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Complex structures on a K3 surface (reminder)

THEOREM: Let M be a complex manifold diffeomorphic to a K3 surface.
Then M is K3, that is, satisfies K; = O,,.

Proof. Step 1: Since b1(M) is even, M is Kahler by Buchdahl-Lamari.
Also, co(M) = 24 because it is its topological Euler characteristic. Since the
signature of M is (3, 19), Hodge index theorem implies dim H29(M) = 1.
Now, b1 (M) = 0 implies that x(©O,;) = 2 and rkHO(KM) = 1. Riemann-Roch

formula for surfaces gives x(Oy/) = Clizcz = Cl +2, hence ¢ = 0. This implies
that x(K%/) = 2 for all i. If we prove that i HO(KS)) > O for all i, it would
iImply that K, is trivial.

Step 2: Assume, by contradiction, that Kj,; is non-trivial. Since Kj; is
effective, rkHO(K@”) = 0 for all i < 0. Serre's duality gives rkHO(K@”) =
H2(K$ 7’"'1) and rkHl(K®7’) = rk HL(K$ "), Then x(K$P) = 2 implies
that HO(K®") > 2 for all i > 1. The correspondmg sections of K%/ don't
intersect, because c%, hence the line system K IS globally generated and
defines a holomorphic map = to CP™. The bundle K ! restricted to any fiber
of m has degree 0O, hence the fibers of =« are 1- dlmen5|onal. T his implies that
M is a surface of Kodaira dimension 1.

Step 3: From Kodaira-Enriques classification it follows that all surfaces of
Kodaira dimension 1 are elliptic with base a curve S of genus > 1. Therefore,
w1 (M) surjects to m1(S) and Hq(M) is infinite. This brings a contradiction.
|
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Teichmuller space for complex structures (reminder)

DEFINITION: Let Teich be the Teichmuller space of complex structures
of Kahler type on a K3 surface. The corresponding period space is denoted
Per := {v € PH?(M,C) | [yvAv=0,[;vAT>O0}.

PROPOSITION: (local Torelli theorem)

Let Teich be the space of complex structures on a K3 surface, and Per :
Teich —» Per the map taking (M, I) to the line H29(M) c H2(M,C). Then
Per is a local diffeomorphism.

Proof: Lecture 17. =
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Kahler chambers (reminder)

DEFINITION: Let V € Per = Gry 4 (H?(M,R)), and I € Teich be a complex
structure such that Per(/) = V. The set Kah(I) Cc Pos([]) is called a Kahler
chamber of V. The set of Kahler chambers for V is the set of all Kah([)
for all T € Per—1(V).

THEOREM: Let V € Per = Gry  (H?(M,R)), and Ry be the set of all (-2)-
classes orthogonal to V. Let Sy = Un@ﬁv' Then the Kahler chambers of V
are connected components of Pos(V)\Sy .

Proof. Step 1: Let I € Per—1(V) be a complex structure. Its Kahler cone
Is the set of all classes w € Pos(V) which are positive on effective (-2)-
classes; clearly, this set is one of the connected components of Pos(V)\Sy .

Step 2: Consider the forgetful map Teichy — H2(M,R) x Teich taking
(I,J,K,g) to (I,wy). Since Teichy = Pergy, this map is surjective on the
set of all v € Pos(V)\Sy. Therefore, any of the connected components
of Pos(V)\Sy is realized as a Kahler cone for some [ € Per 1(V). m
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Global Torelli theorem for Teichmuller spaces (reminder)

THEOREM: Let Teich be a connected component of the Teichmuller space
of all complex structures on a K3 surface, and Per : Teich — Per the
period map. Then Per is surjective, and bijective for all V & Per C
Gry 4 (H?(M,R)) such that V1 does not contain (-2)-curves.

Proof. Step 1: Consider the space Per; of all pairs {(WxV) € Pery, xPer | V C
W1}. This space is S?-fibered over Per,, with the fiber being the set of all
oriented 2-planes in W € Per;,. Similarly, let Teichy be the set of all pairs
(#,L) € Teichy, x Teich, consisting of all hyperkahler structures (I, J, K) in-
ducing L; this space is also S2-fibered over Teich. This gives a commutative
diagram:

Teichy £> Teich

lPerl lPer

Perq i> Per
Step 2: Torelli theorem for Per;, implies that Perq is a diffeomorphism. Calabi-
Yau theorem implies that the fiber P~1(I) of Teich; P, Teich is projec-

tivization of the Kahler cone Kah(l) of (M,1I); the fiber of Perq Yy Per is
the positive cone Pos(I). Since Perq is a diffeomorphism, W is one to one on
points for which Kah(I) = Pos(I); for other points, W~1(V) = &y, where &
is the set of Kahler chambers. m
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Automorphisms of K3 surfaces acting trivially on H2(M)

Proposition 1: Let v be an automorphism of a K3 surface (M, ) acting
trivially on H2(M,Z). Then v = Id.

