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Complex structures on a K3 surface (reminder)

THEOREM: Let M be a complex manifold diffeomorphic to a K3 surface.
Then M is K3, that is, satisfies KM = OM .
Proof. Step 1: Since b1(M) is even, M is Kähler by Buchdahl-Lamari.
Also, c2(M) = 24 because it is its topological Euler characteristic. Since the
signature of M is (3, 19), Hodge index theorem implies dimH2,0(M) = 1.
Now, b1(M) = 0 implies that χ(OM) = 2 and rkH0(KM) = 1. Riemann-Roch

formula for surfaces gives χ(OM) =
c21+c2
12 =

c21
2 +2, hence c21 = 0. This implies

that χ(K⊗i
M ) = 2 for all i. If we prove that rkH0(K⊗i

M ) > 0 for all i, it would
imply that KM is trivial.
Step 2: Assume, by contradiction, that KM is non-trivial. Since KM is
effective, rkH0(K⊗i

M ) = 0 for all i < 0. Serre’s duality gives rkH0(K⊗i
M ) =

H2(K⊗−i+1
M ) and rkH1(K⊗i

M ) = rkH1(K⊗−i+1
M ). Then χ(K⊗i

M ) = 2 implies
that H0(K⊗i

M ) ⩾ 2 for all i > 1. The corresponding sections of K⊗i
M don’t

intersect, because c21, hence the line system K⊗i
M is globally generated and

defines a holomorphic map π to CPn. The bundle K⊗i
M restricted to any fiber

of π has degree 0, hence the fibers of π are 1-dimensional. This implies that
M is a surface of Kodaira dimension 1.
Step 3: From Kodaira-Enriques classification it follows that all surfaces of
Kodaira dimension 1 are elliptic with base a curve S of genus ⩾ 1. Therefore,
π1(M) surjects to π1(S) and H1(M) is infinite. This brings a contradiction.
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Teichmüller space for complex structures (reminder)

DEFINITION: Let Teich be the Teichmüller space of complex structures

of Kähler type on a K3 surface. The corresponding period space is denoted

Per := {v ∈ PH2(M,C) |
∫
M v ∧ v = 0,

∫
M v ∧ v > 0}.

PROPOSITION: (local Torelli theorem)

Let Teich be the space of complex structures on a K3 surface, and Per :

Teich −→ Per the map taking (M, I) to the line H2,0(M) ⊂ H2(M,C). Then

Per is a local diffeomorphism.

Proof: Lecture 17.
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Kähler chambers (reminder)

DEFINITION: Let V ∈ Per = Gr++(H2(M,R)), and I ∈ Teich be a complex

structure such that Per(I) = V . The set Kah(I) ⊂ Pos(I) is called a Kähler

chamber of V . The set of Kähler chambers for V is the set of all Kah(I)

for all I ∈ Per−1(V ).

THEOREM: Let V ∈ Per = Gr++(H2(M,R)), and RV be the set of all (-2)-

classes orthogonal to V . Let SV :=
⋃
η∈RV

. Then the Kähler chambers of V

are connected components of Pos(V )\SV .

Proof. Step 1: Let I ∈ Per−1(V ) be a complex structure. Its Kähler cone

is the set of all classes ω ∈ Pos(V ) which are positive on effective (-2)-

classes; clearly, this set is one of the connected components of Pos(V )\SV .

Step 2: Consider the forgetful map TeichH −→H2(M,R) × Teich taking

(I, J,K, g) to (I, ωI). Since TeichH = PerH, this map is surjective on the

set of all v ∈ Pos(V )\SV . Therefore, any of the connected components

of Pos(V )\SV is realized as a Kähler cone for some I ∈ Per−1(V ).
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Global Torelli theorem for Teichmüller spaces (reminder)

THEOREM: Let Teich be a connected component of the Teichmüller space
of all complex structures on a K3 surface, and Per : Teich −→ Per the
period map. Then Per is surjective, and bijective for all V ∈ Per ⊂
Gr++(H2(M,R)) such that V ⊥ does not contain (-2)-curves.
Proof. Step 1: Consider the space Per1 of all pairs {(W×V ) ∈ Perh×Per | V ⊂
W}. This space is S2-fibered over Perh, with the fiber being the set of all
oriented 2-planes in W ∈ Perh. Similarly, let Teich1 be the set of all pairs
(H, L) ∈ Teichh×Teich, consisting of all hyperkähler structures ⟨I, J,K⟩ in-
ducing L; this space is also S2-fibered over Teich. This gives a commutative
diagram:

Teich1
P−→ TeichyPer1 yPer

Per1
Ψ−→ Per

Step 2: Torelli theorem for Perh implies that Per1 is a diffeomorphism. Calabi-

Yau theorem implies that the fiber P−1(I) of Teich1
P−→ Teich is projec-

tivization of the Kähler cone Kah(I) of (M, I); the fiber of Per1
Ψ−→ Per is

the positive cone Pos(I). Since Per1 is a diffeomorphism, Ψ is one to one on
points for which Kah(I) = Pos(I); for other points, Ψ−1(V ) = KV , where KV
is the set of Kähler chambers.
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Automorphisms of K3 surfaces acting trivially on H2(M)

Proposition 1: Let ν be an automorphism of a K3 surface (M, I) acting

trivially on H2(M,Z). Then ν = Id.

