K3 surfaces

lecture 19: (-2)-curves

Misha Verbitsky

IMPA, sala 236

November 4, 2024, 17:00

Effective cohomology classes

DEFINITION: Let $\eta \in H^{1,1}(M,\mathbb{Z})$ be an integer (1,1)-class on a surface. It is called **effective** if it is a fundamental class of a divisor.

CLAIM: Let M be a K3 surface, and $\eta \in H^{1,1}(M,\mathbb{Z})$ a cohomology class such that $\int_M \eta \wedge \eta \ge -2$. Then η or $-\eta$ is effective. **Proof:** Let L be a line bundle such that $c_1(L) = \eta$. Riemann-Roch formula gives $\chi(L) = 2 + \frac{(L,L)}{2} \ge 1$. This implies that either dim $H^0(L) > 0$ or dim $H^2(L) > 0$. In the first case, η is the fundamental class of the zero divisor of a holomorphic section of L. In the second case, we use Serre's duality to obtain that $H^2(L)$ is dual to $H^0(L^* \otimes K_M) = H^0(L^*)$. If dim $H^2(L) = \dim H^0(L^*)$, then $-\eta$ is the fundamental class of the zero divisor of L^* .

What about other integer classes in $H^{1,1}(M)$? **THEOREM:** Let $S \subset M$ be a connected curve on a K3 surface. Then $(S,S) \ge -2$. **Proof:** Later today

REMARK: This result does not imply that a class $\eta \in H^{1,1}(M,\mathbb{Z})$ with $\int_M \eta \wedge \eta < -2$ cannot be effective. Indeed, the Kummer surface contains two (-2)-curves S_1 , S_2 which do not intersect, and their union $S := S_1 \cup S_2$ satisfies (S, S) = -4.

Riemann-Roch theorem for curves in a K3 surface

Lemma 1: Let $C \subset M$ be a complex curve in a K3 surface. Then $\chi(\mathcal{O}_C) = -\frac{(C,C)}{2}$.

Proof: Consider the exact sequence $0 \to \mathcal{O}_M(-C) \to \mathcal{O}_M \to \mathcal{O}_C \to 0$. It gives $\chi(\mathcal{O}_C) = \chi(\mathcal{O}_M) - \chi(\mathcal{O}_M(-C))$. Using $\chi(L) = 2 + \frac{(L,L)}{2}$ again, we obtain that $\chi(\mathcal{O}_C) = 2 - 2 - \frac{(C,C)}{2} = -\frac{(C,C)}{2}$

Corollary 1: This implies that if C is smooth, we have $g(C) = \frac{(C,C)}{2} + 1$.

Proof: Indeed, $\chi(\mathcal{O}_C) = 1 - g(C)$.

Irreducible curves on K3

Proposition 1: Let $S \subset M$ be an irreducible curve on a K3 surface. Then $(S,S) \ge -2$. This inequality is strict unless S is a smooth rational curve.

Proof. Step 1: Let $\tilde{S} \xrightarrow{\varphi} S$ be the normalization of S; it is a smooth compact complex curve, and the map φ is finite. Consider an exact sequence

$$0 \longrightarrow \mathcal{O}_S \longrightarrow \varphi_* \mathcal{O}_{\widetilde{S}} \longrightarrow K \longrightarrow 0. \quad (*)$$

By construction, K is a coherent sheaf with support in singularities of S. Since φ is finite, φ_* commutes with cohomology (Lecture 9), which gives $\chi(\varphi_* \mathcal{O}_{\tilde{S}}) = \chi(\mathcal{O}_{\tilde{S}})$. The exact sequence (*) then gives $\chi(\mathcal{O}_S) + \chi(K) = \chi(\varphi_* \mathcal{O}_{\tilde{S}}) = \chi(\mathcal{O}_{\tilde{S}})$.

Step 2: Let g be the genus of \tilde{S} . Then $\chi(\mathcal{O}_S) = -\frac{(S,S)}{2}$ (Lemma 1); Step 1 gives

$$-\frac{(S,S)}{2} = \chi(\mathcal{O}_S) = \chi(\mathcal{O}_{\tilde{S}}) - \chi(K) = 1 - g - \chi(K),$$

equivalently, $\frac{(S,S)}{2} + 1 = g + \chi(K)$. Since *K* is a torsion sheaf on *S*, $\chi(K) \ge 0$. **Then** $\frac{(S,S)}{2} \le -2$ **implies that** g < 0, **which is impossible.** If (S,S) = -2, we have $\frac{(S,S)}{2} + 1 = 0$, which implies g = 0 and $\chi(K) = 0$, hence *S* is a smooth curve of genus zero.

(-2)-curves

DEFINITION: A (-2)-curve on a K3 surface is a connected curve C such that (C, C) = -2.

Theorem 1: Any (-2)-curve is a collection of p smooth (-2)-curves which intersect transversally in p-1 points (hence, their incidence graph is a tree).

Proof. Step 1: Let $C_1, ..., C_n$ be irreducible components of C. Then $-2 = (C, C) = \sum_i (C_i, C_i) + 2 \sum_{i \neq j} (C_i, C_j)$. For each distinct pair of curves wich intersect, we have $(C_i, C_j) \ge 1$. This gives $-2 = \sum_i (C_i, C_i) + 2m$, where m is the number of intersections taken with multiplicities, and $p = \sum_i (C_i, C_i)$. By Proposition 1, $(C_i, C_i) \ge -2$, and the equality is only realized when C_i is smooth and has genus 0. Therefore, $p \ge -2n$, with equality only realized when all C_i are smooth and have genus 0.