Proof. Step 1: By Calabi-Yau theorem, v acts by hyperkahler isometries
for any hyperkahler metric on (M,I). Using the same argument as in the
proof of Torelli theorem for hyperkahler structures, we can extend v to a
hyperkahler isometry of any other hyperkahler structure in Teichy,.

— —

Step 2: Then v acts by an automorphism of a Kummer surface M = X /41,
where X is any complex 2-torus. When X is very non-algebraic (e. g. contains
no complex curves), it is easy to see that Aut M is identified with the group
of {£1}-invariant automorphisms of X. Since v acts trivially on H2(X), it
is induced by a translation of the torus. Finally, translations which are {£1}-
invariant are translations by 2-torsion. The group G of such translations is
clearly isomorphic to the group (Z/2)4. This group acts freely and transitively
on 16 singular points of X/+1. Therefore, all non-trivial elements of G act
on H2(M) non-trivially. m
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Marked K3 surfaces

DEFINITION: A marking on a K3 surface M is an isomorphism H2(M,Z7) =
A, where A = (—Eg)2 @ (Uy)3 is the lattice of the second cohomology of M.

REMARK: Fix an isomorphism H2(M,Z) = A on a smooth K3 surface, and
let Teich be the corresponding Teichmuller space. Then each I € Teich cor-
responds to a complex structure on a marked K3 surface. Conversely, global
Torelli theorem implies that each marked K3 surface (M, 1) is obtained
from a point in a Teichmuller space.

DEFINITION: Let ' be the mapping class group of a K3 surface M. The
Torelli group is the kernel of the natural map I — O(H?(M, Z)).

PROPOSITION: The space of marked K3 surfaces is naturally identi-
fied with the Teichmuller space of K3 surfaces.

Proof: Since the quartics are dense in any connected component of Te-
ichmuller space of K3 surfaces, the Torelli group acts transitively on the con-
nected components of Teich. This action is also free, because any automor-
phism of a K3 acting trivially on HQ(M) is trivial (Proposition 1). Therefore,
a K3 surface with a marking uniquely determines a point in Teich. m
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Reflections in the mapping class group

Proposition 2: Let M be a K3 surface, and v € H?(M,Z) a (-2)-class.
Consider the corresponding reflection in cohomology, ry(z) = x + (r,x)r,
where (r,x) = [y A x is the intersection form. Then there exists a family of
K3 surfaces M — X such that its monodromy acts as r, on H2(M).

Proof. Step 1: Let V & Gr_|__|_(H2(M, R)) be a point in the period space such
that V- n H2(M,Z) = (v). A general positive plane in (v)1+ has this property
(prove it). Let W C H?(M,R) be a 3-space W = V + (v). The set Gry 4 (W)
is @ complex analytic subset of Gr+_|_(H2(M, R)) biholomorphic to a disk A.
This defines a holomorphic family V; € Gr_|__|_(H2(M, R)), t € A, which is
invariant with respect to r,.

Step 2: Replacing A by a smaller disk, and using the local Torelli theorem,
we can assume that there exists a family 111 — A of K3 surfaces over A C V4,
with the fibers (M, I;) over V; € A. For all t € A outside of a countable set
@, we have V;} = 0. By global Torelli theorem, this implies that (M, ;) is
uniquely, up to an isomorphism, determined by V; for all t € A\Q.

Step 3: Therefore, the action of r, takes a complex structure I; associated
with ¢t € A\Q to an isomorphic complex structure with different marking,
defining a holomorphic family over the quotient space %;%2 This family has

monodromy r,. ®
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The mapping class group of a K3 surface

EXERCISE: Let M be a K3 surface, and ® C H?(M,R) the space of all
positive real vectors. Prove that @ is homotopy equivalent to S2. Denote
by OT(H?(M,R)) the index 2 subgroup of O(H2(M,R)) of all isometries pre-
serving the generator of H2(%,Z). Prove that OT(H2(M,R)) is an index 2
subgroup of O(H?(M,R)).

COROLLARY: (Borcea, Donaldson)

Let Mon be the image of the mapping class group of K3 in O(H?(M,Z7)).
Then Mon is an index 2 subgroup obtained as the intersection
O(H?(M,Z)) N OT(H?(M,R)).

