K3 surfaces

lecture 20: Calabi-Yau theorem and hyperkähler structures

Misha Verbitsky

IMPA, sala 236

November 6, 2024, 17:00

Holomorphic vector bundles

DEFINITION: A $\overline{\partial}$ -**operator** on a smooth bundle is a map $V \stackrel{\partial}{\longrightarrow} \Lambda^{0,1}(M) \otimes$ V, satisfying $\overline{\partial}(fb) = \overline{\partial}(f) \otimes b + f \overline{\partial}(b)$ for all $f \in C^{\infty}M, b \in V$.

REMARK: A $\overline{\partial}$ -operator on B can be extended to

 $\overline{\partial}:\ \mathsf{\Lambda}^{0,i}(M)\otimes V\longrightarrow \mathsf{\Lambda}^{0,i+1}(M)\otimes V,$

using $\overline{\partial}(\eta \otimes b) = \overline{\partial}(\eta) \otimes b + (-1)^{\overline{\eta}} \eta \wedge \overline{\partial}(b)$, where $b \in V$ and $\eta \in \Lambda^{0,i}(M)$.

DEFINITION: A holomorphic vector bundle on a complex manifold (M, I) is a vector bundle equipped with a $\overline{\partial}$ -operator which satisfies $\overline{\partial}^2=0$. In this case, $\overline{\partial}$ is called a holomorphic structure operator.

EXERCISE: Consider the Dolbeault differential $\overline{\partial}$: $\Lambda^{p,0}(M) \longrightarrow \Lambda^{p,1}(M) =$ $\Lambda^{p,0}(M)\otimes \Lambda^{0,1}(M)$. Prove that it is a holomorphic structure operator on $\Lambda^{p,0}(M)$.

DEFINITION: The corresponding holomorphic vector bundle $(\Lambda^{p,0}(M), \overline{\partial})$ is called the bundle of holomorphic p-forms, denoted by $\Omega^p(M)$.

Chern connection

DEFINITION: Let (B, ∇) be a smooth bundle with connection and a holomorphic structure $\overline{\partial} B \longrightarrow \Lambda^{0,1}(M) \otimes B$. Consider a Hodge decomposition of $\nabla, \ \nabla = \nabla^{0,1} + \nabla^{1,0},$

$$
\nabla^{0,1}: V \longrightarrow \Lambda^{0,1}(M) \otimes V, \quad \nabla^{1,0}: V \longrightarrow \Lambda^{1,0}(M) \otimes V.
$$

We say that ∇ is **compatible with the holomorphic structure** if $\nabla^{0,1} = \overline{\partial}$.

DEFINITION: An Hermitian holomorphic vector bundle is a smooth complex vector bundle equipped with a Hermitian metric and a holomorphic structure operator $\overline{\partial}$.

DEFINITION: A Chern connection on a holomorphic Hermitian vector bundle is a connection compatible with the holomorphic structure and preserving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, the Chern connection exists, and is unique.

Curvature of a connection

DEFINITION: Let $\nabla: B \longrightarrow B \otimes \Lambda^1 M$ be a connection on a smooth budnle. Extend it to an operator on B -valued forms

$$
B\;\overset{\nabla}{\longrightarrow}\;{\textstyle\bigwedge}^1(M)\otimes B\;\overset{\nabla}{\longrightarrow}\;{\textstyle\bigwedge}^2(M)\otimes B\;\overset{\nabla}{\longrightarrow}\;{\textstyle\bigwedge}^3(M)\otimes B\;\overset{\nabla}{\longrightarrow}\;...
$$

using $\nabla(\eta \otimes b) = d\eta + (-1)^{\tilde{\eta}} \eta \wedge \nabla b$. The operator $\nabla^2 : B \longrightarrow B \otimes \Lambda^2(M)$ is called the curvature of ∇ . The operator $\nabla:\Lambda^i(M)\otimes B\stackrel{\nabla}{\longrightarrow}\Lambda^{i+1}(M)\otimes B$ is often denoted d_{∇} .