Proof. Step 1: By Calabi-Yau theorem, ν acts by hyperkähler isometries

for any hyperkähler metric on (M, I). Using the same argument as in the

proof of Torelli theorem for hyperkähler structures, we can extend ν to a

hyperkähler isometry of any other hyperkähler structure in Teichh.

Step 2: Then ν acts by an automorphism of a Kummer surface M = X̃/±1,

where X is any complex 2-torus. When X is very non-algebraic (e. g. contains

no complex curves), it is easy to see that AutM is identified with the group

of {±1}-invariant automorphisms of X. Since ν acts trivially on H2(X), it

is induced by a translation of the torus. Finally, translations which are {±1}-
invariant are translations by 2-torsion. The group G of such translations is

clearly isomorphic to the group (Z/2)4. This group acts freely and transitively

on 16 singular points of X/±1. Therefore, all non-trivial elements of G act

on H2(M) non-trivially.
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Marked K3 surfaces

DEFINITION: A marking on a K3 surface M is an isomorphism H2(M,Z) ∼=
Λ, where Λ = (−E8)

2 ⊕ (U2)
3 is the lattice of the second cohomology of M .

REMARK: Fix an isomorphism H2(M,Z) ∼= Λ on a smooth K3 surface, and
let Teich be the corresponding Teichmüller space. Then each I ∈ Teich cor-
responds to a complex structure on a marked K3 surface. Conversely, global
Torelli theorem implies that each marked K3 surface (M, I) is obtained
from a point in a Teichmüller space.

DEFINITION: Let Γ be the mapping class group of a K3 surface M . The
Torelli group is the kernel of the natural map Γ−→O(H2(M,Z)).

PROPOSITION: The space of marked K3 surfaces is naturally identi-
fied with the Teichmüller space of K3 surfaces.

Proof: Since the quartics are dense in any connected component of Te-
ichmüller space of K3 surfaces, the Torelli group acts transitively on the con-
nected components of Teich. This action is also free, because any automor-
phism of a K3 acting trivially on H2(M) is trivial (Proposition 1). Therefore,
a K3 surface with a marking uniquely determines a point in Teich.
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Reflections in the mapping class group

Proposition 2: Let M be a K3 surface, and v ∈ H2(M,Z) a (-2)-class.
Consider the corresponding reflection in cohomology, rv(x) := x + (r, x)r,
where (r, x) =

∫
M r ∧ x is the intersection form. Then there exists a family of

K3 surfaces M
π−→ X such that its monodromy acts as rv on H2(M).

Proof. Step 1: Let V ∈ Gr++(H2(M,R)) be a point in the period space such
that V ⊥ ∩H2(M,Z) = ⟨v⟩. A general positive plane in ⟨v⟩⊥ has this property
(prove it). Let W ⊂ H2(M,R) be a 3-space W = V + ⟨v⟩. The set Gr++(W )
is a complex analytic subset of Gr++(H2(M,R)) biholomorphic to a disk ∆.
This defines a holomorphic family Vt ∈ Gr++(H2(M,R)), t ∈ ∆, which is
invariant with respect to rv.

Step 2: Replacing ∆ by a smaller disk, and using the local Torelli theorem,
we can assume that there exists a family M −→∆ of K3 surfaces over ∆ ⊂ Vt,
with the fibers (M, It) over Vt ∈ ∆. For all t ∈ ∆ outside of a countable set
Q, we have V ⊥

t = 0. By global Torelli theorem, this implies that (M, It) is
uniquely, up to an isomorphism, determined by Vt for all t ∈ ∆\Q.

Step 3: Therefore, the action of rv takes a complex structure It associated
with t ∈ ∆\Q to an isomorphic complex structure with different marking,
defining a holomorphic family over the quotient space ∆\Q

⟨rv⟩ . This family has
monodromy rv.
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The mapping class group of a K3 surface

EXERCISE: Let M be a K3 surface, and P ⊂ H2(M,R) the space of all

positive real vectors. Prove that P is homotopy equivalent to S2. Denote

by O+(H2(M,R)) the index 2 subgroup of O(H2(M,R)) of all isometries pre-

serving the generator of H2(P,Z). Prove that O+(H2(M,R)) is an index 2

subgroup of O(H2(M,R)).

COROLLARY: (Borcea, Donaldson)

Let Mon be the image of the mapping class group of K3 in O(H2(M,Z)).
Then Mon is an index 2 subgroup obtained as the intersection

O(H2(M,Z)) ∩O+(H2(M,R)).

