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Covering maps

DEFINITION: Let φ : M̃ −→M be a continuous map of manifolds (or CW
complexes). We say that φ is a covering if φ is locally a homeomorphism,
and for any x ∈ M there exists a neighbourhood U ∋ x such that is a dis-
connected union of several manifolds Ui such that the restriction φ

∣∣∣Ui
is a

homeomorphism.

REMARK: From now on, we always assume that our topological spaces are
M locally contractible.

THEOREM: A local homeomorphism of compacts spaces is a covering.

DEFINITION: Let Γ be a discrete group continuously acting on a topolog-
ical space M . This action is called properly discontinuous if M is locally
compact, and the space of orbits of Γ is Hausdorff.

THEOREM: Let Γ be a discrete group acting on M properly discontinuously.
Suppose that the stabilizer group Γ′ : StΓ(x) is the same for all x ∈ M . Then
M −→M/Γ is a covering. Moreover, all covering maps are obtained like
that.

These results are left as exercises.
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Homotopy lifting principle

THEOREM: (homotopy lifting principle)

Let X be a simply connected topological space, and φ : M̃ −→M a covering map. Fix

x ∈ X. Then for each continuous map X −→M , and each x̃ ∈ φ−1(x) there exists a

unique lifting X −→ M̃ passing through x̃ and making the following diagram commutative.

M̃

X -

-

M
?
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Path lifting for covering maps

DEFINITION: Let φ : M̃ −→M be a continuous map. We say that φ is a
local homeomorphism if for each x ∈ M̃ there exists an open neighbourhood
U ∋ x such that φ(U) is open and φ : U −→ φ(U) is a homeomorphism. A
path γ̃ : [a, b]−→ M̃ is a lifting of a path γ : [a, b]−→M if γ(t) = φ(γ̃(t))
for all t ∈ [a, b]. We say that a path γ : [a, b]−→M starting in x has lifting
property if for each x̃ ∈ φ−1(x) there exists lifting γ̃ : [a, b]−→ M̃ starting in
x̃.
REMARK: For any local homeomorphism, the path lifting γ̃ is uniquely
determined by γ and x̃.

REMARK: From homotopy lifting principle, it is clear that coverings have
path lifting property for all paths γ : [a, b]−→M.

The converse is also true:
CLAIM: Let φ : M̃ −→M be a local homeomorphism of manifolds which has
path lifting for all paths. Then φ is a covering.
Proof: Put a coordinate system on U ⊂ M , with center in x. Given a point
y ∈ U , take a geodesic interval γy (with respect to flat metric on U) connecting
y to x. For each x̃ ∈ φ−1 ∗ x), the path γy can be lifted to a path starting
in x̃; let ỹ be its end. This defines a map y −→ ỹ, which is by construction
continuous, and defines a homeomorphism between U and a connected
component of φ−1(U) containing x̃.
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Intrinsic metric (reminder)

DEFINITION: A metric d on M us called intrinsic metric, or path metric,
if d(x, y) = infγ Ld(γ), where the infimum is taken over all rectifiable paths γ
connecting x to y.

DEFINITION: Let M be a topological space. A length structure on M is a
class C of admissible paths together with a length functional L : C −→ R⩾0∪
∞ which satisfies the following axioms.
1. Additivity: for any path γ : [a, c]−→M and any b ∈ [a, c], one has
L(γ) = L(γ|[a,b]) + L(γ|[b,c]).
2. The length is continuous as a function of the ends: for any path
γ : [a, c]−→M , the function L(γ

∣∣∣[a,b]) depends on b ∈ [a, c] continuously.
3 Invariance under reparametrizations: for any homeomorphism
φ : [a, b]−→ [a, b] and any admissible path γ : [a, c]−→M such that φ ◦ γ is
also admissible, one has L(γ) = L(φ ◦ γ).
4. Compatibility with the topology: for any point x ∈ M , and any closed
set Z ⊂ M , such that x /∈ Z, there is a number ε > 0 such that L(γ) > ε for
any admissible path connecting Z to x.

