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Sub-Riemannian structures

DEFINITION: Let M be a Riemannian manifold and B ⊂ TM a sub-bundle.
A horizontal path is a piecewise smooth path γ : [b, a]−→M tangent to B
everywhere. A sub-Riemannian, or Carno-Carathéodory metric M is

dB(x, y) := inf
γ horizontal

L(γ) :

the infimum of the length L(γ) for all horizontal paths connecting x to y.

DEFINITION: Let B ⊂ TM be a sub-bundle, and B = B0 ⊂ B1 ⊂ ... a
sequence of subsheaves defined by [Bi, Bi] = Bi+1. We say that B ⊂ M
satisfies the Chow-Rashevskii condition if Bs = TM for s sufficiently big.

THEOREM: (Chow-Rashevskii theorem; 1938, 1939)
Let B ⊂ M be a sub-bundle which satisfies the Chow-Rashevskii condition.
Then any two points can be connected by a horizontal path, and the
sub-Riemannian metric dB is finite. Moreover, the corresponding topology
on M is equivalent to the usual topology.

REMARK: Subriemannian matric is an example of intrinsic metric, or path
metric. I will now define this notion in full generality, following http://verbit.

ru/IMPA/METRIC-2023/ and Burago, D., Burago, Y., and Ivanov, S., A course in
metric geometry, AMS Graduate Studies in Mathematics Volume 33 (2001).
Full proofs, exercises and more examples are found either of these sources.
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Arc-length of a path

Let (M,d) be a metric space, and γ : [a, b] 7→ M a continuous path (here
[a, b] denotes the closed interval). Let x0 = a < x1 < ... < xn−1 < b = xn be
the partition of the interval, and Lγ(x1, ...xn−1) :=

∑n−1
i=0 d(γ(xi), γ(xi+1)) the

length of the corresponding chain.
DEFINITION: We define the arc-length (or the length) of the path γ as

Ld(γ) := sup
a<x1<...<xn−1<b

Lγ(x1, ...xn−1),

where supremum is taken over all partitions of the interval [a, b]. A path is
called rectifiable if its arc-length is finite.

EXERCISE: Prove the following properties of arc-length.
* The arc-length is additive: for any path γ : [a, c]−→M and any b ∈ [a, c],
one has Ld(γ) = Ld(γ|[a,b]) + Ld(γ|[b,c]).
* The arc-length is continuous as a function of the ends: for any rec-
tifiable path γ : [a, c]−→M , the function L(γ

∣∣∣[a,b]) depends on b ∈ [a, c]
continuously.
* The arc-length is compatible with the metric: for any x, y ∈ M , and
any path γ : [a, b] 7→ M with ends in x, y, we have Ld(γ) ⩾ d(x, y).
* The arc-length is invariant under the reparametrizations: for any
homeomorphism φ : [a, b]−→ [a, b] the arc-length of γ is equal to the arc-
length of φ ◦ γ.
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Intrinsic metric

THEOREM: Let γ : [a, b]−→ Rn be a smooth path in Rn with the standard

metric. Then Ld(γ) =
∫ b
a |γ′(t)|dt.

DEFINITION: A metric d on M us called intrinsic metric, or path metric,

if d(x, y) = infγ Ld(γ), where the infimum is taken over all rectifiable paths γ

connecting x to y.

DEFINITION: Let M be a topological space. A class of admissible paths

is a set C of continuous maps [a, b]−→M with the following properties.

1. The concatenation. For any two paths [a, b]
γ1−→ M , [b, c]

γ2−→ M ,

satisfying γ1(b) = γ2(b), the concatenation γ : [a, c]−→M (that is, the path

equal to γ1 on [a, b] and to γ2 on [b, c]) is also admissible.

2. Linear reparametrization. For any linear map φ : [a, b]−→ [c, d] and any

admissible path γ : [c, d]−→M , the path φ ◦ γ is also admissible.

3. Restriction. For each path [a, b]
γ−→ M , and an interval [c, d] ⊂ [a, b], the

restriction γ|[c,d] is also admissible.
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Length structures

DEFINITION: Let M be a topological space. A length structure on M is a
class C of admissible paths together with a length functional L : C −→ R⩾0∪
∞ which satisfies the following axioms.

1. Additivity: for any path γ : [a, c]−→M and any b ∈ [a, c], one has
L(γ) = L(γ|[a,b]) + L(γ|[b,c]).

2. The length is continuous as a function of the ends: for any path
γ : [a, c]−→M , the function L(γ

∣∣∣[a,b]) depends on b ∈ [a, c] continuously.

