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Holomorphic vector bundles

DEFINITION: A ∂-operator on a smooth bundle is a map V
∂−→ Λ0,1(M)⊗

V , satisfying ∂(fb) = ∂(f)⊗ b+ f∂(b) for all f ∈ C∞M, b ∈ V .

REMARK: A ∂-operator on B can be extended to

∂ : Λ0,i(M)⊗ V −→ Λ0,i+1(M)⊗ V,

using ∂(η ⊗ b) = ∂(η)⊗ b+ (−1)η̃η ∧ ∂(b), where b ∈ V and η ∈ Λ0,i(M).

DEFINITION: A holomorphic vector bundle on a complex manifold (M, I)

is a vector bundle equipped with a ∂-operator which satisfies ∂
2
= 0. In this

case, ∂ is called a holomorphic structure operator.

EXERCISE: Consider the Dolbeault differential ∂ : Λp,0(M)−→ Λp,1(M) =

Λp,0(M)⊗Λ0,1(M). Prove that it is a holomorphic structure operator on

Λp,0(M).

DEFINITION: The corresponding holomorphic vector bundle (Λp,0(M), ∂) is

called the bundle of holomorphic p-forms, denoted by Ωp(M).
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Chern connection

DEFINITION: Let (B,∇) be a smooth bundle with connection and a holo-

morphic structure ∂ B −→ Λ0,1(M) ⊗ B. Consider a Hodge decomposition of

∇, ∇ = ∇0,1 +∇1,0,

∇0,1 : V −→ Λ0,1(M)⊗ V, ∇1,0 : V −→ Λ1,0(M)⊗ V.

We say that ∇ is compatible with the holomorphic structure if ∇0,1 = ∂.

DEFINITION: An Hermitian holomorphic vector bundle is a smooth

complex vector bundle equipped with a Hermitian metric and a holomorphic

structure operator ∂.

DEFINITION: A Chern connection on a holomorphic Hermitian vector

bundle is a connection compatible with the holomorphic structure and pre-

serving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, the Chern con-

nection exists, and is unique.
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Curvature of a connection

DEFINITION: Let ∇ : B −→B⊗Λ1M be a connection on a smooth budnle.

Extend it to an operator on B-valued forms

B
∇−→ Λ1(M)⊗B

∇−→ Λ2(M)⊗B
∇−→ Λ3(M)⊗B

∇−→ ...

using ∇(η ⊗ b) = dη + (−1)η̃η ∧ ∇b. The operator ∇2 : B −→B ⊗ Λ2(M) is

called the curvature of ∇. The operator ∇ : Λi(M)⊗B
∇−→ Λi+1(M)⊗B is

often denoted d∇.

REMARK: The algebra of End(B)-valued forms naturally acts on Λ∗M ⊗B.

The curvature satisfies ∇2(fb) = d2fb+df ∧∇b−df ∧∇b+f∇2b = f∇2b, hence

it is C∞M-linear. We consider it as an End(B)-valued 2-form on M.

REMARK: (Bianchi identity)

Super-Jacobi identity implies [∇,∇2] = [∇2,∇]+[∇,∇2] = 0, hence [∇,∇2] =

0. This gives the Bianchi identity: d∇(ΘB) = 0, where Θ is considered as

a section of Λ2(M)⊗End(B), and d∇ : Λ2(M)⊗End(B)−→ Λ3(M)⊗End(B)

the operator defined above.
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Curvature of a holomorphic line bundle

REMARK: If B is a line bundle, EndB is trivial, and the curvature ΘB of
B is a closed 2-form.

DEFINITION: Let ∇ be a unitary connection in a line bundle. The coho-
mology class c1(B) :=

√
−1
2π [ΘB] ∈ H2(M) is called the real first Chern class

of a line bunlde B.

An exercise: Check that c1(B) is independent from a choice of ∇.

REMARK: When speaking of a “curvature of a holomorphic bundle”,
one usually means the curvature of a Chern connection.

REMARK: Let B be a holomorphic Hermitian line bundle, and b its non-
degenerate holomorphic section. Denote by η a (1,0)-form which satisfies
∇1,0b = η ⊗ b. Then d|b|2 = Re g(∇1,0b, b) = Re η|b|2. This gives ∇1,0b =
∂|b|2
|b|2 b = 2∂ log |b|b.