DEFINITION: Let M be a topological space equipped with a length structure
L. The path metric dL associated with L is defined as dL(x, y) := infγ L(γ),
where the infimum is taken over all admissible paths connecting x tp y.
CLAIM: dL is an intrinsic metric.
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Cone structures

DEFINITION: Let X be a locally G-homogeneous space, and C ⊂ Tot(TX)

a G-invariant, R-invariant subset. We say that C is a cone structure if C

generates a sub-bundle B ⊂ TX which satisfies the Chow-Rashevskii condition,

and, moreover, for each x ∈ M the intersection Cx := C ∩ TxM is open and

dense in its fiberwise closure Cx, and the union of all Cx the closure of C.

DEFINITION: An admissible path for a cone structure is a piecewise

smooth path tangent to C everywhere. Fix a reference Riemannian metric g

on X, and define the cone metric dC(x, y) as as infimum of the Riemannian

length L(γ), for all admissible paths connecting x to y which are tangent to

C.

THEOREM: (D. Korshunov)

The cone metric is sub-Finsler.

Proof: https://arxiv.org/abs/2410.18255
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Cone structures and coverings

Proposition 1: Let φ : M̃ −→M be a local diffeomorphism of manifolds
equipped with compatible cone structures. Assume that φ has path lifting
property for all admissible paths. Then φ is a covering.

Proof. Step 1: Since M is sub-Finsler, it is locally compact. Replacing M by
a closure Br(x) of a sufficiently small open ball Br(x) with center in x ∈ M ,
we may assume that M is complete and compact. Let r be the supremum
of all r′ > 0 such that Br′(x) admits a lifting B̃r′(x) to M̃ passing through x̃.
Then the open ball Br(x) admits a lifting to M̃ containing x̃. Any point y

in the boundary ∂Br(x) is connected to x by a geodesic u : [0, r]−→M such
that u([0, r[) ⊂ Br(x). Therefore, the lift of u to B̃r′(x) contains y. Applying
this to all y ∈ ∂Br(x), we lift Br(x) to M̃.

Step 2: We are going to show that r = ∞; to prove this we assume, on
contrary, that the boundary of Br(x) is non-empty, and prove that Br(x)
can be lifted with its ε-neighbourhood. Since Br(x) compact, its boundary
∂Br(x) is compact. For each y ∈ ∂Br(x), let λ(y) be the supremum of all λ′

such that the lift of Br(x) is extended to the lift of Br(x) ∩Bλ′(y); since φ is
a local diffeomorphism, λ(y) > 0. This function is by construction Lipschitz,
hence continuous, hence its infimum is ε > 0. Then the ball Br+ε(x) admits
a lifting to M̃ containing x̃, and we came to a contradiction.

7



K3 surfaces, 2024, lecture 24 M. Verbitsky

Hyperkähler manifolds: reminder

Eugenio Calabi, 1923-2023

DEFINITION: (E. Calabi, 1978)

Let (M, g) be a Riemannian manifold equipped

with three complex structure operators I, J,K :

TM −→ TM , satisfying the quaternionic relations

I2 = J2 = K2 = IJK = − Id .

Suppose that g is Kähler with respect to I, J, K.

Then (M, I, J,K, g) is called hyperkähler.

REMARK: This is the same as Hol(M) ⊂ Sp(n).

Indeed, if Hol(M) ⊂ Sp(n), we have 3 complex

structures I, J,K : TM −→ TM , such that ∇(I) =

∇(J) = ∇(K) = 0, which implies that I, J,K are

Kähler. Conversely, if I, J,K are Kähler, we have

∇(I) = ∇(J) = ∇(K) = 0.

EXERCISE: Prove that the form ωJ +
√
−1 ωK is holomorphically sym-

plectic on (M, I).
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Calabi-Yau theorem: reminder

DEFINITION: Let (M, I, ω) be a Kähler manifold. Its Kähler class is the

cohomology class of ω in H
1,1
R (M, I).

