for any (1,2)-form α, which is ∂-exact and ∂-closed, α = ∂β, where β is

∂-exact.

10



K3 surfaces, 2024, lecture 17 M. Verbitsky

Local Torelli theorem for K3 (3)

Proof. Step 1: Let ΛΩ be contraction with the (2,0)-bivector associated
with Ω. This operation clearly commutes with ∂, and is inverse to an isomor-
phism taking Λ0,2(M)

∧Ω−→ Λ2,2(M). Then ρ1,1∧ρ1,1 = −Ω∧ρ0,2 is equivalent
to ΛΩ(ρ1,1 ∧ ρ1,1) = −ρ0,2. To solve the equation dρ = 0, we solve the
equivalent equation:

∂ΛΩ(ρ1,1 ∧ ρ1,1) = −∂ρ1,1, ∂ρ1,1 = 0 (∗)

Let γ0 be the harmonic (1,1)-form representing [η]. We solve the equation
(*) inductively by taking

∂γn = ∂ΛΩ

 ∑
i+j=n−1

γi ∧ γj

 , γn is ∂-exact (∗∗)

Such γn ∈ Λ1,1(M, I) is found using ∂∂-lemma, because the RHS of (**) is
∂-exact and ∂-closed. The latter is clear because ∂ commutes with ΛΩ, and
the (2,2)-forms γi ∧ γj are clearly ∂-closed. Since ∂

∑
i γi = ∂ΛΩ

(∑
i,j γi ∧ γj

)
,

the sum ρ1,1 :=
∑

γi is a solution of (*).

Step 2: Since γi, i > 0 are ∂-exact, the ∂-cohomology class of
∑

γi is [γ0] =
[η]. This proves the claim of the theorem, conditional on convergence
of the series

∑
γi, which is explained in the next two slides.
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Convergence of the solutions of the Mauer-Cartan equation

In the previous slide, we wrote a recursive solution ρ1,1 =
∑

i γi of the equation

∂ΛΩ(ρ1,1 ∧ ρ1,1) = −∂ρ1,1, ∂ρ1,1 = 0 (∗)

which is given by

∂γn = ∂ΛΩ

 ∑
i+j=n−1

γi ∧ γj

 , γn is ∂-exact (∗∗)

It remains to prove its convergence.

Let G∆ be the Green operator inverting the Laplacian ∆ = ∂∂
∗
+∂

∗
∂ on forms

which are orthogonal to harmonic forms. Then G∂ := ∂
∗
G∆ inverts ∂ on

∂-exact forms. From Hodge theory it follows easily that Ψ(x) := G∂∂ΛΩ(x)

is continuous. Let K := ∥Ψ∥ be its operator norm.

DEFINITION: The n-th Catalan number is defined as the number of

distinct ways one can put n pair of parentheses in a word on n + 1 letters.

For example, for a word abcd, there are exactly 5 ways to put 3 pairs of

parentheses: ((ab)(cd)), ((a(bc))d), (a((bc)d)), (((ab)c)d), (a(b(cd))).
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Convergence of the solutions of the Mauer-Cartan equation (2)

Recursive solution of Maurer-Cartan: ∂γn = ∂ΛΩ

(∑
i+j=n−1 γi ∧ γj

)
(∗∗).

CLAIM: Let γn := G∂∂ΛΩ

(∑
i+j=n−1 γi ∧ γj

)
= Ψ

(∑
i+j=n−1 γi ∧ γj

)
be so-

lutions of (**), obtained by inverting ∂ through the Green operators. Then

|γn| ⩽ Cn|γ0|n+1|K|n, where Cn is the n-th Catalan number.

Proof: If we open all brackets, we obtain that γn is a sum of Cn terms

obtained by putting n parentheses in a word γ0γ0......γ0γ0︸ ︷︷ ︸
n+1 times

, with each

parenthesis encoding the expression Ψ(...) and all consecutive terms

wedge-multiplied. For example, the term ((a(bc))d) would correspond to

Ψ(Ψ(γ0 ∧ Ψ(γ0 ∧ γ0)) ∧ γ0). Each of these terms is clearly bounded by

|γ0|n+1|K|n

To prove the convergence of
∑

γi, it remains to estimate Cn = 1
n+1

(
2n
n

)
;

Stirling formula easily implies that Cn = 4n√
πn3

(1 +O(1/n)), hence

γn ⩽ 4nKn|γ0|n+1(1 +O(1/n)),

and it decays faster than a geometric progression once |γ0|−1 > 4K.
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