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Integrability of almost complex structures (reminder)

DEFINITION: An almost complex structure I on a manifold is called inte-
grable if any point of M has a neighbourhood U diffeomorphic to an open
subset of Cn, in such a way that the almost complex structure I is induced
by the standard one on U ⊂ Cn.

CLAIM: Let M be a manifold, and I ∈ End(TM) an integrable almost com-
plex structure. Denote by OM the sheaf of holomorphic functions on M .
Then the ringed space (M,OM) is a complex manifold.

Proof: Clear from the definition.

CLAIM: Complex structure on a manifold M uniquely determines an
integrable almost complex structure, and is determined by it.

Proof: Complex structure on a manifold M is determined by the sheaf of
holomorphic functions OM , and OM is determined by I as explained above.
Therefore, an integrable almost complex structure defines a complex struc-
ture. Conversely, every complex structure gives a sub-bundle in Λ1,0(M) =
dOM ⊂ Λ1(M,C), and such a sub-bundle defines an almost complex struc-
ture by Remark 1.
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Distributions

DEFINITION: Distribution, or a Pfaffian system on a manifold is a sub-

bundle B ⊂ TM .

REMARK: Let Π : TM −→ TM/B be the projection, and x, y ∈ B some

vector fields. Then [fx, y] = f [x, y] − Dy(f)x. This implies that Π([x, y]) is

C∞(M)-linear as a function of x and y.

DEFINITION: The map [B,B]−→ TM/B we have constructed is called

Frobenius bracket (or Frobenius form); it is a skew-symmetric C∞(M)-

linear form on B with values in TM/B.

DEFINITION: A distribution is called holonomic, or involutive, or inte-

grable, if its Frobenius form vanishes.
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Formal integrability

DEFINITION: Let I : TM −→ TM be an almost complex structure on M ,

and TM ⊗R C = T1,0M ⊕ T0,1 the Hodge decomposition. An almost complex

structure I on (M, I) is called formally integrable if [T1,0M,T1,0] ⊂ T1,0,

that is, if T1,0M is involutive.

DEFINITION: The Frobenius form Ψ ∈ Λ2,0M⊗TM is called the Nijenhuis

tensor.

CLAIM: An integrable almost complex structure is always formally inte-

grable.

Proof: Locally, the bundle T1,0(M) is generated by d/dzi, where zi are com-

plex coordinates. These vector fields commute, hence satisfy [d/dzi, d/dzj] ∈
T1,0(M). This means that the Frobenius form vanishes.

THEOREM: (Newlander-Nirenberg) A complex structure I on M is

integrable if and only if it is formally integrable.

Proof: (real analytic case) next lecture.
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Smooth submersions

DEFINITION: Let π : M −→M ′ be a smooth map of manifolds. This map

is called submersion if at each point of M the differential Dπ is surjective,

and immersion if it is injective.

CLAIM: Let π : M −→M ′ be a submersion. Then each m ∈ M has a

neighbourhood U ∼= V ×W , where V,W are smooth and π|U is a projection

of V ×W = U ⊂ M to W ⊂ M ′ along V .

Proof: Follows from the inverse function theorem.

THEOREM: (“Ehresmann’s fibration theorem”)

Let π : M −→M ′ be a smooth submersion of compact manifolds. Prove

that π is a locally trivial fibration.

Proof: Next slide.

DEFINITION: Vertical tangent space TπM ⊂ TM of a submersion π :

M −→M ′ is the kernel of Dπ.
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Ehresmann connections

DEFINITION: Let π : M −→ Z be a smooth submersion, with TπM the

bundle of vertical tangent vectors (vectors tangent to the fibers of π).

An Ehresmann connection on π is a sub-bundle ThorM ⊂ TM such that

TM = ThorM ⊕ TπM . The parallel transport along the path γ : [0, a]−→ Z

associated with the Ehresmann connection is a diffeomorphism

Vt : π−1(γ(0))−→ π−1(γ(t))

smoothly depending on t ∈ [0, a] and satisfying dVt
dt ∈ ThorM .

CLAIM: Let π : M −→ Z be a smooth fibration with compact fibers. Then

the parallel transport, associated with the Ehresmann connection, al-

ways exists.

Proof: Follows from existence and uniqueness of solutions of ODEs.
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Foliations

Frobenius Theorem: Let B ⊂ TM be a sub-bundle. Then B is involutive

if and only if each point x ∈ M has a neighbourhood U ∋ x and a smooth

submersion U
π−→ V such that B is its vertical tangent space: B = TπM.

REMARK: The implication “B = TπM” ⇒ “Frobenius form vanishes” is

clear because of local coordinate form of the submersions.

DEFINITION: The fibers of π are called leaves, or integral submanifolds

of the distribution B. Globally on M , a leaf of B is a maximal connected

manifold Z ↪→ M which is immersed to M and tangent to B at each point.

A distribution for which Frobenius theorem holds is called integrable. If B is

integrable, the set of its leaves is called a foliation. The leaves are manifolds

which are immersed to M , but not necessarily closed.