Proof: As shown by C. T. C. Wall, O+(H2(M,Z)) is an index 2 subgroup

in O(H2(M,Z)) generated by reflections rv for all (−2)-classes v (C. T. C.

Wall, On the orthogonal groups of unimodular quadratic forms II, J. Reine

Angew. Math. 213. (1963/64), 122-136.). Each rv belongs to Mon as

follows from Proposition 2 (this was the original contribution of Borcea).

Finally, Mon ⊂ O+(H2(M,Z)), as shown in S. K. Donaldson, The orientation

of Yang-Mills moduli spaces and 4-manifold topology, J. Diff. Geom. 26

(1987), 397-428.
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The Weyl group of a K3 surface

DEFINITION: Let (M, I) be a K3 surface, and R ⊂ H1,1(M,Z) the set of all
(-2)-classes of type (1,1). The Weyl group of a K3 is the group generated
by the reflections rv for all v ∈ R.

THEOREM: The Weyl group W of K3 surface acts transitively on the
set of Kähler chambers.
Proof: Let MonI be the set of all A ∈ O+(H2(M,Z) preserving the Hodge
structure on H2(M,R). From the explicit description of Kähler chambers it
follows that MonI takes a Kähler chambers to a Kähler chambers. Therefore,
the Weyl group W takes a Kähler chamber to a Kähler chamber.
Step 2: Let K ⊂ Pos(M, I) be a Kähler chamber, and v a (-2)-vector such
that v⊥ contains a face F of K. Then rv takes K to a Kähler chamber
adjacent to F . This way, one obtains every Kähler chamber adjacent to K
from K. Iterating this construction, we obtain Kähler chambers adjacent to
ones adjanent to K, and so on. Therefore, W ·K is the set of all Kähler
chambers.

COROLLARY: Let I1, I2 ∈ Teich be two points with the same periods,
Per(I1) = Per(I2). Then (M, I1) and (M, I2) is the same K3 with different
markings.
Proof: The action of each generator of the Weyl group changes the marking
on the same K3 surface.
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Hodge-theoretic Torelli theorem

DEFINITION: Let M be a K3 surface. A K3-type Hodge structure
on H2(M) is a decompositions H2(M,C) = H2,0(M) ⊕ H1,1(M) ⊕ H0,2(M)
such that Hp,q(M) = Hq,p(M), the intersection pairing between Hq,p(M) and
Hp1,q1(M) vanishes unless p = q1, q = p1, and

∫
M Ω ∧ Ω > 0 for any non-zero

Ω ∈ H2,0(M).

THEOREM: Let M be a K3 surface, Γ its mapping class group, and S

the set of all K3-type Hodge structures up to O+(H2(M,Z))-action. Then
the natural map from Teich /Γ−→S is bijective. In other words, the K3-
type Hodge structures are in bijective correspondence with classes of
isomorphism of K3 surfaces.

Proof: Clearly, S = Per
O+(H2(M,Z)), hence Per : Teich −→ Per is reduced to Per :

Teich /Γ−→ Per
O+(H2(M,Z)). This map is surjective by global Torelli theorem.

For any V ∈ Per, the set Per−1(V ) is identified with the set of Kähler chambers
in Pos(V ⊥). The Weyl group acts transitively on the set of Kähler chambers.
Therefore, the set Per−1(V ) is mapped to the same point in Teich /Γ.

Step 2: This implies that all I ∈ Teich which are mapped to the same point
in Per

O+(H2(M,Z)) are related by the Γ-action.
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Automorphism group of a K3 surface

REMARK: Let (M, I) be a K3 surface. Proposition 1 implies that the
natural map Aut(M, I)−→O+(H2(M,Z)) is injective. In the sequel, we will
identify Aut(M, I) and its image in O+(H2(M,Z)).

THEOREM: Let (M, I) be a K3 surface. Then Aut(M, I) ⊂ O+(H2(M,Z))
is the group of all ρ ∈ O+(H2(M,Z)) which preserve the Hodge decom-
position and the Kähler cone of (M, I).

Proof. Step 1: Clearly, any ρ ∈ Aut(M, I) preserves the Hodge decom-
position and the Kähler cone. It remains to prove the converse: any
ρ ∈ O+(H2(M,Z)) preserving the the Hodge decomposition and the Kähler
cone is induced by an automorphism of (M, I).

Step 2: Consider the action of ρ on the space TeichH = PerH of hyperkähler
structures (I, J,K, g). This action is extended to the corresponding universal
fibration, because points of TeichH are hyperkähler structures on marked K3,
and O+(H2(M,Z)) just changes the marking.

Step 3: Let Ψ : TeichH −→ Teich take (I, J,K, g) to I ∈ Teich. Since
ρ preserves the Kähler cone and the Hodge decompositon, it takes Ψ−1(I)
to Ψ−1(I). Therefore, ρ takes (I, J,K, g) to (I, J ′,K′, g′); this map is by
construction holomorphic.
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