K3 surfaces

lecture 23: Metric structures associated with twistor families

Misha Verbitsky

IMPA, sala 236

November 18, 2024, 17:00

Sub-Riemannian structures

DEFINITION: Let M be a Riemannian manifold and $B \subset TM$ a sub-bundle. A **horizontal path** is a piecewise smooth path $\gamma : [b, a] \longrightarrow M$ tangent to B everywhere. A **sub-Riemannian**, or **Carno-Carathéodory** metric M is

$$d_B(x,y) := \inf_{\gamma \text{ horizontal}} L(\gamma) :$$

the infimum of the length $L(\gamma)$ for all horizontal paths connecting x to y.

DEFINITION: Let $B \subset TM$ be a sub-bundle, and $B = B_0 \subset B_1 \subset ...$ a sequence of subsheaves defined by $[B_i, B_i] = B_{i+1}$. We say that $B \subset M$ satisfies the Chow-Rashevskii condition if $B_s = TM$ for s sufficiently big.

THEOREM: (Chow-Rashevskii theorem; 1938, 1939)

Let $B \subset M$ be a sub-bundle which satisfies the Chow-Rashevskii condition. Then any two points can be connected by a horizontal path, and the sub-Riemannian metric d_B is finite. Moreover, the corresponding topology on M is equivalent to the usual topology.

REMARK: Subriemannian matric is an example of **intrinsic metric**, or **path metric**. I will now define this notion in full generality, following http://verbit. ru/IMPA/METRIC-2023/ and Burago, D., Burago, Y., and Ivanov, S., A course in metric geometry, AMS Graduate Studies in Mathematics Volume 33 (2001). Full proofs, exercises and more examples are found either of these sources.

Arc-length of a path

Let (M,d) be a metric space, and γ : $[a,b] \mapsto M$ a continuous path (here [a,b] denotes the closed interval). Let $x_0 = a < x_1 < ... < x_{n-1} < b = x_n$ be the partition of the interval, and $L_{\gamma}(x_1,...x_{n-1}) := \sum_{i=0}^{n-1} d(\gamma(x_i),\gamma(x_{i+1}))$ the length of the corresponding chain.

DEFINITION: We define the arc-length (or the length) of the path γ as

$$L_d(\gamma) := \sup_{a < x_1 < \dots < x_{n-1} < b} L_{\gamma}(x_1, \dots x_{n-1}),$$

where supremum is taken over all partitions of the interval [a,b]. A path is called **rectifiable** if its arc-length is finite.

EXERCISE: Prove the following properties of arc-length.

* The arc-length is additive: for any path $\gamma : [a, c] \longrightarrow M$ and any $b \in [a, c]$, one has $L_d(\gamma) = L_d(\gamma|_{[a,b]}) + L_d(\gamma|_{[b,c]})$.

* The arc-length is continuous as a function of the ends: for any rectifiable path γ : $[a,c] \longrightarrow M$, the function $L(\gamma|_{[a,b]})$ depends on $b \in [a,c]$ continuously.

* The arc-length is compatible with the metric: for any $x, y \in M$, and any path γ : $[a, b] \mapsto M$ with ends in x, y, we have $L_d(\gamma) \ge d(x, y)$.

* The arc-length is invariant under the reparametrizations: for any homeomorphism φ : $[a,b] \longrightarrow [a,b]$ the arc-length of γ is equal to the arc-length of $\varphi \circ \gamma$.

Intrinsic metric

THEOREM: Let $\gamma : [a,b] \longrightarrow \mathbb{R}^n$ be a smooth path in \mathbb{R}^n with the standard metric. Then $L_d(\gamma) = \int_a^b |\gamma'(t)| dt$.

DEFINITION: A metric d on M us called **intrinsic metric**, or **path metric**, if $d(x,y) = \inf_{\gamma} L_d(\gamma)$, where the infimum is taken over all rectifiable paths γ connecting x to y.

DEFINITION: Let *M* be a topological space. A class of admissible paths is a set *C* of continuous maps $[a, b] \rightarrow M$ with the following properties.