3 Invariance under reparametrizations: for any homeomorphism
φ : [a, b]−→ [a, b] and any admissible path γ : [a, c]−→M such that φ ◦ γ is
also admissible, one has L(γ) = L(φ ◦ γ).

4. Compatibility with the topology: for any point x ∈ M , and any closed
set Z ⊂ M , such that x /∈ Z, there is a number ε > 0 such that L(γ) > ε for
any admissible path connecting Z to x.

EXAMPLE: The arc-length on the class of rectifiable paths gives a length
structure.
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The metric associated with a length structure

DEFINITION: Let M be a topological space equipped with a length structure

L. The path metric dL associated with L is defined as dL(x, y) := infγ L(γ),

where the infimum is taken over all admissible paths connecting x tp y.

CLAIM: dL is an intrinsic metric, and all intrinsic metrics are obtained

this way.

EXAMPLE: Let M = Rn with the standard topology, and C the class of

all piecewise-linear paths (polygonal chains) [x0, x1] ∪ [x1, x2] ∪ ... ∪ [xn−1, xn].

Define the length functional taking γ = [x0, x1] ∪ [x1, x2] ∪ ... ∪ [xn−1, xn] ∈ C

to L(γ) =
∑

|d(xi, xi+1)|.

CLAIM: The metric dL constructed from this length structure is equal to

the standard Euclidean metric.
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Finsler metrics

EXAMPLE: (A Finsler metric)

Let νx : TxX −→ R the norm on the tangent space, continuously depending

on x. For any piecewisely smooth path γ : [a, b]−→X, define Lν(γ(t)) :=∫ b
a νγ(t)(γ

′(t))dt.

PROPOSITION: This defines a length functional on the class of piece-

wisely smooth paths.

DEFINITION: The corresponding metric on X is called a Finsler metric.

DEFINITION: Suppose now that νx is defined on a sub-bundle B ⊂ TX

satisfying the Chow-Rashevskii condition. As above, define the same length

functional Lν(γ(t)) on the class of all piecewise smooth paths tangent to B.

The corresponding metric on X is called a sub-Finsler metric.
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Pencils of 3-spaces

DEFINITION: Let (H, q) be a quadratic vector space of signature (3, n),

and W1,W2 ∈ Gr+++ 3-spaces such that dimW1 ∩ W2 = 3. The space

U = W1 + W2 is 4-dimensional, because W1 ∩ W2 is 2-dimensional. All 3-

spaces in U are lines in U∗, that is, points in PU∗; this equivalence can be

obtained by associating with W the set Ann(W ) of all λ ∈ U∗ vanishing on

W . The points W1,W2 ∈ PU∗ are connected by a unique line Pl ⊂ PU∗, where

l ⊂ U∗ is a 2-dimensional subspace obtained as by l = Ann(W1) + Ann(W2).

The corresponding family of 3-spaces is called a 1-dimensional pencil of

3-spaces in U .

REMARK: The space U∗ inherits a natural quadratic form q from U , which

has signature (3,1) (prove this).
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Positive segments connecting positive 3-spaces

CLAIM: The quadratic form q restricted to l ⊂ U∗ has signature (1,1).

Proof: A point u ∈ U∗ corresponds to a positive 3-space when q(u, u) > 0 and

to a signature (2,1)-space otherwise (prove it). Since W1+W2 has signature

(3,1), and W can be obtained as union of all Wt, t ∈ l (prove it), there are

both positive and mixed signature points in Pl.

REMARK: The space Pl = RP1 is a circle. The 2-plane l is split onto 4

quadrants by two lines in {x ∈ l | q(x, x) = 0}, hence Pl = RP1 has only two

quadrants, positive and negative. In other words, as u rotates along the

circle Pl, the value of q(u, u) changes sign twice.

DEFINITION: The positive segment connecting W1 and W2 is the only

segment in Pl = RP1 connecting W1 to W2 and consisting of u ∈ Pl with

q(u, u) > 0.
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Subtwistor chains

DEFINITION: Let Gr+++ be the Grassmannian of oriented 3-spaces in

H2(M,R) = R3,19, where M is a K3 surface, and Perh ⊂ Gr+++ be the

hyperkähler period space, that is, the space of all W ∈ Gr+++ such that W⊥

does not contain (−2)-vectors (integer classes η such that
∫
M η ∧ η = −2).

A subtwistor segment is a positive segment in Perh connecting 3-spaces

W1,W2 such that W1 ∩ W2 is a 2-plane V such that V ⊥ does not contain

(−2)-vectors.

DEFINITION: Let Perh ⊂ Gr+++ be the hyperkähler period space, and

γ := I1 ∪ I2∪, ..., In be a sequence of subtwistor segments such that the end

of Ik is equal to the beginning of Ik+1. Then I is called a subtwistor chain.
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Subtwistor metric on the hyperkähler period space

REMARK: Recall that SO+(H2(M,R)) denotes the connected compo-
nent of unity in SO(H2(M,R)).