REMARK: The algebra of End(B)-valued forms naturally acts on $\Lambda^* M \otimes B$. The curvature satisfies $\nabla^2 (fb) = d^2 fb + df \wedge \nabla b - df \wedge \nabla b + f \nabla^2 b = f \nabla^2 b$, hence it is $C^{\infty}M$ -linear. We consider it as an $End(B)$ -valued 2-form on M.

REMARK: (Bianchi identity)

Super-Jacobi identity implies $[\nabla,\nabla^2]=[\nabla^2,\nabla]+[\nabla,\nabla^2]=0,$ hence $[\nabla,\nabla^2]=0$ 0. This gives the Bianchi identity: $d_{\nabla}(\Theta_B) = 0$, where Θ is considered as a section of $\Lambda^2(M)\otimes \text{End}(B)$, and d_{∇} : $\Lambda^2(M)\otimes \text{End}(B) \longrightarrow \Lambda^3(M)\otimes \text{End}(B)$ the operator defined above.

Curvature of a holomorphic line bundle

REMARK: If B is a line bundle, End B is trivial, and the curvature Θ_B of B is a closed 2-form.

DEFINITION: Let ∇ be a unitary connection in a line bundle. The cohomology class $c_1(B):=\frac{\sqrt{-1}}{2\pi}$ $\frac{2-1}{2\pi}[\Theta_B] \in H^2(M)$ is called the real first Chern class of a line bunlde B.

An exercise: Check that $c_1(B)$ is independent from a choice of ∇ .

REMARK: When speaking of a "curvature of a holomorphic bundle", one usually means the curvature of a Chern connection.

REMARK: Let B be a holomorphic Hermitian line bundle, and b its nondegenerate holomorphic section. Denote by η a (1,0)-form which satisfies $\nabla^{1,0}b=\eta\otimes b.$ Then $d|b|^2= \mathsf{Re}\, g(\nabla^{1,0}b,b)=\mathsf{Re}\,\eta |b|^2.$ This gives $\nabla^{1,0}b=0$ $\partial |b|^2$ $\frac{\partial |b|^2}{|b|^2}b = 2\partial \log |b|b.$

REMARK: Then $\Theta_B(b) = 2\overline{\partial}\partial \log |b|b$, that is, $\Theta_B = -2\partial \overline{\partial} \log |b|$.

COROLLARY: If $g' = e^{2f}g$ – two metrics on a holomorphic line bundle, Θ , Θ' their curvatures, one has $\Theta' - \Theta = -2\partial \overline{\partial} f$

Ricci curvature of a complex manifold

CLAIM: For any holomorphic function f, $dd^c \log |f| = 0$.

Proof: $\log|f| = \frac{1}{2} \log f + \log \overline{f}$, that is, a real part of a holomorphic function. However, dd^c is proportional to $\partial\overline{\partial}$, hence it vanishes on all holomorphic and on all antiholomorphic functions. \blacksquare

REMARK: Let (L, h) be a line bundle with Hermitian metric h . Choose two non-vanishing local holomorphic sections l_1, l_2 of L. Then $l_2 = ul_1$, where u is an invertible holomorphic function. This gives dd^c log $|l_1|^2=dd^c$ log $|l_2|^2+\frac{1}{2}$ dd^c log $|u|^2$; the last term vanishes by the previous claim. Therefore, the 2-form dd^c log $|l_1|^2$ is independent from the choice of a non-vanishing local section l_1 . For this reason, the curvature of (L, h) form is often denoted as $dd^c \log h$.

DEFINITION: Let (M, I, Vol) be a complex *n*-manifold equipped with a volume form Vol $\in \Lambda^{n,n}(M)$. Consider the following Hermitian form on the canonical bundle $K_M = \Lambda^{n,0}(M,I)$, $|\varphi|^2 = \frac{\varphi \wedge \overline{\varphi}}{\text{Vol}}$. The Ricci curvature of (M, I, Vol) , often denoted as dd^c log Vol, is the curvature of K_M considered as a Hermitian vector bundle. The manifold (M, I, Vol) is called Ricci-flat if its Ricci curvature vanishes.

