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Sub-Riemannian structures

DEFINITION: Let M be a Riemannian manifold and B C T'M a sub-bundle.
A horizontal path is a piecewise smooth path ~: [b,a] — M tangent to B
everywhere. A sub-Riemannian, or Carno-Carathéodory metric M is

dp(z,y) == inf  L(y):
~ horizontal

the infimum of the length L(v) for all horizontal paths connecting x to .

DEFINITION: Let B C T'TM be a sub-bundle, and B = Bg C By C ... a
sequence of subsheaves defined by [B;, B;] = B;4;. We say that B C M
satisfies the Chow-Rashevskii condition if B = T M for s sufficiently big.

THEOREM: (Chow-Rashevskii theorem; 1938, 1939)

Let B C M be a sub-bundle which satisfies the Chow-Rashevskii condition.
Then any two points can be connected by a horizontal path, and the
sub-Riemannian metric dg is finite. Moreover, the corresponding topology
on M is equivalent to the usual topology.

REMARK: Subriemannian matric is an example of intrinsic metric, or path

metric. I will now define this notion in full generality, following nttp://verbit.

ru/IMPA/METRIC-2023/ and Burago, D., Burago, Y., and Ivanov, S., A course in

metric geometry, AMS Graduate Studies in Mathematics VVolume 33 (2001).

Full proofs, exercises and more examples are found either of these sources.
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Arc-length of a path

Let (M,d) be a metric space, and ~ : [a,b] — M a continuous path (here
[a,b] denotes the closed interval). Let zg=a<z21 < ... < 2,1 < b= xp be
the partition of the interval, and L~(x1,...xp—1) = Z?:_& d(vy(z;),v(x;41)) the
length of the corresponding chain.

DEFINITION: We define the arc-length (or the length) of the path ~ as

Lg(y) == sup Ly(z1, .- p_1),
a<r1<..<Typ_1<b

where supremum is taken over all partitions of the interval [a,b]. A path is
called rectifiable if its arc-length is finite.

EXERCISE: Prove the following properties of arc-length.
* The arc-length is additive: for any path v: [a,c] — M and any b € [a, ¢],
one has Ly(v) = Ld(/ﬂ[a,b]) + Ld('ﬂ[b,c])-
* The arc-length is continuous as a function of the ends: for any rec-
tifiable path v : [a,c] — M, the function L(’y‘[a’b]) depends on b € [a,c]
continuously.
* The arc-length is compatible with the metric: for any z,y € M, and
any path ~: [a,b] — M with ends in z,y, we have L (v) > d(z,vy).
* The arc-length is invariant under the reparametrizations: for any
homeomorphism ¢ : [a,b] — [a,b] the arc-length of ~ is equal to the arc-
length of ¢ o~.
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Intrinsic metric

THEOREM: Let ~v: [a,b] — R™ be a smooth path in R" with the standard
metric. Then L,(v) = f£|y’(t)|dt.

DEFINITION: A metric d on M us called intrinsic metric, or path metric,
it d(z,y) = infy Ly(v), where the infimum is taken over all rectifiable paths ~
connecting = to y.

DEFINITION: Let M be a topological space. A class of admissible paths
is a set C of continuous maps [a,b] — M with the following properties.

1. The concatenation. For any two paths [a,b] % M, [b,¢d] -2 M,
satisfying v1(b) = v»(b), the concatenation ~ : [a,c] — M (that is, the path
equal to v1 on [a,b] and to 5 on [b,¢c]) is also admissible.

2. Linear reparametrization. For any linear map ¢ : [a,b] — [¢,d] and any
admissible path v : [e¢,d] — M, the path ¢ o~ is also admissible.

3. Restriction. For each path [a,b] — M, and an interval [c,d] C [a,b], the

restriction |, 4 is also admissible.
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Length structures

DEFINITION: Let M be a topological space. A length structure on M is a
class ¢ of admissible paths together with a length functional L : ¢ — R=0U
oo Which satisfies the following axioms.

1. Additivity: for any path v : J[a,c] — M and any b € [a,c], one has
L('V) — L(7|[a,b]> + L(7|[b,c])-

2. The length is continuous as a function of the ends: for any path
~: la,c] — M, the function L(V‘[a,bﬂ depends on b € [a,c] continuously.

3 Invariance under reparametrizations: for any homeomorphism
¢ . [a,b] — [a,b] and any admissible path ~ : [a,¢] — M such that po~ is
also admissible, one has L(v) = L(p o ~).