1. The concatenation. For any two paths $[a,b] \xrightarrow{\gamma_1} M$, $[b,c] \xrightarrow{\gamma_2} M$, satisfying $\gamma_1(b) = \gamma_2(b)$, the concatenation $\gamma : [a,c] \longrightarrow M$ (that is, the path equal to γ_1 on [a,b] and to γ_2 on [b,c]) is also admissible.

2. Linear reparametrization. For any linear map $\varphi : [a,b] \longrightarrow [c,d]$ and any admissible path $\gamma : [c,d] \longrightarrow M$, the path $\varphi \circ \gamma$ is also admissible.

3. **Restriction.** For each path $[a,b] \xrightarrow{\gamma} M$, and an interval $[c,d] \subset [a,b]$, the restriction $\gamma|_{[c,d]}$ is also admissible.

Length structures

DEFINITION: Let *M* be a topological space. A length structure on *M* is a class *C* of admissible paths together with a length functional $L: C \longrightarrow \mathbb{R}^{\geq 0} \cup \infty$ which satisfies the following axioms.

1. Additivity: for any path $\gamma : [a, c] \longrightarrow M$ and any $b \in [a, c]$, one has $L(\gamma) = L(\gamma|_{[a,b]}) + L(\gamma|_{[b,c]}).$

2. The length is continuous as a function of the ends: for any path γ : $[a,c] \longrightarrow M$, the function $L(\gamma|_{[a,b]})$ depends on $b \in [a,c]$ continuously.

3 **Invariance under reparametrizations:** for any homeomorphism $\varphi : [a,b] \longrightarrow [a,b]$ and any admissible path $\gamma : [a,c] \longrightarrow M$ such that $\varphi \circ \gamma$ is also admissible, one has $L(\gamma) = L(\varphi \circ \gamma)$.

4. Compatibility with the topology: for any point $x \in M$, and any closed set $Z \subset M$, such that $x \notin Z$, there is a number $\varepsilon > 0$ such that $L(\gamma) > \varepsilon$ for any admissible path connecting Z to x.

EXAMPLE: The arc-length on the class of rectifiable paths **gives a length structure.**

The metric associated with a length structure

DEFINITION: Let M be a topological space equipped with a length structure L. The **path metric** d_L associated with L is defined as $d_L(x,y) := \inf_{\gamma} L(\gamma)$, where the infimum is taken over all admissible paths connecting x tp y.

CLAIM: d_L is an intrinsic metric, and all intrinsic metrics are obtained this way.

EXAMPLE: Let $M = \mathbb{R}^n$ with the standard topology, and \mathcal{C} the class of all piecewise-linear paths (polygonal chains) $[x_0, x_1] \cup [x_1, x_2] \cup ... \cup [x_{n-1}, x_n]$. Define the length functional taking $\gamma = [x_0, x_1] \cup [x_1, x_2] \cup ... \cup [x_{n-1}, x_n] \in \mathcal{C}$ to $L(\gamma) = \sum |d(x_i, x_{i+1})|$.

CLAIM: The metric d_L constructed from this length structure is equal to the standard Euclidean metric.

Finsler metrics

EXAMPLE: (**A** Finsler metric)

Let $\nu_x : T_x X \longrightarrow \mathbb{R}$ the norm on the tangent space, continuously depending on x. For any piecewisely smooth path $\gamma : [a,b] \longrightarrow X$, define $L_{\nu}(\gamma(t)) := \int_a^b \nu_{\gamma(t)}(\gamma'(t)) dt$.

PROPOSITION: This defines a length functional on the class of piecewisely smooth paths.

DEFINITION: The corresponding metric on X is called a Finsler metric.

DEFINITION: Suppose now that ν_x is defined on a sub-bundle $B \subset TX$ satisfying the Chow-Rashevskii condition. As above, define the same length functional $L_{\nu}(\gamma(t))$ on the class of all piecewise smooth paths tangent to B. The corresponding metric on X is called a sub-Finsler metric.

