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Complex structures on a K3 surface

THEOREM: Let M be a complex manifold diffeomorphic to a K3 surface.
Then M is K3, that is, satisfies KM = OM .
Proof. Step 1: Since b1(M) is even, M is Kähler by Buchdahl-Lamari.
Also, c2(M) = 24 because it is its topological Euler characteristic. Since the
signature of M is (3, 19), Hodge index theorem implies dimH2,0(M) = 1.
Now, b1(M) = 0 implies that χ(OM) = 2 and rkH0(KM) = 1. Riemann-Roch

formula for surfaces gives χ(OM) =
c21+c2
12 =

c21
2 +2, hence c21 = 0. This implies

that χ(K⊗i
M ) = 2 for all i. If we prove that rkH0(K⊗i

M ) > 0 for all i, it would
imply that KM is trivial.
Step 2: Assume, by contradiction, that KM is non-trivial. Since KM is
effective, rkH0(K⊗i

M ) = 0 for all i < 0. Serre’s duality gives rkH0(K⊗i
M ) =

H2(K⊗−i+1
M ) and rkH1(K⊗i

M ) = rkH1(K⊗−i+1
M ). Then χ(K⊗i

M ) = 2 implies
that H0(K⊗i

M ) ⩾ 2 for all i > 1. The corresponding sections of K⊗i
M don’t

intersect, because c21, hence the line system K⊗i
M is globally generated and

defines a holomorphic map π to CPn. The bundle K⊗i
M restricted to any fiber

of π has degree 0, hence the fibers of π are 1-dimensional. This implies that
M is a surface of Kodaira dimension 1.
Step 3: From Kodaira-Enriques classification it follows that all surfaces of
Kodaira dimension 1 are elliptic with base a curve S of genus ⩾ 1. Therefore,
π1(M) surjects to π1(S) and H1(M) is infinite. This brings a contradiction.
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Hyperkähler manifolds: reminder

Eugenio Calabi, 1923-2023

DEFINITION: (E. Calabi, 1978)

Let (M, g) be a Riemannian manifold equipped

with three complex structure operators I, J,K :

TM −→ TM , satisfying the quaternionic relations

I2 = J2 = K2 = IJK = − Id .

Suppose that g is Kähler with respect to I, J, K.

Then (M, I, J,K, g) is called hyperkähler.

REMARK: This is the same as Hol(M) ⊂ Sp(n).

Indeed, if Hol(M) ⊂ Sp(n), we have 3 complex

structures I, J,K : TM −→ TM , such that ∇(I) =

∇(J) = ∇(K) = 0, which implies that I, J,K are

Kähler. Conversely, if I, J,K are Kähler, we have

∇(I) = ∇(J) = ∇(K) = 0.

EXERCISE: Prove that the form ωJ +
√
−1 ωK is holomorphically sym-

plectic on (M, I).
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Calabi-Yau theorem: reminder

DEFINITION: Let (M, I, ω) be a Kähler manifold. Its Kähler class is the

cohomology class of ω in H
1,1
R (M, I).

DEFINITION: Let (M, I, ω) be a Kähler manifold with trivial canonical bun-

dle, and Ω ∈ Λn,0
I (M) its non-degenerate holomorphic section. We say that

(M, I) is Ricci-flat if |Ω| = const, where | · | denotes the metric on Λn,0
I (M)

induced by the Kähler metric.

THEOREM: (Calabi-Yau)

Let (M,Ω) be compact holomorphically symplectic manifold of Kähler type,

and [ω] ∈ H
1,1
R (M, I) a Káhler class. Then there exists a unique Ricci-flat

metric g on (M, I) such that its Kähler class is equal to [ω].

THEOREM: (Calabi)

A Kähler metric on a compact holomorphically symplectic manifold is hy-

perkähler if and only if it is Ricci-flat.

COROLLARY: A compact holomorphically symplectic manifold of Kähler

type admits a unique hyperkähler metric in each Kähler class.
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The hyperkähler Teichmüller space (reminder)

Oswald Teichmüller,

1913-1943

DEFINITION: Let Teichh be the Teichmüller

space of conformal classes of hyperkähler metrics

on a K3 surface M , that is, the space of all

hyperkähler metrics on M up to R>0×Diff0-action.

We will call Teichh “the hyperkähler Teichmüller

space”.

REMARK: It is not hard to see that the topology

on Teichh, identified with the set of hyperkähler

metrics of diameter 1, is induced by dGH, and

therefore Teichh is Hausdorff.
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The hyperkähler period space (reminder)

REMARK: Let M be a compact Riemannian manifold, and H2(M,R) be

the space of harmonic 2-forms, tacitly identified with the second cohomol-

ogy. Since the Hodge star operator commutes with the Laplacian, it pre-

serves H2(M,R). Denote by H+(M,R) the set of ∗-invariant harmonic forms,

and H−(M,R) the set of ∗-anti-invariant harmonic forms; then H2(M) =

H+(M)⊕H−(M), and the intersection form is positive on H+(M) and nega-

tive on H−(M). This decomposition defines a map from the space of all

Riemannian metrics to the Grassmanian of all dimH+(M)-dimensional

positive subspaces in H2(M,R).

