K3 surfaces

lecture 21: the Kähler cone of a K3 surface

Misha Verbitsky

IMPA, sala 236

November 11, 2024, 17:00

Demailly-Păun theorem

THEOREM: (Demailly-Păun)

Let M be a compact Kähler manifold, and $K \subset H^{1,1}(M,\mathbb{R})$ a subset consisting of all classes η such that $\int_Z \eta^p > 0$ for any p-dimensional complex subvariety $Z \subset M$. Then the Kähler cone of M is one of the connected components of K.

The proof of this theorem is based on Demailly's regularization of positive currents and Calabi-Yau theorem.

Compare this with Nakai-Moishezon theorem (Lecture 9):

THEOREM: (Nakai-Moishezon)

Let X be a compact projective variety, and L a line bundle on X. Assume that for any subvariety $Z \subset X$, dim Z = d, one has $\int_Z c_1(L)^d > 0$. Then L is ample.

Example 1: Let M be a Kähler complex surface without curves (for example, a general K3 surface or a general complex torus). Then $K = \{\omega \in H^{1,1}(M,\mathbb{R}) \mid \int_M \omega \wedge \omega > 0\}$. By Hodge index theorem, the intersection form on $H^{1,1}_{\mathbb{R}}(M)$ has signature $(1, h^{1,1} - 1)$, hence the set K has 2 connected components (prove this). One of these components, denoted below as Pos(M), is the Kähler cone of M by Demailly-Păun theorem.

Demailly-Păun for Kähler surfaces: Buchdahl-Lamari theorem

Exercise 1: (sometimes also called the Hodge index theorem) Let (V,q) be a vector space equipped with a scalar product of signature (1,n), and $V^+ := \{x \in V \mid q(x,x) > 0\}$. Prove that the set V^+ has two connected components, K_1 and K_2 , and for any $x \in K_1$ and any non-zero y in the closure \overline{K}_1 , we have q(x,y) > 0.

REMARK: For complex surfaces, Demailly-Păun theorem was proven a few years earlier by Buchdahl and Lamari, who also used Demailly's regularization of positive currents.

THEOREM: Let M be a Kähler surface, containing a complex curve with non-negative self-intersection. Then its Kähler cone is the set of all $\omega \in H^{1,1}(M,\mathbb{R})$ such that $\int_M \omega \wedge \omega > 0$ and $\int_C \omega > 0$ for all curves $C \subset M$.

Proof: Next slide

M. Verbitsky

Demailly-Păun for Kähler surfaces: Buchdahl-Lamari theorem (2)

THEOREM: Let M be a Kähler surface, containing a complex curve with non-negative self-intersection. Then its Kähler cone is the set of all $\omega \in H^{1,1}(M,\mathbb{R})$ such that $\int_C \omega > 0$ for all curves $C \subset M$ and $\int_M \omega \wedge \omega > 0$.

Proof. Step 1: This statement would follow from Demailly-Păun if we prove that the set $K_1 \ \omega \in H^{1,1}(M,\mathbb{R})$ such that $\int_C \omega > 0$ for all curves $C \subset M$ and $\int_M \omega \wedge \omega > 0$ is connected.

Step 2: The set

$$\{\omega \in H^{1,1}_{\mathbb{R}}(M) \mid \int_C \omega > 0 \text{ for all curves } C \subset M\}$$

is convex, and therefore connected. Let S be a curve with non-negative selfintersection. From Exercise 1, we obtain that $\int_S \omega > 0$ for all ω in one of connected components of the set $\{\omega \in H^{1,1}(M,\mathbb{R}) \mid \int_M \omega \wedge \omega > 0\}$ and $\int_S \omega < 0$ for all ω in the second component. Since both of these components are convex (prove this), the set K_1 is convex, being an intersection of two convex sets, and therefore connected.

Demailly-Păun for K3 surfaces

THEOREM: Let M be a K3 surface, and \mathfrak{R} the set of all (-2)-classes. Denote by $\mathsf{Pos}(M)$ the component of $\{\omega \in H^{1,1}(M,\mathbb{R}) \mid \int_M \omega \wedge \omega > 0\}$ which contains Kähler classes (by Exercise 1, there is one and only one such component). Then the Kähler cone $\mathsf{Kah}(M)$ is a connected component of the set $\mathsf{Pos}(M) \setminus \bigcup_{r \in \mathfrak{R}} r^{\perp}$.

Proof. Step 1: Let $C \subset M$ be a connected curve. Then either $(C, C) \ge 0$, and in this case $\int_C \eta > 0$ for any $\eta \in Pos(M)$ (Exercise 1) or (C, C) = -2 (Lecture 19). From Demailly-Păun it follows that

$$\mathsf{Kah}(M) = \left\{ \omega \in \mathsf{Pos}(M) \mid \int_{Z} \omega > 0 \text{ for all effective -2-classes } Z \in H_{1,1}(M,\mathbb{Z}) \right\}.$$

Step 2: For any (-2)-class $z \in H^{1,1}(M,\mathbb{Z})$, either z or -z is effective (Lecture 19). Let \mathfrak{S} be the set of all subsets $\mathcal{S} \subset \mathfrak{R}$ such that for any $z \in \mathfrak{R}$ exactly one of z or -z belong to \mathcal{S} . The set $E_M \subset H^{1,1}(M,\mathbb{Z})$ of effective (-2)-classes on M is clearly an element of \mathfrak{S} .

Step 3: Any $\mathcal{S} \in \mathfrak{S}$ defines a connected component $K_{\mathcal{S}}$ (possibly empty) of $W := \operatorname{Pos}(M) \setminus \bigcup_{r \in \mathfrak{R}} r^{\perp}$ via

$$K_{\mathcal{S}} := \{ \eta \in \mathsf{Pos}(M) \mid (\eta, z) > 0 \quad \forall z \in \mathcal{S} \}.$$

Conversely, any non-empty connected component K of W defines a unique $\mathcal{S} \in \mathfrak{S}$ such that $K = K_{\mathcal{S}}$. From Step 1 we obtain that **the Kähler cone is** equal to K_{E_M} .

Demailly-Păun for K3 surfaces (2)

THEOREM: Let M be a K3 surface, and \mathfrak{R} the set of all (-2)-classes. Denote by $\mathsf{Pos}(M)$ the component of $\{\omega \in H^{1,1}(M, \mathbb{R}) \mid \int_M \omega \wedge \omega > 0\}$ which contains Kähler classes (by Exercise 1, there is one and only one such component). Then the Kähler cone Kah(M) is a connected component of the set $\mathsf{Pos}(M) \setminus \bigcup_{r \in \mathfrak{R}} r^{\perp}$.

REMARK: Later we will prove that the mapping class group Diff(M)Diff₀(M) acts on the set of all components of $\text{Pos}(M) \setminus \bigcup_{r \in \Re} r^{\perp}$ transitively, hence all of these connected components are Kähler cones of appropriate complex structures on a K3.