K3 surfaces

lecture 22: the hyperkähler period space

Misha Verbitsky

IMPA, sala 236

November 13, 2024, 17:00

Hyperkähler manifolds: reminder

DEFINITION: (E. Calabi, 1978)

Let (M,g) be a Riemannian manifold equipped with three complex structure operators I, J, K: $TM \longrightarrow TM$, satisfying the quaternionic relations

 $I^2 = J^2 = K^2 = IJK = - \text{Id}$.

Suppose that g is Kähler with respect to I, J, K. Then (M, I, J, K, g) is called **hyperkähler**. **REMARK: This is the same as** $\mathcal{H}ol(M) \subset Sp(n)$. Indeed, if $\mathcal{H}ol(M) \subset Sp(n)$, we have 3 complex structures $I, J, K : TM \longrightarrow TM$, such that $\nabla(I) =$ $\nabla(J) = \nabla(K) = 0$, which implies that I, J, K are Kähler. Conversely, if I, J, K are Kähler, we have $\nabla(I) = \nabla(J) = \nabla(K) = 0$.

Eugenio Calabi, 1923-2023

EXERCISE: Prove that the form $\omega_J + \sqrt{-1} \omega_K$ is holomorphically symplectic on (M, I).

Calabi-Yau theorem: reminder

DEFINITION: Let (M, I, ω) be a Kähler manifold. Its Kähler class is the cohomology class of ω in $H^{1,1}_{\mathbb{R}}(M, I)$.

DEFINITION: Let (M, I, ω) be a Kähler manifold with trivial canonical bundle, and $\Omega \in \Lambda_I^{n,0}(M)$ its non-degenerate holomorphic section. We say that (M, I) is **Ricci-flat** if $|\Omega| = const$, where $|\cdot|$ denotes the metric on $\Lambda_I^{n,0}(M)$ induced by the Kähler metric.

THEOREM: (Calabi-Yau)

Let (M, Ω) be compact holomorphically symplectic manifold of Kähler type, and $[\omega] \in H^{1,1}_{\mathbb{R}}(M, I)$ a Káhler class. Then there exists a unique Ricci-flat metric g on (M, I) such that its Kähler class is equal to $[\omega]$.

THEOREM: (Calabi)

A Kähler metric on a compact holomorphically symplectic manifold is hyperkähler if and only if it is Ricci-flat.

COROLLARY: A compact holomorphically symplectic manifold of Kähler type admits a unique hyperkähler metric in each Kähler class.

The twistor deformation

DEFINITION: Induced complex structures on a hyperkähler manifold are complex structures of form $S^2 \cong \{L := aI + bJ + cK, | a^2 + b^2 + c^2 = 1\}$. **They are usually non-algebraic**. Indeed, if M is compact, then, for generic a, b, c, the manifold (M, L) has no divisors (Fujiki).

DEFINITION: A twistor space Tw(M) of a hyperkähler manifold is a complex manifold obtained by gluing these complex structures into a holomorphic family over $\mathbb{C}P^1$. More formally:

Let $\mathsf{Tw}(M) := M \times S^2$. Consider the complex structure $I_m : T_m M \to T_m M$ on M induced by $J \in S^2 \subset \mathbb{H}$. Let I_J denote the complex structure on $S^2 = \mathbb{C}P^1$.

The operator $I_{\mathsf{T}\mathsf{W}} = I_m \oplus I_J : T_x \mathsf{T}\mathsf{W}(M) \to T_x \mathsf{T}\mathsf{W}(M)$ satisfies $I_{\mathsf{T}\mathsf{W}}^{=} - \mathrm{Id}$. It defines an almost complex structure on $\mathsf{T}\mathsf{W}(M)$. This almost complex structure is known to be integrable (Obata, Salamon)

EXAMPLE: If $M = \mathbb{H}^n$, $\mathsf{Tw}(M) = \mathsf{Tot}(\mathfrak{O}(1)^{\oplus n}) \cong \mathbb{C}P^{2n+1} \setminus \mathbb{C}P^{2n-1}$

REMARK: If *M* is compact, Tw(M) never admits a Kähler structure.