Proof: As shown by C. T. C. Wall, OT(H?(M,Z)) is an index 2 subgroup
in O(H?(M,Z7)) generated by reflections r, for all (—=2)-classes v (C. T. C.
Wall, On the orthogonal groups of unimodular quadratic forms II, J. Reine
Angew. Math. 213. (1963/64), 122-136.). Each r, belongs to Mon as
follows from Proposition 2 (this was the original contribution of Borcea).
Finally, Mon ¢ OT(H?2(M,Z)), as shown in S. K. Donaldson, The orientation
of Yang-Mills moduli spaces and 4-manifold topology, J. Diff. Geom. 26

(1987), 397-428. m
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The Weyl group of a K3 surface

DEFINITION: Let (M,I) be a K3 surface, and % ¢ HY1(M,Z) the set of all
(-2)-classes of type (1,1). The Weyl group of a K3 is the group generated
by the reflections r, for all v € ‘R.

THEOREM: The Weyl group W of K3 surface acts transitively on the
set of Kahler chambers.

Proof: Let Mon; be the set of all A € OT(H?%(M,Z) preserving the Hodge
structure on H2(M,R). From the explicit description of Kihler chambers it
follows that Mon; takes a Kahler chambers to a Kahler chambers. Therefore,
the Weyl group W takes a Kahler chamber to a Kahler chamber.
Step 2: Let K C Pos(M,I) be a Kahler chamber, and v a (-2)-vector such
that v contains a face F of K. Then r, takes K to a Kihler chamber
adjacent to F. This way, one obtains every Kahler chamber adjacent to K
from K. Iterating this construction, we obtain Kahler chambers adjacent to
ones adjanent to K, and so on. Therefore, W - K iIs the set of all Kahler
chambers. =

COROLLARY: Let I1,I> € Teich be two points with the same periods,
Per(I1) = Per(I>). Then (M, I7) and (M, I>) is the same K3 with different
markings.
Proof: The action of each generator of the Weyl group changes the marking
on the same K3 surface. m
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Hodge-theoretic Torelli theorem

DEFINITION: Let M be a K3 surface. A K3-type Hodge structure
on H2(M) is a decompositions H2(M,C) = H29(M) @ HVY (M) @ HO2(M)
such that HP4(M) = H?YP(M), the intersection pairing between H?P(M) and
HP1L,91 (M) vanishes unless p = gq1,q9 = p1, and [}; Q2 AQ > 0 for any non-zero
Q e H2O0(M).

THEOREM: Let M be a K3 surface, I its mapping class group, and &
the set of all K3-type Hodge structures up to O (H?2(M,Z))-action. Then
the natural map from Teich /T — & is bijective. In other words, the K3-
type Hodge structures are in bijective correspondence with classes of
iIsomorphism of K3 surfaces.

. _ Per . . . .
Proof: Clearly, G = OF(H2(IZ))" hence Per : Teich — Per is reduced to Per :
Teich /T — Per This map is surjective by global Torelli theorem.

" Ot (H2(M,Z))
For any V € Per, the set Per—1(V) is identified with the set of Kihler chambers
in Pos(VL). The Weyl group acts transitively on the set of Kahler chambers.
Therefore, the set Per—1(V) is mapped to the same point in Teich /I.

Step 2: This implies that all I € Teich which are mapped to the same point

- Per :
N SF@2(31.2)) are related by the I‘-acl:tllon. _
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Automorphism group of a K3 surface

REMARK: Let (M,I) be a K3 surface. Proposition 1 implies that the
natural map Aut(M, ) — OT(H?(M, 7)) is injective. In the sequel, we will
identify Aut(M,I) and its image in OT(H2(M,Z)).

THEOREM: Let (M,I) be a K3 surface. Then Aut(M,I) c OT(H?(M,7))
is the group of all p € O1T(H2(M,Z)) which preserve the Hodge decom-
position and the Kahler cone of (M,1I).

Proof. Step 1: Clearly, any p € Aut(M,I) preserves the Hodge decom-
position and the Kahler cone. It remains to prove the converse: any
p € O+(H2(M, 7)) preserving the the Hodge decomposition and the Kahler
cone is induced by an automorphism of (M, I).

Step 2: Consider the action of p on the space Teichy = Pery of hyperkahler
structures (I,J, K,g). This action is extended to the corresponding universal
fibration, because points of Teichy are hyperkahler structures on marked K3,
and OT(H?2(M,7)) just changes the marking.

Step 3: Let W : Teichy — Teich take (I,J,K,g) to I € Teich. Since
p preserves the Kahler cone and the Hodge decompositon, it takes w1
to W—1(I). Therefore, p takes (I,J,K,q) to (I,J', K’ ¢"); this map is by
construction holomorphic. =

12