Pencils of 3-spaces

DEFINITION: Let (H,q) be a quadratic vector space of signature (3,n), and $W_1, W_2 \in \text{Gr}_{+++}$ 3-spaces such that dim $W_1 \cap W_2 = 3$. The space $U = W_1 + W_2$ is 4-dimensional, because $W_1 \cap W_2$ is 2-dimensional. All 3spaces in U are lines in U^* , that is, points in $\mathbb{P}U^*$; this equivalence can be obtained by associating with W the set Ann(W) of all $\lambda \in U^*$ vanishing on W. The points $W_1, W_2 \in \mathbb{P}U^*$ are connected by a unique line $\mathbb{P}l \subset \mathbb{P}U^*$, where $l \subset U^*$ is a 2-dimensional subspace obtained as by $l = \text{Ann}(W_1) + \text{Ann}(W_2)$. The corresponding family of 3-spaces is called a 1-dimensional pencil of **3-spaces in** U.

REMARK: The space U^* inherits a natural quadratic form q from U, which has signature (3,1) (prove this).

Positive segments connecting positive 3-spaces

CLAIM: The quadratic form q restricted to $l \in U^*$ has signature (1,1).

Proof: A point $u \in U^*$ corresponds to a positive 3-space when q(u, u) > 0 and to a signature (2,1)-space otherwise (prove it). Since $W_1 + W_2$ has signature (3,1), and W can be obtained as union of all W_t , $t \in l$ (prove it), there are both positive and mixed signature points in $\mathbb{P}l$.

REMARK: The space $\mathbb{P}l = \mathbb{R}P^1$ is a circle. The 2-plane l is split onto 4 quadrants by two lines in $\{x \in l \mid q(x,x) = 0\}$, hence $\mathbb{P}l = \mathbb{R}P^1$ has only two quadrants, positive and negative. In other words, as u rotates along the circle $\mathbb{P}l$, the value of q(u, u) changes sign twice.

DEFINITION: The positive segment connecting W_1 and W_2 is the only segment in $\mathbb{P}l = \mathbb{R}P^1$ connecting W_1 to W_2 and consisting of $u \in \mathbb{P}l$ with q(u, u) > 0.

Subtwistor chains

DEFINITION: Let Gr_{+++} be the Grassmannian of oriented 3-spaces in $H^2(M,\mathbb{R}) = \mathbb{R}^{3,19}$, where M is a K3 surface, and $Per_h \subset Gr_{+++}$ be the hyperkähler period space, that is, the space of all $W \in Gr_{+++}$ such that W^{\perp} does not contain (-2)-vectors (integer classes η such that $\int_M \eta \wedge \eta = -2$). A subtwistor segment is a positive segment in Per_h connecting 3-spaces W_1, W_2 such that $W_1 \cap W_2$ is a 2-plane V such that V^{\perp} does not contain (-2)-vectors.

DEFINITION: Let $\operatorname{Per}_h \subset \operatorname{Gr}_{+++}$ be the hyperkähler period space, and $\gamma := I_1 \cup I_2 \cup \dots, I_n$ be a sequence of subtwistor segments such that the end of I_k is equal to the beginning of I_{k+1} . Then I is called a subtwistor chain.

Subtwistor metric on the hyperkähler period space

REMARK: Recall that $SO^+(H^2(M,\mathbb{R}))$ denotes the connected component of unity in $SO(H^2(M,\mathbb{R}))$.

EXERCISE: Consider the space $Gr_{+++} = \frac{SO^+(H^2(M,\mathbb{R}))}{SO(3)\times SO(19)}$. **Prove that** Gr_{+++} admits a unique, up to a constant, $SO^+(H^2(M,\mathbb{R}))$ -invaiant Riemannian metric.

REMARK: This metric can be defined explicitly as follows. Let $W \in \text{Gr}_{+++}$. Then $T_W \text{Gr}_{+++} = \text{Hom}(W, W^{\perp})$. The space $\text{Hom}(W, W^{\perp}) = W^* \otimes_{\mathbb{R}} W^{\perp}$ is a tensor product of a vector space with positive definite Euclidean metric and a space with negative definite Euclidean metric; flipping the sign, we obtain a product of two spaces with Euclidean metric, and a tensor product of two Euclidean spaces is Euclidean.

REMARK: From now on, we will treat Gr_{+++} as a Riemannian manifold, with the Riemannian metric defined above.

DEFINITION: Let γ be a subtwistor chain. Define its length $L(\gamma)$ as the length of the corresponding path in Gr_{+++} . Define the subtwistor metric $d_{tw}(x,y)$ on Gr_{+++} as infimum of $L(\gamma)$, for all subtwistor chains connecting x to y.