Gromov-Hausdorff metrics

DEFINITION: Let $X \subset M$ be a subset of a metric space, and $y \in M$ a point. **Distance from a** y **to** X is $\inf_{x \in X} d(x, y)$. **Hausdorff distance** $d_H(X, Y)$ between to subsets $X, Y \subset M$ of a metric space is

 $\max(\sup_{x \in X} d(x, Y), \sup_{y \in Y} d(y, X)).$

Gromov-Hausdorff distance between complete metric spaces X, Y of diameter $\leq d$ is an infimum of $d_H(\varphi(X), \psi(Y))$ taken over all isometric embeddings $\varphi : X \longrightarrow Z, \psi : Y \longrightarrow Z$ to a third metric space.

REMARK: This definition **puts a structure of a metric space** on the set of equivalence classes of all complete metric spaces with diameter $\leq d$.

REMARK: Let $\varphi : X \longrightarrow Y$ be a map of metric spaces (not necessarily continuous). Its defect δ_{φ} is $\inf_{x_1, x_2 \in X} |d(x_1, x_2) - d(\varphi(x_1), \varphi(x_2))|$. Gromov-Hausdorff distance between metric spaces X, Y is bounded (both directions) by the quantity $\hat{d}_{GH}(X,Y) = \inf_{\varphi,\psi} \max(\delta_{\psi\circ\varphi}, \delta_{\varphi\circ\psi})$, where infimum is taken over the set of all maps $\varphi : X \longrightarrow Y, \psi : Y \longrightarrow X$:

 $C_1\widehat{d}_{GH}(X,Y) \leqslant d_{GH}(X,Y) \leqslant C_2\widehat{d}_{GH}(X,Y)$

This implies, in particular, that a converging sequence of Riemannian metrics converges in Gromov-Hausdorff topology.

The hyperkähler Teichmüller space (reminder)

DEFINITION: Let Teich_h be the Teichmüller space of conformal classes of hyperkähler metrics on a K3 surface M, that is, the space of all hyperkähler metrics on M up to $\mathbb{R}^{>0} \times \operatorname{Diff}_0$ -action. We will call Teich_h "the hyperkähler Teichmüller space".

REMARK: It is not hard to see that the topology on Teich_h, identified with the set of hyperkähler metrics of diameter 1, is induced by d_{GH} , and **therefore** Teich_h is Hausdorff.

Oswald Teichmüller, 1913-1943

The hyperkähler period map

REMARK: Let M be a compact Riemannian manifold, and $\mathcal{H}^2(M, \mathbb{R})$ be the space of harmonic 2-forms, tacitly identified with the second cohomology. Since the Hodge star operator commutes with the Laplacian, it preserves $\mathcal{H}^2(M, \mathbb{R})$. Denote by $H^+(M, \mathbb{R})$ the set of *-invariant harmonic forms, and $H^-(M, \mathbb{R})$ the set of *-anti-invariant harmonic forms; then $H^2(M) =$ $H^+(M) \oplus H^-(M)$, and the intersection form is positive on $H^+(M)$ and negative on $H^-(M)$. This decomposition **defines a map from the space of all Riemannian metrics to the Grassmanian of all** dim $H^+(M)$ -dimensional **positive subspaces in** $H^2(M, \mathbb{R})$.

REMARK: To simplify the language, in the sequel we will identify hyperkähler structures (I, J, K, g) and $(I, J, K, \lambda g)$, where λ is a constant. For a K3, the triple (I, J, K) determines g uniquely up to a constant, hence we will say "hyperkähler structure I, J, K" signifying "(I, J, K, g) up to a constant multiplier".

DEFINITION: Given a hyperkähler structure I, J, K on a K3 surface, consider the decomposition $\Lambda^2(M) = \Lambda^+(M) \oplus \Lambda^-(M)$. The bundle $\Lambda^+(M)$ is trivialized by parallel sections $\omega_I, \omega_J, \omega_K$, which generate the subspace $H^+(M, \mathbb{R}) \subset$ $\mathcal{H}^2(M, \mathbb{R})$. Let $\operatorname{Gr}_{+++}(H^2(M, \mathbb{R}))$, or simply Gr_{+++} , be the Grassmannian of 3-dimensional positive oriented subspaces in $H^2(M, \mathbb{R})$. Define **the hyperkähler period map** as the map Per_h : $\operatorname{Teich}_h \longrightarrow \operatorname{Gr}_{+++}(H^2(M, \mathbb{R}))$ taking I, J, K to the corresponding space $H^+(M) = \langle \omega_I, \omega_J, \omega_K \rangle$.