REMARK: To prove the Frobenius theorem for B ⊂ TM , it suffices to

show that each point is contained in an integral submanifold. In this

case, the smooth submersion U
π−→ V is the projection to the leaf space of

B.
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The history of Frobenius theorem

History of Frobenius theorem is explained in “The Mathematics of Frobe-

nius in Context: A Journey Through 18th to 20th Century Mathematics

(Sources and Studies in the History of Mathematics and Physical Sciences)”,

by Thomas Hawkins.

The name “Frobenius theorem” is due to Élie Cartan (1922). Before that

it was known as “Pfaff’s problem”. It was a problem of having “sufficiently

many” solutions for a system of differential equations.

In “generic” case was solved by Clebsch (1866), who generalized a weaker

result of Jacobi (1837). In 1877, Frobenius gave an equivalent reformulation

of Pfaff’s problem and solve it, also taking care of the “non-generic” cases

omitted by Clebsch.

The technical part of the argument of Frobenius is due to Heinrich Wilhelm

Feodor Deahna (1815-1844), who published a version of solution of Pfaff

problem in Crelle’s Journal in 1844.
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Carl Gustav Jacobi (1804-1851), Alfred Clebsch (1833-1872)

Carl Gustav Jacobi, Alfred Clebsch
1804-1851 1833-1872
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Ferdinand Georg Frobenius (1849-1917)

Ferdinand Georg Frobenius (1849-1917)
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Frobenius theorem (1)

Proof of the Frobenius theorem. Step 1: Suppose that G is a Lie group

acting on a manifold M . Assume that the vector fields from the Lie algebra of

G generate a sub-bundle B ⊂ TM . Then B is integrable, that is, Frobenius

theorem holds of B ⊂ TM. Indeed, the orbits of the G-action are tangent

to B ⊂ TM .

Step 2: Let u, v be commuting vector fields on a manifold M , and etu, etv be

corresponding diffeomorphism flows. Then etu, etv commute. This easily

follows by taking a coordinate system such that u is the coordinate vector

field (do this as an exercise).

Step 3: The commutator of vector fields in B belongs to B, however, this

does not immediately produce any finite-dimensional Lie algebra: it is not ob-

vious that any subalgebra generated by such vector fields is finite-dimensional.

To produce a Lie group with orbits tangent to B, we need to find a collec-

tion ξ1, ..., ξk ∈ B of vector fields generating B and make sure that the

ξ1, ..., ξk generate a finite-dimensional Lie algebra.
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Frobenius theorem (2)

Step 4: The statement of Frobenius Theorem is local, hence we may replace

M be a small neighbourhood of a given point. We are going to show that

B locally has a basis of commuting vector fields. By Step 2, these vector

fields can be locally integrated to a commutative group action, and Frobenius

Theorem follows from Step 1.

Step 5: Let σ : M −→M1 be a smooth submersion, dσ : TxM −→ Tσ(x)M1

its differential, and v ∈ TM a vector field which satisfies

dσ(v)|x = dσ(v)|y (∗)

for any x, y ∈ σ−1(z) and any z ∈ M1. In this case, the vector field dσ(v) is

well-defined on M1. Given two vector fields u and v which satisfy (*),

we can easily check that the commutator [u, v] also satisfies (*), and,

moreover, dσ([u, v]) = [dσ(u), dσ(v)]. Indeed, (*) is equivalent to existence of

a vector field x on M1 such that Liex(σ∗f) = σ∗Liex f for any f ∈ C∞M1.
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Frobenius theorem (3)

Step 6: Now we can finish the proof of Frobenius theorem. We need to

produce, locally in M , a basis of commuting vector fields ξi ∈ B. We start

with producing (locally in M) an auxiliary submersion σ, with the fibers

which are complementary to B. To define such a submersion, we put

coordinates locally on M , identifying M with an open subset in Rn, and take

a linear map σ : M −→M1 = RdimB such that dσ : B|x −→ Tσ(x)M1 is an

isomorphism at some x ∈ M .

Step 7: Then dσ : B|x −̃→ Tσ(x)M1 is an isomorphism in a neighbour-

hood of x; replacing M by a smaller open set, we may assume that dσ :

B|x −̃→ Tσ(x)M1 is an isomorphism everywhere on M . Let ζ1, ..., ζk be the

coordinate vector fields on M1.

Since dσ : B|x −→ Tσ(x)M1 is an isomorphism, there exist unique vector fields

ξ1, ..., ξk ∈ B ⊂ TM such that dσ(ξi) = ζi. By Step 5, dσ([ξi, ξj]) = [ζi, ζj] = 0.

Since B is involutive, the commutator [ξi, ξj] is a section of B. Now, the

map dσ : B|x −→ Tσ(x)M1 is an isomorphism, and therefore the vanishing of

dσ([ξ1, ξj]) implies [ξ1, ξj] = 0. We have constructed a basis of commuting

vector fields in B and finished the proof of Frobenius theorem.
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