DEFINITION: Let (M, I, ω) be a Kähler manifold with trivial canonical bun-

dle, and Ω ∈ Λn,0
I (M) its non-degenerate holomorphic section. We say that

(M, I) is Ricci-flat if |Ω| = const, where | · | denotes the metric on Λn,0
I (M)

induced by the Kähler metric.

THEOREM: (Calabi-Yau)

Let (M,Ω) be compact holomorphically symplectic manifold of Kähler type,

and [ω] ∈ H
1,1
R (M, I) a Káhler class. Then there exists a unique Ricci-flat

metric g on (M, I) such that its Kähler class is equal to [ω].

THEOREM: (Calabi)

A Kähler metric on a compact holomorphically symplectic manifold is hy-

perkähler if and only if it is Ricci-flat.

COROLLARY: A compact holomorphically symplectic manifold of Kähler

type admits a unique hyperkähler metric in each Kähler class.
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The hyperkähler Teichmüller space (reminder)

Oswald Teichmüller,

1913-1943

DEFINITION: Let Teichh be the Teichmüller

space of conformal classes of hyperkähler metrics

on a K3 surface M , that is, the space of all

hyperkähler metrics on M up to R>0×Diff0-action.

We will call Teichh “the hyperkähler Teichmüller

space”.

REMARK: It is not hard to see that the topology

on Teichh, identified with the set of hyperkähler

metrics of diameter 1, is induced by dGH, and

therefore Teichh is Hausdorff.
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The hyperkähler period map (reminder)

REMARK: Let M be a compact Riemannian manifold, and H2(M,R) be
the space of harmonic 2-forms, tacitly identified with the second cohomol-
ogy. Since the Hodge star operator commutes with the Laplacian, it pre-
serves H2(M,R). Denote by H+(M,R) the set of ∗-invariant harmonic forms,
and H−(M,R) the set of ∗-anti-invariant harmonic forms; then H2(M) =
H+(M)⊕H−(M), and the intersection form is positive on H+(M) and nega-
tive on H−(M). This decomposition defines a map from the space of all
Riemannian metrics to the Grassmanian of all dimH+(M)-dimensional
positive subspaces in H2(M,R).
REMARK: To simplify the language, in the sequel we will identify hy-
perkähler structures (I, J,K, g) and (I, J,K, λg), where λ is a constant.
For a K3, the triple (I, J,K) determines g uniquely up to a constant,
hence we will say “hyperkähler structure I, J,K” signifying “(I, J,K, g) up to
a constant multiplier”.

DEFINITION: Given a hyperkähler structure I, J,K on a K3 surface, consider
the decomposition Λ2(M) = Λ+(M)⊕ Λ−(M). The bundle Λ+(M) is trivial-
ized by parallel sections ωI , ωJ , ωK, which generate the subspace H+(M,R) ⊂
H2(M,R). Let Gr+++(H2(M,R)), or simply Gr+++, be the Grassmannian
of 3-dimensional positive oriented subspaces in H2(M,R). Define the hy-
perkähler period map as the map Perh : Teichh −→ Gr+++(H2(M,R))
taking I, J,K to the corresponding space H+(M) = ⟨ωI , ωJ , ωK⟩.
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Hyperkähler local Torelli (reminder)

DEFINITION: Let Perh ⊂ Gr+++ be the set of all W ∈ Gr+++(H2(M,R))
such that W⊥ does not contain (-2)-classes. We call Perh the hyperkähler

period space of a K3 surface M .

PROPOSITION: Let M be a K3 surface. Consider the hyperkähler period

map Perh : Teichh −→ Gr+++. Then Perh(g) ∈ Perh for any hyperkähler

structure g.

Proof: Lecture 22.

PROPOSITION: The hyperkähler period map Perh : Teichh −→ Perh is

locally a homeomorphism.

Proof: Lecture 22.

THEOREM: The hyperkähler period map Perh : Teichh −→ Perh is a home-

omorphism for any connected component of Teichh.