The hyperkähler period space

DEFINITION: Let $\mathbb{P}er_h \subset Gr_{+++}$ be the set of all $W \in Gr_{+++}(H^2(M,\mathbb{R}))$ such that W^{\perp} does not contain (-2)-classes. We call $\mathbb{P}er_h$ the hyperkähler period space of a K3 surface M.

PROPOSITION: Let *M* be a K3 surface. Consider the hyperkähler period map Per_h : $\operatorname{Teich}_h \longrightarrow \operatorname{Gr}_{+++}$. Then $\operatorname{Per}_h(g) \in \operatorname{Per}_h$ for any hyperkähler structure *g*.

Proof. Step 1: Let $W \subset \Lambda^2(M, \mathbb{R})$ be the space generated by $\omega_I, \omega_J, \omega_K$ for a hyperkähler structure g. The corresponding twistor deformation is parametrized by all quaternions L = aI + bJ + cK, $L^2 = -1$, and any 2dimensional oriented plane $V \subset W$ is obtained as $\langle \operatorname{Re}\Omega, \operatorname{Im}\Omega \rangle$ for an appropriate C-symplectic form $\Omega \in W \otimes_{\mathbb{R}} \mathbb{C}$.

Step 2: Assuming the contrary, let $W = \operatorname{Per}_{h}(g)$ be a space such that W^{\perp} contains a (-2)-class η , and I a complex structure induced by a C-symplectic form $\Omega \in W \otimes_{\mathbb{R}} \mathbb{C}$. Since η is orthogonal to $\langle \operatorname{Re} \Omega, \operatorname{Im} \Omega \rangle$, it has Hodge type (1,1) on (M,I). Since $\eta \in W^{\perp}$, we have $\int_{M} \omega_{I} \wedge \eta = 0$, where $\omega_{I} \in W$ is the Kähler form of (M,I). This is impossible, because either η or $-\eta$ is effective, and $\int \omega_{I} \wedge \eta > 0$ for all effective classes.

Hyperkähler local Torelli theorem

PROPOSITION: The hyperkähler period map Per_h : Teich_h $\longrightarrow \mathbb{P}er_h$ is locally a homeomorphism.

Proof. Step 1: Let Teich'_h be the space of triples $\omega_I, \omega_J, \omega_K$, and $\mathbb{P}er'_h$ the space of pairwise orthogonal classes $a \perp b \perp c \in H^2(M, \mathbb{R})$ satisfying $\int_M a \wedge a = \int_M b \wedge b = \int_M c \wedge c > 0$. Since Teich'_h is $SO(3) \times \mathbb{R}^{>0}$ -fibered over Teich_h and $\mathbb{P}er'_h$ is $SO(3) \times \mathbb{R}^{>0}$ -fibered over $\mathbb{P}er_h$, it suffices to prove that the natural period map Per'_h : Teich'_h $\longrightarrow \mathbb{P}er'_h$ is locally a diffeomorphism.

Step 2: The map Per_h' : $\operatorname{Teich}_h' \longrightarrow \operatorname{Per}_h'$ takes a triple $(\omega_I, \omega_J, \omega_K)$ to the cohomology classes $([\omega_I], [\omega_J], [\omega_K])$. By local Torelli for C-symplectic structures, **the map taking the pair** (ω_J, ω_K) **to** $([\omega_J], [\omega_K])$ **is locally a homeomorphism**. The forgetful arrow $\operatorname{Teich}_h' \longrightarrow \operatorname{Per}_C$ taking $\omega_I, \omega_J, \omega_K$ to the C-symplectic structure $\Omega = \omega_J + \sqrt{-1} \omega_K$ has fiber $\operatorname{Kah}(M, \Omega)$ by **Calabi-Yau theorem**, hence it is a smooth submersion with the fiber locally homeomorphic to $H^{1,1}_{\mathbb{R}}(M, \Omega)$. The forgetful map $\operatorname{Per}_h' \longrightarrow H^2(M, \mathbb{C})$ taking $([\omega_I], [\omega_J], [\omega_K])$ to (ω_J, ω_K) is also a smooth submersion, with the fiber locally homeomorphic to $H^{2,1}_{\mathbb{R}}(M, \Omega) = \langle [\omega_J], [\omega_K] \rangle^{\perp}$.