Calabi-Yau theorem and Monge-Ampère equation

REMARK: Let (M, ω) be a Kähler n-fold, and Ω a non-degenerate section of $K(M)$, Then $|\Omega|^2=\frac{\Omega\wedge\overline{\Omega}}{\omega^n}.$ If ω_1 is a new Kaehler metric on (M,I) , h,h_1 the associated metrics on $K(M)$, then $\frac{h}{h}$ $\overline{h_{1}}$ = ω_1^n $\frac{\omega_1}{\omega^n}.$

REMARK: For two metrics ω_1, ω in the same Kähler class, one has $\omega_1 - \omega =$ $dd^c\varphi$, for some function φ (dd^c -lemma).

COROLLARY: Let M be a Calabi-Yau manifold, ω its Kähler form, Ω a non-degenerate section of the canonical bundle. A metric $\omega_1 = \omega + \partial \overline{\partial} \varphi$ is Ricci-flat if and only if $(\omega+dd^c \varphi)^n=\omega^n e^f$, where $-2\partial \overline{\partial} f=\Theta_{K,\omega}$ (such f exists by ∂∂-lemma).

Proof. Step 1: For f such that $-2\partial \overline{\partial} f = \Theta_{K,\omega}$, the curvature of the metric $h \longrightarrow \frac{h \wedge h}{h}$ $\frac{h\wedge h}{\omega^ne^f}$ on K_M is equal to $\Theta_{K,\omega}+2\partial\overline{\partial}f=0.$

Proof. Step 2: ω_1 is Ricci-flat if and only if the induced metric on K_M is flat, which is equivalent to $(\omega+dd^c \varphi)^n=\omega^n e^f$.

To find a Ricci-flat metric it remains to solve an equation $(\omega + dd^c \varphi)^n =$ $\omega^n e^f$ for a given f .

The complex Monge-Ampère equation

Let M be a manifold with trivial canonical bundle. To find a Ricci-flat metric it will suffice to solve an equation $(\omega+dd^c \varphi)^n=\omega^n e^f$ for a given $f.$

THEOREM: (Calabi-Yau) Let (M, ω) be a compact Kaehler *n*-manifold, and f any smooth function. Then there exists a unique up to a constant **function** φ such that $(\omega +$ √ $\overline{-1}\partial\overline{\partial}\varphi)^n=Ae^f\omega^n,$ where A is a positive constant obtained from the formula $\int_M Ae^f\omega^n=\int_M\omega^n.$

DEFINITION:

$$
(\omega + \sqrt{-1} \,\partial \overline{\partial} \varphi)^n = Ae^f \omega^n,
$$

is called the Monge-Ampere equation.

Uniqueness of solutions of complex Monge-Ampere equation

PROPOSITION: (Calabi)

A complex Monge-Ampere equation has at most one solution, up to a constant.

Proof. Step 1: Let ω_1, ω_2 be solutions of Monge-Ampere equation. Then $\omega_1^n=\omega_2^n$ $\frac{n}{2}$. By construction, one has $\omega_2=\omega_1+\sqrt{-1}\,\partial\overline{\partial}\psi$. We need to show $\psi = const.$

Step 2:
$$
\omega_2 = \omega_1 + \sqrt{-1} \partial \overline{\partial} \psi
$$
 gives

$$
0=(\omega_1+\sqrt{-1}\,\partial\overline{\partial}\psi)^n-\omega_1^n=\sqrt{-1}\,\partial\overline{\partial}\psi\wedge\sum_{i=0}^{n-1}\omega_1^i\wedge\omega_2^{n-1-i}.
$$

<code>Step 3: Let $P:=\sum_{i=0}^{n-1}\omega_1^i \wedge \omega_2^{n-1-i}$ </code> $\frac{n-1-i}{2}.$ This is a strictly positive $(n-1,n-1)-1$ form. There exists a Hermitian form ω_3 on M such that $\omega_3^{n-1} = P$.