REMARK: To simplify the language, in the sequel we will identify hy-

perkähler structures (I, J,K, g) and (I, J,K, λg), where λ is a constant.

For a K3, the triple (I, J,K) determines g uniquely up to a constant,

hence we will say “hyperkähler structure I, J,K” signifying “(I, J,K, g) up to

a constant multiplier”.
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The hyperkähler Torelli theorem (reminder)

DEFINITION: Given a hyperkähler structure I, J,K on a K3 surface, consider

the decomposition Λ2(M) = Λ+(M)⊕ Λ−(M). The bundle Λ+(M) is trivial-

ized by parallel sections ωI , ωJ , ωK, which generate the subspace H+(M,R) ⊂
H2(M,R). Let Gr+++(H2(M,R)), or simply Gr+++, be the Grassmannian

of 3-dimensional positive oriented subspaces in H2(M,R). Define the hy-

perkähler period map as the map Perh : Teichh −→ Gr+++(H2(M,R))
taking I, J,K to the corresponding space H+(M) = ⟨ωI , ωJ , ωK⟩.

THEOREM: The hyperkähler period map Perh : Teichh −→ Perh for K3

surfaces is a homeomorphism for any connected component of Teichh.

Proof: Lecture 24.
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Teichmüller space for symplectic structures (reminder)

DEFINITION: Let Γ(Λ2M) be the space of all 2-forms on a manifold M ,
and Symp ⊂ Γ(Λ2M) the space of all symplectic 2-forms. We equip Γ(Λ2M)
with C∞-topology of uniform convergence on compacts with all derivatives.
Then Γ(Λ2M) is a Frechet vector space, and Symp a Frechet manifold.

DEFINITION: Teichmüller space of symplectic structures on M is de-
fined as a quotient Teichs := Symp /Diff0, where Diff0 is the isotopy group.

DEFINITION: Define the period map Per : Teichs −→H2(M,R) mapping
a symplectic structure to its cohomology class.

THEOREM: (Moser, 1965)
The Teichmüler space Teichs is a manifold (possibly, non-Hausdorff), and
the period map Per : Teichs −→H2(M,R) is locally a diffeomorphism.

It is based on
THEOREM: (“Moser’s lemma”, 1965)
Let ωt, t ∈ S be a smooth family of symplectic struc-
tures, parametrized by a connected manifold S. Assume
that the cohomology class [ωt] ∈ H2(M) is constant in t.
Then all ωt are diffeomorphic.
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Torelli theorem for symplectic structures

DEFINITION: A symplectic structure on a K3 surface is of Kähler type if it
is Kähler for some complex structure. Conjecturally, all symplectic struc-
tures on a K3 surface are of Kähler type. Let Teichs be the Teichmüller
space of symplectic structures of Kähler type, and Pers ⊂ H2(M,R) the space
of all vectors v ∈ H2(M,R) such that

∫
M v ∧ v > 0.

THEOREM: The period map Per : Teichs −→ Pers is a diffeomorphism
on each connected component of Teichs.

Proof: Let TeichH be the space of all hyperkähler structures (g, I, J,K);
clearly, it is fibered over Teichh with the fiber R>0×SO(3). Let P : TeichH −→ Teichs
be the forgetful map putting (g, I, J,K) to ωI. Calabi-Yau theorem implies
that P is surjective. Indeed, any Kähler form can be deformed to a Ricci-flat
Kähler form in the same cohomology class.

Step 2: From Torelli theorem for hyperkähler structures it follows that the
fiber P−1(ω) of P is the space of pairs x, y ∈ H2(M) satisfying x2 = y2 =
ω2, such that the space ⟨ω, x, y⟩⊥ contains no (-2)-classes.

Step 3: Since the fibers of P are complements to subsets of codimension 2,
they are connected. By Moser’s lemma, for each (M, I, J,K, g) ∈ P−1(ω) the
symplectic forms ωI are diffeomorphic.
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Torelli theorem for symplectic structures (2)

THEOREM: The period map Per : Teichs −→ Pers is a diffeomorphism

on each connected component of Teichs.

Step 4: Let PerH be the set of all orthogonal oriented triples ω1, ω2, ω3 with∫
M ωi ∧ ωi =

∫
M ωj ∧ ωj in W ∈ Perh ⊂ Gr+++(H2(M,R)). It is R>0 × SO(3)-

fibered over Perh. Consider the diagram

TeichH
P−→ TeichsyPerH Pers

y
PerH =

{x, y, z ∈ H2(M) | x2 = y2 = z2 > 0,
⟨x, y, z⟩⊥ contains no MBM classes}

P ′
−→ {x ∈ H2(M) | x2 > 0}

The map PerH is an isomorphism as follows from global Torelli for hyperkähler

structures, and the fibers of P are identified with fibers of P ′ as follows from

Moser’s lemma and Step 3. Therefore, Pers is injective. The rest of the

arrows are surjective as shown, hence Pers is also surjective.
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Teichmüller space for complex structures (reminder)

DEFINITION: Let Teich be the Teichmüller space of complex structures

of Kähler type on a K3 surface. The corresponding period space is denoted

Per := {v ∈ PH2(M,C) |
∫
M v ∧ v = 0,

∫
M v ∧ v > 0}.