4. Compatibility with the topology: for any point x € M, and any closed
set Z C M, such that = ¢ Z, there is a number € > 0 such that L(v) > ¢ for
any admissible path connecting Z to =x.

EXAMPLE: The arc-length on the class of rectifiable paths gives a length
structure.
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The metric associated with a length structure

DEFINITION: Let M be a topological space equipped with a length structure
L. The path metric d; associated with L is defined as dj(z,y) := infy L(v),
where the infimum is taken over all admissible paths connecting x tp y.

CLAIM: d; is an intrinsic metric, and all intrinsic metrics are obtained
this way.

EXAMPLE: Let M = R" with the standard topology, and C the class of
all piecewise-linear paths (polygonal chains) [zg,z1] U [x1,22] U ... U [z,_1,xn].
Define the length functional taking v = [zg,z1] U [z1,22] U ... U [z,,_1,2n] € C

to L(v) = X |d(x;, wig1)].

CLAIM: The metric dj constructed from this length structure is equal to
the standard Euclidean metric.
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Finsler metrics

EXAMPLE: (A Finsler metric)
Let vy : T X — R the norm on the tangent space, continuously depending
on z. For any piecewisely smooth path ~ : [a,b] — X, define L,o(~(t)) =

2 vy (Y (1)dt.

PROPOSITION: This defines a length functional on the class of piece-
wisely smooth paths.

DEFINITION: The corresponding metric on X is called a Finsler metric.

DEFINITION: Suppose now that v, is defined on a sub-bundle B C TX
satisfying the Chow-Rashevskii condition. As above, define the same length
functional L,(~(t)) on the class of all piecewise smooth paths tangent to B.
The corresponding metric on X is called a sub-Finsler metric.
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Pencils of 3-spaces

DEFINITION: Let (H,q) be a quadratic vector space of signature (3,n),
and Wi, Wy € Grgpy 4 3-spaces such that dimW; N W, = 3. The space
U = W1+ W»o is 4-dimensional, because W1 N W5 is 2-dimensional. All 3-
spaces in U are lines in U*, that is, points in PU*; this equivalence can be
obtained by associating with W the set Ann(W) of all A € U* vanishing on
W. The points W1, W» € PU* are connected by a unique line Pl C PU*, where
| C U* is a 2-dimensional subspace obtained as by | = Ann(W7) + Ann(W5).
The corresponding family of 3-spaces is called a 1-dimensional pencil of
3-spaces in U.

REMARK: The space U* inherits a natural quadratic form ¢ from U, which
has signature (3,1) (prove this).
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Positive segments connecting positive 3-spaces
CLAIM: The quadratic form q restricted to [ C U* has signature (1,1).

Proof: A point uw € U* corresponds to a positive 3-space when g(u,uw) > 0 and
to a signature (2,1)-space otherwise (prove it). Since W7+ W5 has signature
(3,1), and W can be obtained as union of all W4, t € | (prove it), there are
both positive and mixed signature points in Pl. =

REMARK: The space Pl = RP! is a circle. The 2-plane [ is split onto 4
quadrants by two lines in {z €1 | ¢(x,z) = 0}, hence Pl = RP! has only two
quadrants, positive and negative. In other words, as u rotates along the
circle Pl, the value of ¢q(u,u) changes sign twice.

DEFINITION: The positive segment connecting W1 and W5 is the only
segment in Pl = RPL connecting W41 to W» and consisting of v € Pl with

g(u,u) > 0.
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Subtwistor chains

DEFINITION: Let Grp,, be the Grassmannian of oriented 3-spaces in
H?(M,R) = R319 where M is a K3 surface, and Per, C Gry,, be the
hyperkahler period space, that is, the space of all W € Gro 4 4 such that wd
does not contain (—2)-vectors (integer classes n such that [y,,n An = —2).
A subtwistor segment is a positive segment in Per; connecting 3-spaces
W1, Ws such that W1 N W» is a 2-plane V such that VL does not contain
(—2)-vectors.

DEFINITION: Let Per; C Gr_|__|__|_ be the hyperkahler period space, and

v = 11 UI>,..., I, be a sequence of subtwistor segments such that the end
of I is equal to the beginning of Iy ;. Then I is called a subtwistor chain.
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Subtwistor metric on the hyperkahler period space

REMARK: Recall that SOT(H?2(M,R)) denotes the connected compo-
nent of unity in SO(H2(M,R)).