Step 4: Since $\sqrt{-1} \, \partial \overline{\partial} \psi \wedge P = 0$, this gives $\psi \partial \overline{\partial} \psi \wedge P = 0$. Stokes' formula implies

$$
0=\int_M \psi \wedge \partial \overline{\partial} \psi \wedge P=-\int_M \partial \psi \wedge \overline{\partial} \psi \wedge P=-\int_M |\partial \psi|_3^2 \omega_3^n.
$$

where $|\cdot|_3$ is the metric associated to ω_3 . Therefore $\overline{\partial}\psi=0$. \blacksquare

Bochner's vanishing

THEOREM: (Bochner vanishing theorem) On a compact Ricci-flat Calabi-Yau manifold, any holomorphic p-form η is parallel with respect to the Levi-Civita connection: $\nabla(\eta) = 0$.

REMARK: Its proof is based on spinors: η gives a harmonic spinor, and on a Ricci-flat Riemannian spin manifold, any harmonic spinor is parallel.

DEFINITION: A holomorphic symplectic manifold is a manifold admitting a non-degenerate, holomorphic symplectic form.

COROLLARY: Consider a Ricci-flat metric on compact holomorphic symplectic Kähler manifold. Then the hololomorphically symplectic form is parallel. ■

Hyperkähler manifolds

DEFINITION: (E. Calabi, 1978)

Let (M, g) be a Riemannian manifold equipped with three complex structure operators I, J, K : $TM \longrightarrow TM$, satisfying the quaternionic relations

$$
I^2 = J^2 = K^2 = IJK = -Id.
$$

Suppose that g is Kähler with respect to I, J, K . Then (M, I, J, K, g) is called **hyperkähler**.

REMARK: This is the same as $\mathcal{H}ol(M) \subset Sp(n)$. Indeed, if $\mathcal{H}ol(M) \subset Sp(n)$, we have 3 complex structures $I, J, K: TM \longrightarrow TM$, such that $\nabla(I)$ = $\nabla(J) = \nabla(K) = 0$, which implies that I, J, K are Kähler. Conversely, if I, J, K are Kähler, we have $\nabla(I) = \nabla(J) = \nabla(K) = 0.$

Eugenio Calabi, 1923-2023

EXERCISE: Prove that the form ω_J + √ $\overline{-1}\,\omega_{K}$ is holomorphically symplectic on (M, I) .

11

Hyperkähler structure on a complex surface

EXERCISE: Let M be a K3 surface, and ω a Kähler form. As in Lecture 7, define the decomposition $\Lambda^2 M = \Lambda^+ M \oplus \Lambda^- M$, where $\Lambda^{\pm} M$ denotes the \pm -eigenspaces of the Hodge $*$ operator acting on $\Lambda^2 M$. Prove that $\Lambda^+ M$ is generated by the Kähler form and the forms Re Ω , Im Ω , where Ω is a holomorphic symplectic form.

PROPOSITION: Let M be a K3 surface, and g a Kähler metric. Then the following are equivalent: (a) g is hyperkähler (b) g is Ricci-flat. (c) The bundle Λ^+M is trivialized by parallel sections.

Proof. Step 1: (a) \Rightarrow (c) is clear, because $\omega_I, \omega_J, \omega_K$ trivialize $\Lambda^+ M$.

Step 2: To obtain (c) \Rightarrow (b), note that the projection to $(2, 0)$ -part is parallel, hence $\Lambda^+M\otimes_{\mathbb{R}}\mathbb{C}$ is trivialized by parallel sections of type $(2,0)$, $(0,2)$ and $(1, 1)$. However, a parallel section of type $(2, 0)$ is closed, hence **holomorphic.** The implication (b) \Rightarrow (c) is clear.

Step 3: It remains to deduce (a) from (c). Using the metric, we identify $\mathfrak{so}(TM)$ and Λ^2TM . This identification takes the decomposition $\Lambda^2TM =$ $\Lambda^+M \oplus \Lambda^-M$ to the Lie algebra decomposition $\mathfrak{so}(4) = \mathfrak{so}(3) \oplus \mathfrak{so}(3)$, where each $\mathfrak{so}(3)$ is induced by the left and the right action of the Lie algebra of imaginary quiaternions on \mathbb{H} . Taking an appropriate basis in $\mathfrak{so}(3)$, identified with the algebra of parallel sections of \wedge^+M , we obtain a parallel H -action on TM .