Step 2: Since *C* is connected, there are at least n-1 pairwise intersections. this implies $m \ge (n-1)$, and the inequality is strict unless all intersections are transversal. Then $-2 = p + 2m \ge -2n + 2(n-1)$, which can happen only if both inequalities $p \ge -2n$ and $m \ge (n-1)$ are non-strict; in other words, there is a connected set of *n* smooth rational curves, intersecting transversely.

M. Verbitsky

(-2)-curves are contractible

REMARK: From Theorem 1, it follows that the incidence graph of the curves C_i is a tree. In fact, it is possible to show that it is always the **Dynkin graph for the root systems** A_i , D_i , E_6, E_7, E_8 . It is implied by du Val's classification of canonical singularities of complex surfaces, and the following theorem

THEOREM: Let $C \subset M$ be a (-2)-curve on a K3 surface. Then there exists a holomorphic, bimeromorphic map $\Psi : M \longrightarrow M_1$ to a singular complex variety, contracting C to a point, and bijective outside of C. If, moreover, M is projective, then M_1 is also projective, and Ψ is algebraic.

REMARK: I will prove only the second part; the first is Grauert's contractibility theorem, *Grauert, H.: Uber Modifikationen und exzeptionelle analytischen Mengen, Math. Ann. 146 (1962), 331-368,* see also *Akira Fujiki, On the Blowing Down of Analytic Spaces, Publ. RIMS, 1975 Volume 10 Issue 2 Pages 473-507,* https://www.jstage.jst.go.jp/article/kyotoms1969/10/2/10_2_473/_article. Also, I will assume that *C* is irreducible; to prove it in full generality, we would need to use induction on the number of irreducible components of *C*, and show that each successive contraction results in a "K3-type orbifold".

(-2)-curves are contractible (2)

THEOREM: Let $C \subset M$ be an irreducible (-2)-curve on a projective K3 surface. Then there exists a holomorphic, bimeromorphic map Ψ : $M \longrightarrow M_1$ to a complex projective variety, contracting C to a point, and bijective outside of C.

Proof. Step 1: Let *L* be the Chern class of an ample line bundle. and *C* a (-2)-class, (L,C) = k. Then $(2L + kC, 2L + kC) = 4(L,L) + 4k(L,C) - 2k^2 = 4(L,L) + 4(L,C)^2 - 2(L,C)^2 = 4(L,L) + 2(L,C)^2$, and (2L+kC,C) = 2k-2k = 0. Let L_k be the line bundle with $c_1(L_k) = 2L + kC$. We are going to show that the natural map $M \longrightarrow \mathbb{P}H^0(M, L_k)^*$ is holomorphic, contracts *C*, and is injective on its complement, if *L* is very ample.

Step 2: Let $x \in [0, k]$, and $L_x := 2L + xC$. Since the class 2L + xC has positive square for all $x \in [0, k]$, and 2L belongs to the positive cone, L_x belongs to the positive cone in $H^{1,1}(M, \mathbb{R})$. By Hodge index formula, it is positive on all curves S such that $(S, S) \ge 0$. Given an irreducible (-2)-curve C_1 which does not coincide with C, we have $(L_x, C_1) = 2(L, C_1) + k(C, C_1) > 0$. Finally, $(L_x, C) = 2k - 2x$. This implies that L_x is positive on any irreducible curve except C; also it is positive on C if $0 \le x < k$. Nakai-Moishezon theorem implies that L_x is ample when $0 \le x \le k - 1$.

(-2)-curves are contractible (3)

Step 3: Since $(L_k, C) = 0$, we have $L_k|_C = \mathcal{O}_C$. This gives an exact sequence

$$0 \longrightarrow L_{k-1} \longrightarrow L_k \longrightarrow \mathcal{O}_C \longrightarrow 0 \quad (*)$$

Since $K_M = 0$ and L_{k-1} is ample (Step 2), Kodaira-Nakano vanishing theorem implies that $H^i(L_{k-1}) = 0$ for all i > 0, hence (*) gives an exact sequence

$$0 \longrightarrow H^0(L_{k-1}) \longrightarrow H^0(L_k) \longrightarrow H^0(\mathcal{O}_C) = \mathbb{C} \longrightarrow 0.$$

It remains to show that L_{k-1} is very ample, when L is very ample.

Step 4: As in Step 2, consider the bundle $L_i = L^{\otimes 2} \otimes \mathcal{O}(iC)$, i < k - 1; we can freely assume $L_0 = L^{\otimes 2}$ is very ample. To finish the proof of the theorem, **it would suffice to show that** L_{k-1} **is very ample (Step 3).** We use induction in *i*; suppose that L_i is very ample. The exact sequence

$$0 \longrightarrow L_i \longrightarrow L_{i+1} = L_i \otimes \mathcal{O}(C) \longrightarrow L_{i+1}|_C \longrightarrow 0$$

and ampleness of L_i gives an exact sequence

$$0 \longrightarrow H^{0}(L_{i}) \longrightarrow H^{0}(L_{i+1}) \longrightarrow H^{0}(L_{i+1}|_{C}) \longrightarrow 0. \quad (**)$$

Since i < k - 1, the bundle $H^0(L_{i+1})$ has degree ≥ 2 on C, which is smooth and rational, and therefore $L_{i+1}|_C$ is very ample. Then the exact sequence (**) implies that L_{i+1} is very ample a well.