Cone structures

DEFINITION: Let X be a locally G-homogeneous space, and $C \subset \text{Tot}(TX)$ a G-invariant, \mathbb{R} -invariant subset. We say that C is a cone structure if C generates a sub-bundle $B \subset TX$ which satisfies the Chow-Rashevskii condition, and, moreover, for each $x \in M$ the intersection $C_x := C \cap T_x M$ is open and dense in its fiberwise closure \overline{C}_x , and the union of all \overline{C}_x the closure of C.

DEFINITION: Fix a reference Riemannian metric g on X, and define the cone metric $d_C(x, y)$ as as infimum of the Riemannian length $L(\gamma)$, for all piecewise smooth paths connecting x to y which are tangent to C.

(D. Korshunov) The cone metric is sub-Finsler.

REMARK: From Chow-Rashevskii theorem it follows also that **all sub-Finsler metrics define the standard topology on** *X*.

Cone structures and subtwistor metric

Let M be a K3, Gr_{+++} the corresponding Grassmann space, and $C \subset T Gr_{+++}$ the set of all vectors tangent to subtwistor segments.

CLAIM: Let $W \in \text{Gr}_{+++}$ be a point, and $C_W := T_W \text{Gr}_{+++} \cap C$. Denote by \overline{C}_W its closure. Then $\overline{C}_W \subset T_W \text{Gr}_{+++} = \text{Hom}(W, W^{\perp})$ is the set of all matrices of rank 1 in $\text{Hom}(W, W^{\perp})$. Moreover, the union of all \overline{C}_W is the closure of C.

Proof. Step 1: A subtwistor segment corresponds to a family of 3-spaces which lies in a 4-dimensional subspace of $V = H^2(M, \mathbb{R})$. The corresponding matrix $A \in \text{Hom}(W, W^{\perp})$ has rank 1; conversely, if $A \in \text{Hom}(W, W^{\perp})$ has rank 1, the corresponding family of 3-spaces lies a 4-dimensional subspace of V generated by W and A(W). Denote by $\underline{C} \subset \text{Tot}(T \text{ Gr}_{+++})$ the set of all tangent vectors associated with matrices of rank 1. This set is clearly G-invariant, closed and generates $T \text{ Gr}_{+++}$. It remains only to show that the union of all \overline{C}_W is \underline{C} .

Cone structures and subtwistor metric (2)

Let M be a K3, Gr_{+++} the corresponding Grassmann space, and $C \subset T Gr_{+++}$ the set of all vectors tangent to subtwistor segments.

CLAIM: Let $W \in \text{Gr}_{+++}$ be a point, and $C_W := T_W \text{Gr}_{+++} \cap C$. Denote by \overline{C}_W its closure. Then $\overline{C}_W \subset T_W \text{Gr}_{+++} = \text{Hom}(W, W^{\perp})$ is the set of all matrices of rank 1 in $\text{Hom}(W, W^{\perp})$. Moreover, the union of all \overline{C}_W is the closure of C.

Proof. Step 1: It remains only to show that the union of all \overline{C}_W is \underline{C} .

Step 2: Every subtwistor segment γ : $[0,1] \rightarrow \text{Gr}_{+++}$ tangent to $W \in \text{Gr}_{+++}$ belongs to a 4-dimensional space W_1 , with an extra condition that the orthogonal to the 2-dimensional space $V_t := W \cap \gamma(t)$ does not contain (-2)-classes. Let $A \in \text{Hom}(W, W^{\perp})$ be the tangent vector to γ . Then $V_t = \text{ker } A$. The set of all 2-planes $V_1 \subset W$ such that V_1^{\perp} contains (-2)-classes is countable (prove this). Therefore, the set of all $A \in \text{Hom}(W, W^{\perp})$ which are tangent to subtwistor segments is dense in $\underline{C} \cap T_W \operatorname{Gr}_{+++}$.

COROLLARY: Subtwistor metric on Gr₊₊₊ is Finsler.

Proof: Indeed, the subtwistor metric is a special case of cone metric, and it is sub-Finsler by Korshunov's theorem, and Finsler when the cone generates the tangent space. ■