Proof: Later today.
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Pencils of 3-spaces (reminder)

DEFINITION: Let (H, q) be a quadratic vector space of signature (3, n),

and W1,W2 ∈ Gr+++ 3-spaces such that dimW1 ∩ W2 = 3. The space

U = W1 + W2 is 4-dimensional, because W1 ∩ W2 is 2-dimensional. All 3-

spaces in U are lines in U∗, that is, points in PU∗; this equivalence can be

obtained by associating with W the set Ann(W ) of all λ ∈ U∗ vanishing on

W . The points W1,W2 ∈ PU∗ are connected by a unique line Pl ⊂ PU∗, where

l ⊂ U∗ is a 2-dimensional subspace obtained as by l = Ann(W1) + Ann(W2).

The corresponding family of 3-spaces is called a 1-dimensional pencil of

3-spaces in U .

DEFINITION: The positive segment connecting W1 and W2 is the only

segment in Pl = RP1 connecting W1 to W2 and consisting of u ∈ Pl with

q(u, u) > 0 (that is, without sign changes).
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The subtwistor cone structure

Let M be a K3, Gr+++ the corresponding Grassmann
space, and C ⊂ T Gr+++ the set of all vectors tangent
to subtwistor segments.

CLAIM: Let W ∈ Gr+++ be a point, and CW := TW Gr+++∩C. Denote by
CW its closure. Then CW ⊂ TW Gr+++ = Hom(W,W⊥) is the set of all
matrices of rank 1 in Hom(W,W⊥). Moreover, the union of all CW is the
closure of C.

Proof: Lecture 23.

REMARK: This implies that C defines a cone structure on Gr+++. We
call it the subtwistor cone structure.

DEFINITION: A subtwistor chain is a path obtained by concatenating sub-
twistor segments. A subtwistor path is an admissible path for the subtwistor
cone structure.

REMARK: From Korshunov’s proof it is apparent that the length struc-
ture defined on the class of subtwistor chains defines the same metric as on
subtwistor paths.
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Path lifting for subtwistor cone structure

PROPOSITION: Consider the hyperkähler period map

Perh : Teichh −→ Gr+++(H2(M,R)).

Then Perh has path lifting property for subtwistor chains.

Proof: Each subtwistor segment is obtained by modifying the Kähler class

ωI inside the positive cone associated with the complex structure I, where I

is determined by the 2-plane ⟨ReΩ, ImΩ⟩, with orthogonal complement not

containing (−2)-classes. For such I, the Kähler cone is the positive cone,

hence the subtwistor segment corresponds to a linear path connecting two

points in the Kähler cone; such segment can clearly be lifted.

COROLLARY: The hyperkähler period map Perh : Teichh −→ Perh is a

covering.

Proof: By Proposition 1, any local diffeomorphism which has path lifting

property for admissible paths is a covering.
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The hyperkähler global Torelli theorem

THEOREM: The hyperkähler period map Perh : Teichh −→ Perh for K3
surfaces is a homeomorphism for any connected component of Teichh.

Proof. Step 1: Since Perh : Teichh −→ Perh is a covering, theorem would
follow if we prove that π1(Perh) = 0.

Step 2: Let R ⊂ H2(M,Z) be the set of all (−2)-classes; for each η ∈ R, let
Sη ⊂ Gr+++ be the set of all positive 3-spaces in η⊥. By definition,

Perh = Gr+++

∖ ⋃
η∈R

Sη.

However, the dimension of the Grassmanian of 3-dimensional spaces in Rn+3

is Hom(R3,Rn) = 3n, hence codimSη = 3. By transversality, removing a
smooth codimension 3 submanifold does not change the fundamental group,
hence π1(Perh) = π1(Gr+++). It remains to prove that π1(Gr+++) = 0.

Step 3: The symmetric space Gr+++ has non-positive sectional curvature,
hence it is contractible by Cartan-Hadamard theorem.

EXERCISE: Prove that π1(Gr+++) = 0 in as many different ways as you
possibly can.
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