+(g2
EXERCISE: Consider the space Gr 4 4 = gg(?fﬁé%g)). Prove that Gr

admits a unique, up to a constant, SOT(H?2(M,R))-invaiant Riemannian
metric.

REMARK: This metric can be defined explicitly as follows. Let W € Grg 4 .
Then Ty Gry 44 = Hom(W, W), The space Hom(W, W) = W* @g W+ is a
tensor product of a vector space with positive definite Euclidean metric and
a space with negative definite Euclidean metric; flipping the sign, we obtain a
product of two spaces with Euclidean metric, and a tensor product of two
Euclidean spaces is Euclidean.

REMARK: From now on, we will treat Gr+++ as a Riemannian manifold,
with the Riemannian metric defined above.

DEFINITION: Let v be a subtwistor chain. Define its length L(vy) as the
length of the corresponding path in Gry 4. Define the subtwistor metric
diw(z,y) on Grypy 4 as infimum of L(v), for all subtwistor chains connecting
x To y.
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Cone structures

DEFINITION: Let X be a locally G-homogeneous space, and C C Tot(TX)
a G-invariant, R-invariant subset. We say that C is a cone structure if C
generates a sub-bundle B C T'X which satisfies the Chow-Rashevskii condition,
and, moreover, for each z € M the intersection C, == CnNT;M is open and
dense in its fiberwise closure C;, and the union of all C; the closure of C.

DEFINITION: Fix a reference Riemannian metric g on X, and define the
cone metric do(x,y) as as infimum of the Riemannian length L(v), for all
piecewise smooth paths connecting x to y which are tangent to C.

(D. Korshunov)
T he cone metric is sub-Finsler.

REMARK: From Chow-Rashevskii theorem it follows also that all sub-
Finsler metrics define the standard topology on X.
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Cone structures and subtwistor metric

Let M be a K3, Grp, the corresponding Grassmann space, and C C
T'Gry 4 the set of all vectors tangent to subtwistor segments.

CLAIM: Let W € Gry4 4 be a point, and Cy = Ty Grp4 4 NC. Denote by
Cy its closure. Then Cy C Ty Gro,y = Hom(W, W) is the set of all
matrices of rank 1 in Hom(W, W-). Moreover, the union of all Cy is the
closure of C.

Proof. Step 1: A subtwistor segment corresponds to a family of 3-spaces
which lies in a 4-dimensional subspace of V = HQ(M, R). The corresponding
matrix A € Hom(W, W) has rank 1; conversely, if A € Hom(W, W) has
rank 1, the corresponding family of 3-spaces lies a 4-dimensional subspace
of V generated by W and A(W). Denote by C C Tot(T'Grp44) the set of
all tangent vectors associated with matrices of rank 1. This set is clearly
G-invariant, closed and generates T'Gry 4 4. It remains only to show that
the union of all Cy, is C.
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Cone structures and subtwistor metric (2)

Let M be a K3, Grp, the corresponding Grassmann space, and C C
T'Gry 44 the set of all vectors tangent to subtwistor segments.

CLAIM: Let W € Gry 44 be a point, and Cy =Ty Gr_|__|_+ NC'. Denote by
Cy its closure. Then Cy C Ty Gr+_|_+ = Hom(W, W) is the set of all
matrices of rank 1 in Hom(W, W-). Moreover, the union of all Cy is the
closure of C.

Proof. Step 1: It remains only to show that the union of all Cy, is C.

Step 2: Every subtwistor segment ~ : [0,1] — Grp44 tangent to W ¢
Gr_|__|__|_ belongs to a 4-dimensional space Wy, with an extra condition that the
orthogonal to the 2-dimensional space V; := W nN~(t) does not contain (—2)-
classes. Let A € Hom(W, W) be the tangent vector to v. Then V; = ker A.
The set of all 2-planes V; C W such that VlL contains (-2)-classes is countable
(prove this). Therefore, the set of all A € Hom(W, W) which are tangent
to subtwistor segments is dense in CNTy Grp . =

COROLLARY: Subtwistor metric on Gr 4 is Finsler.
Proof: Indeed, the subtwistor metric is a special case of cone metric, and it
IS sub-Finsler by Korshunov's theorem, and Finsler when the cone generates

the tangent space. m
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