Hyperkähler local Torelli theorem

PROPOSITION: The The hyperkähler period map Per_h : Teich_h $\longrightarrow \operatorname{Per}_h$ is locally a homeomorphism.

Step 2: The map Per'_h : $\operatorname{Teich}'_h \longrightarrow \operatorname{Per}'_h$ takes a triple $(\omega_I, \omega_J, \omega_K)$ to the cohomology classes $([\omega_I], [\omega_J], [\omega_K])$. By local Torelli for C-symplectic structures, **the map taking the pair** (ω_J, ω_K) **to** $([\omega_J], [\omega_K])$ **is locally a homeomorphism.** The forgetful arrow $\operatorname{Teich}'_h \longrightarrow \operatorname{Per}_C$ taking $\omega_I, \omega_J, \omega_K$ to the C-symplectic structure $\Omega = \omega_J + \sqrt{-1} \omega_K$ has fiber $\operatorname{Kah}(M, \Omega)$ by **Calabi-Yau theorem**, hence it is a smooth submersion with the fiber locally homeomorphic to $H^{1,1}_{\mathbb{R}}(M, \Omega)$. The forgetful map $\operatorname{Per}'_h \longrightarrow H^2(M, \mathbb{C})$ taking $([\omega_I], [\omega_J], [\omega_K])$ to (ω_J, ω_K) is also a smooth submersion, with the fiber locally homeomorphic to $H^{1,1}_{\mathbb{R}}(M, \Omega) = \langle [\omega_J], [\omega_K] \rangle^{\perp}$.

Step 3: Consider the diagram

$$\begin{array}{ccc} \mathsf{Teich}'_h & \stackrel{\mathsf{Per}'_h}{\longrightarrow} & \mathbb{Per}'_h \\ & & & \downarrow \\ & & & \downarrow \\ \mathbb{P}\mathrm{er}_C & \stackrel{\mathsf{Per}_C}{\longrightarrow} & H^2(M,\mathbb{C}). \end{array}$$

Its bottom arrow is locally a homeomorphism, and the vertical arrows are fibrations with the fibers with are locally identified by the top arrow Per'_h . This implies that the top arrow is also locally a homeomorphism.

The hyperkähler global Torelli theorem

In the next lecture, I will prove the global Torelli theorem

THEOREM: The hyperkähler period map Per_h : Teich_h $\longrightarrow \operatorname{Per}_h$ is a homeomorphism for any connected component of Teich_h.

REMARK: Conjecturally, Teich_h is connected. This is equivalent to the natural map

 $\frac{\operatorname{Diff}(M)}{\operatorname{Diff}_0(M)} \longrightarrow O^+(H^2(M,\mathbb{Z}))$

being an isomorphism; here $O^+(H^2(M,\mathbb{Z}))$ is an index 2 subgroup of $O(H^2(M,\mathbb{Z}))$ generated by reflections in (-2)-classes.

REMARK: $O^+(H^2(M,\mathbb{Z}))$ is an index 2 subgroup in $O(H^2(M,\mathbb{Z}))$ by results of C. T. C. Wall: C. T. C. Wall, On the orthogonal groups of unimodular quadratic forms II, J. Reine Angew. Math. 213. (1963/64), 122-136. The group $O^+(H^2(M,\mathbb{Z}))$ is the image of the mapping class group acting on cohomology by results of S. Donaldson and C. Borcea,

[B] C. Borcea, Diffeomorphisms of a K3 surface, Math. Ann. 275 (1986),

[D] S. K. Donaldson, The orientation of Yang-Mills moduli spaces and 4-manifold topology, J. Diff. Geom. 26 (1987), 397-428.

[BL] Benson Farb, Eduard Looijenga, Moduli spaces and period mappings of genus one fibered K3 surfaces, https://arxiv.org/abs/2303.08214