EXERCISE: Consider the space Gr+++ = SO+(H2(M,R))
SO(3)×SO(19) . Prove that Gr+++

admits a unique, up to a constant, SO+(H2(M,R))-invaiant Riemannian
metric.

REMARK: This metric can be defined explicitly as follows. Let W ∈ Gr+++.
Then TW Gr+++ = Hom(W,W⊥). The space Hom(W,W⊥) = W ∗ ⊗R W⊥ is a
tensor product of a vector space with positive definite Euclidean metric and
a space with negative definite Euclidean metric; flipping the sign, we obtain a
product of two spaces with Euclidean metric, and a tensor product of two
Euclidean spaces is Euclidean.

REMARK: From now on, we will treat Gr+++ as a Riemannian manifold,
with the Riemannian metric defined above.

DEFINITION: Let γ be a subtwistor chain. Define its length L(γ) as the
length of the corresponding path in Gr+++. Define the subtwistor metric
dtw(x, y) on Gr+++ as infimum of L(γ), for all subtwistor chains connecting
x to y.
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Cone structures

DEFINITION: Let X be a locally G-homogeneous space, and C ⊂ Tot(TX)

a G-invariant, R-invariant subset. We say that C is a cone structure if C

generates a sub-bundle B ⊂ TX which satisfies the Chow-Rashevskii condition,

and, moreover, for each x ∈ M the intersection Cx := C ∩ TxM is open and

dense in its fiberwise closure Cx, and the union of all Cx the closure of C.

DEFINITION: Fix a reference Riemannian metric g on X, and define the

cone metric dC(x, y) as as infimum of the Riemannian length L(γ), for all

piecewise smooth paths connecting x to y which are tangent to C.

(D. Korshunov)

The cone metric is sub-Finsler.

REMARK: From Chow-Rashevskii theorem it follows also that all sub-

Finsler metrics define the standard topology on X.
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Cone structures and subtwistor metric

Let M be a K3, Gr+++ the corresponding Grassmann space, and C ⊂
T Gr+++ the set of all vectors tangent to subtwistor segments.

CLAIM: Let W ∈ Gr+++ be a point, and CW := TW Gr+++∩C. Denote by

CW its closure. Then CW ⊂ TW Gr+++ = Hom(W,W⊥) is the set of all

matrices of rank 1 in Hom(W,W⊥). Moreover, the union of all CW is the

closure of C.

Proof. Step 1: A subtwistor segment corresponds to a family of 3-spaces

which lies in a 4-dimensional subspace of V = H2(M,R). The corresponding

matrix A ∈ Hom(W,W⊥) has rank 1; conversely, if A ∈ Hom(W,W⊥) has

rank 1, the corresponding family of 3-spaces lies a 4-dimensional subspace

of V generated by W and A(W ). Denote by C ⊂ Tot(T Gr+++) the set of

all tangent vectors associated with matrices of rank 1. This set is clearly

G-invariant, closed and generates T Gr+++. It remains only to show that

the union of all CW is C.
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Cone structures and subtwistor metric (2)

Let M be a K3, Gr+++ the corresponding Grassmann space, and C ⊂
T Gr+++ the set of all vectors tangent to subtwistor segments.

CLAIM: Let W ∈ Gr+++ be a point, and CW := TW Gr+++∩C. Denote by
CW its closure. Then CW ⊂ TW Gr+++ = Hom(W,W⊥) is the set of all
matrices of rank 1 in Hom(W,W⊥). Moreover, the union of all CW is the
closure of C.
Proof. Step 1: It remains only to show that the union of all CW is C.

Step 2: Every subtwistor segment γ : [0,1]−→ Gr+++ tangent to W ∈
Gr+++ belongs to a 4-dimensional space W1, with an extra condition that the
orthogonal to the 2-dimensional space Vt := W ∩ γ(t) does not contain (−2)-
classes. Let A ∈ Hom(W,W⊥) be the tangent vector to γ. Then Vt = kerA.
The set of all 2-planes V1 ⊂ W such that V ⊥

1 contains (-2)-classes is countable
(prove this). Therefore, the set of all A ∈ Hom(W,W⊥) which are tangent
to subtwistor segments is dense in C ∩ TW Gr+++.

COROLLARY: Subtwistor metric on Gr+++ is Finsler.
Proof: Indeed, the subtwistor metric is a special case of cone metric, and it
is sub-Finsler by Korshunov’s theorem, and Finsler when the cone generates
the tangent space.
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