REMARK: Then ΘB(b) = 2∂∂ log |b|b, that is, ΘB = −2∂∂ log |b|.

COROLLARY: If g′ = e2fg – two metrics on a holomorphic line bundle,
Θ,Θ′ their curvatures, one has Θ′ −Θ = −2∂∂f
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Ricci curvature of a complex manifold

CLAIM: For any holomorphic function f, ddc log |f | = 0.

Proof: log |f | = 1
2 log f + log f , that is, a real part of a holomorphic function.

However, ddc is proportional to ∂∂, hence it vanishes on all holomorphic
and on all antiholomorphic functions.

REMARK: Let (L, h) be a line bundle with Hermitian metric h. Choose two
non-vanishing local holomorphic sections l1, l2 of L. Then l2 = ul1, where u

is an invertible holomorphic function. This gives ddc log |l1|2 = ddc log |l2|2 +
ddc log |u|2; the last term vanishes by the previous claim. Therefore, the
2-form ddc log |l1|2 is independent from the choice of a non-vanishing local
section l1. For this reason, the curvature of (L, h) form is often denoted
as ddc logh.

DEFINITION: Let (M, I,Vol) be a complex n-manifold equipped with a
volume form Vol ∈ Λn,n(M). Consider the following Hermitian form on the
canonical bundle KM = Λn,0(M, I), |φ|2 = φ∧φ

Vol . The Ricci curvature of
(M, I,Vol), often denoted as ddc logVol, is the curvature of KM considered as
a Hermitian vector bundle. The manifold (M, I,Vol) is called Ricci-flat if its
Ricci curvature vanishes.
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Calabi-Yau theorem and Monge-Ampère equation

REMARK: Let (M,ω) be a Kähler n-fold, and Ω a non-degenerate section
of K(M), Then |Ω|2 = Ω∧Ω

ωn . If ω1 is a new Kaehler metric on (M, I), h, h1

the associated metrics on K(M), then h
h1

=
ωn1
ωn.

REMARK: For two metrics ω1, ω in the same Kähler class, one has ω1−ω =
ddcφ, for some function φ (ddc-lemma).

COROLLARY: Let M be a Calabi-Yau manifold, ω its Kähler form, Ω a
non-degenerate section of the canonical bundle. A metric ω1 = ω + ∂∂φ is
Ricci-flat if and only if (ω+ ddcφ)n = ωnef , where −2∂∂f = ΘK,ω (such f

exists by ∂∂-lemma).

Proof. Step 1: For f such that −2∂∂f = ΘK,ω, the curvature of the metric

h−→ h∧h
ωnef

on KM is equal to ΘK,ω +2∂∂f = 0.

Proof. Step 2: ω1 is Ricci-flat if and only if the induced metric on KM
is flat, which is equivalent to (ω+ ddcφ)n = ωnef .

To find a Ricci-flat metric it remains to solve an equation (ω+ ddcφ)n =
ωnef for a given f.
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The complex Monge-Ampère equation

Let M be a manifold with trivial canonical bundle. To find a Ricci-flat metric

it will suffice to solve an equation (ω+ ddcφ)n = ωnef for a given f.

THEOREM: (Calabi-Yau) Let (M,ω) be a compact Kaehler n-manifold,

and f any smooth function. Then there exists a unique up to a constant

function φ such that (ω+
√
−1∂∂φ)n = Aefωn, where A is a positive constant

obtained from the formula
∫
M Aefωn =

∫
M ωn.

DEFINITION:

(ω+
√
−1 ∂∂φ)n = Aefωn,

is called the Monge-Ampere equation.
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Uniqueness of solutions of complex Monge-Ampere equation

PROPOSITION: (Calabi)
A complex Monge-Ampere equation has at most one solution, up to a
constant.

Proof. Step 1: Let ω1, ω2 be solutions of Monge-Ampere equation. Then
ωn1 = ωn2. By construction, one has ω2 = ω1 +

√
−1 ∂∂ψ. We need to show

ψ = const.