PROPOSITION: (local Torelli theorem)

Let Teich be the space of complex structures on a K3 surface, and Per :

Teich −→ Per the map taking (M, I) to the line H2,0(M) ⊂ H2(M,C). Then

Per is a local diffeomorphism.

Proof: Lecture 17.
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Galina Tjurina (1938-1970)

Galina Tjurina, 1938-1970

REMARK: Torelli-type theorem for K3 surfaces was

conjectured by André Weil, who included his ideas

about K3 and Teichmüller theory in “Final report on

contract AF A8 (603-57)” (1958), a report to a grant

from american Air Force Office of Science Research,

published only in 1979. Grauert attributes the local

Torelli theorem for K3 surfaces to Andreotti and Weil

(without reference; according to Grauert, the theo-

rem was proven by Andreotti, but never published).

Shafarevich attributes it to G. N. Tjurina, On the de-

formation of complex structures of algebraic varieties

Dokl. Akad. Nauk SSSR 152 (1963), 1316-1319.

Tjurina proved the local injectivity of the period map

(actually, she proved it for all Calabi-Yau manifolds).

For local surjectivity, she referred to Kodaira, K.;

Nirenberg, L.; Spencer, D. C. On the existence of

deformations of complex analytic structures. Ann. of

Math. (2) 68 (1958), 450-459.
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Kähler cone of K3 surfaces (reminder)

THEOREM: (Demailly-Pǎun)

Let M be a compact Kähler manifold, and K ⊂ H1,1(M,R) a subset consisting

of all classes η such that
∫
Z ηp > 0 for any p-dimensional complex subvariety

Z ⊂ M . Then the Kähler cone of M is one of the connected components

of K.

This implies

THEOREM: Let M be a K3 surface, and R the set of all (−2)-classes. De-

note by Pos(M) the component of {ω ∈ H1,1(M,R) |
∫
M ω ∧ ω > 0} which

contains Kähler classes (by Exercise 1, there is one and only one such com-

ponent). Then the Kähler cone Kah(M) is a connected component of

the set Pos(M)\
⋃
r∈R r⊥.

Proof: Lecture 21.
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Kähler chambers

DEFINITION: Let V ∈ Per = Gr++(H2(M,R)), and I ∈ Teich be a complex

structure such that Per(I) = V . The set Kah(I) ⊂ Pos(I) is called a Kähler

chamber of V . The set of Kähler chambers for V is the set of all Kah(I)

for all I ∈ Per−1(V ).

THEOREM: Let V ∈ Per = Gr++(H2(M,R)), and RV be the set of all (-2)-

classes orthogonal to V . Let SV :=
⋃
η∈RV

. Then the Kähler chambers of V

are connected components of Pos(V )\SV .

Proof. Step 1: Let I ∈ Per−1(V ) be a complex structure. Its Kähler cone

is the set of all classes ω ∈ Pos(V ) which are positive on effective (-2)-

classes; clearly, this set is one of the connected components of Pos(V )\SV .

Step 2: Consider the forgetful map TeichH −→H2(M,R) × Teich taking

(I, J,K, g) to (I, ωI). Since TeichH = PerH, this map is surjective on the

set of all v ∈ Pos(V )\SV . Therefore, any of the connected components

of Pos(V )\SV is realized as a Kähler cone for some I ∈ Per−1(V ).
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Global Torelli theorem for Teichmüller spaces

THEOREM: Let Teich be a connected component of the Teichmüller space
of all complex structures on a K3 surface, and Per : Teich −→ Per the
period map. Then Per is surjective, and bijective for all V ∈ Per ⊂
Gr++(H2(M,R)) such that V ⊥ does not contain (-2)-curves.
Proof. Step 1: Consider the space Per1 of all pairs {(W×V ) ∈ Perh×Per | V ⊂
W}. This space is S2-fibered over Perh, with the fiber being the set of all
oriented 2-planes in W ∈ Perh. Similarly, let Teich1 be the set of all pairs
(H, L) ∈ Teichh×Teich, consisting of all hyperkähler structures ⟨I, J,K⟩ in-
ducing L; this space is also S2-fibered over Teich. This gives a commutative
diagram:

Teich1
P−→ TeichyPer1 yPer

Per1
Ψ−→ Per

Step 2: Torelli theorem for Perh implies that Per1 is a diffeomorphism. Calabi-

Yau theorem implies that the fiber P−1(I) of Teich1
P−→ Teich is projec-

tivization of the Kähler cone Kah(I) of (M, I); the fiber of Per1
Ψ−→ Per is

the positive cone Pos(I). Since Per1 is a diffeomorphism, Ψ is one to one on
points for which Kah(I) = Pos(I); for other points, Ψ−1(V ) = KV , where KV
is the set of Kähler chambers.
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