Step 2: ω2 = ω1 +
√
−1 ∂∂ψ gives

0 = (ω1 +
√
−1 ∂∂ψ)n − ωn1 =

√
−1 ∂∂ψ ∧

n−1∑
i=0

ωi1 ∧ ωn−1−i
2 .

Step 3: Let P :=
∑n−1
i=0 ω

i
1 ∧ ωn−1−i

2 . This is a strictly positive (n− 1, n− 1)-
form. There exists a Hermitian form ω3 on M such that ωn−1

3 = P .

Step 4: Since
√
−1 ∂∂ψ ∧ P = 0, this gives ψ∂∂ψ ∧ P = 0. Stokes’ formula

implies

0 =
∫
M
ψ ∧ ∂∂ψ ∧ P = −

∫
M
∂ψ ∧ ∂ψ ∧ P = −

∫
M

|∂ψ|23ω
n
3.

where | · |3 is the metric associated to ω3. Therefore ∂ψ = 0.
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Bochner’s vanishing

THEOREM: (Bochner vanishing theorem) On a compact Ricci-flat Calabi-

Yau manifold, any holomorphic p-form η is parallel with respect to the

Levi-Civita connection: ∇(η) = 0.

REMARK: Its proof is based on spinors: η gives a harmonic spinor, and on

a Ricci-flat Riemannian spin manifold, any harmonic spinor is parallel.

DEFINITION: A holomorphic symplectic manifold is a manifold admitting

a non-degenerate, holomorphic symplectic form.

COROLLARY: Consider a Ricci-flat metric on compact holomorphic sym-

plectic Kähler manifold. Then the hololomorphically symplectic form is

parallel.
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Hyperkähler manifolds

Eugenio Calabi, 1923-2023

DEFINITION: (E. Calabi, 1978)

Let (M, g) be a Riemannian manifold equipped

with three complex structure operators I, J,K :

TM −→ TM , satisfying the quaternionic relations

I2 = J2 = K2 = IJK = − Id .

Suppose that g is Kähler with respect to I, J, K.

Then (M, I, J,K, g) is called hyperkähler.

REMARK: This is the same as Hol(M) ⊂ Sp(n).

Indeed, if Hol(M) ⊂ Sp(n), we have 3 complex

structures I, J,K : TM −→ TM , such that ∇(I) =

∇(J) = ∇(K) = 0, which implies that I, J,K are

Kähler. Conversely, if I, J,K are Kähler, we have

∇(I) = ∇(J) = ∇(K) = 0.

EXERCISE: Prove that the form ωJ +
√
−1 ωK is holomorphically sym-

plectic on (M, I).
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Hyperkähler structure on a complex surface

EXERCISE: Let M be a K3 surface, and ω a Kähler form. As in Lecture
7, define the decomposition Λ2M = Λ+M ⊕ Λ−M , where Λ±M denotes the
±-eigenspaces of the Hodge ∗ operator acting on Λ2M . Prove that Λ+M is
generated by the Kähler form and the forms ReΩ, ImΩ, where Ω is a
holomorphic symplectic form.
PROPOSITION: Let M be a K3 surface, and g a Kähler metric. Then the
following are equivalent: (a) g is hyperkähler (b) g is Ricci-flat. (c) The
bundle Λ+M is trivialized by parallel sections.
Proof. Step 1: (a) ⇒ (c) is clear, because ωI , ωJ , ωK trivialize Λ+M .

Step 2: To obtain (c) ⇒ (b), note that the projection to (2,0)-part is
parallel, hence Λ+M⊗RC is trivialized by parallel sections of type (2,0), (0,2)
and (1,1). However, a parallel section of type (2,0) is closed, hence
holomorphic. The implication (b) ⇒ (c) is clear.

Step 3: It remains to deduce (a) from (c). Using the metric, we identify
so(TM) and Λ2TM . This identification takes the decomposition Λ2TM =
Λ+M ⊕ Λ−M to the Lie algebra decomposition so(4) = so(3) ⊕ so(3), where
each so(3) is induced by the left and the right action of the Lie algebra
of imaginary quiaternions on H. Taking an appropriate basis in so(3),
identified with the algebra of parallel sections of Λ+M, we obtain a
parallel H-action on TM.
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