
Hodge theory, lecture 12 M. Verbitsky

Hodge theory
lecture 12: Dolbeault cohomology of a 1-dimensional disk

Misha Verbitsky

IMPA, sala 236

30.04.2025

http://verbit.ru/IMPA/Kahler-2025/

1



Hodge theory, lecture 12 M. Verbitsky

Stone-Weierstrass approximation theorem

DEFINITION: Let M be a topological space, and ∥f∥ := supM |f | the

sup-norm on functions. C0-topology on the space C0(M) of continuous,

bounded real-valued functions is the topology defined by the sup-norm.

EXERCISE: Prove that C0(M) with sup-norm is a complete metric

space.

DEFINITION: Let A ⊂ C0M be a subspace in the space of continuous

functions. We say that A separates the points of M if for all distinct points

x, y ∈ M , there exists f ∈ A such that f(x) ̸= f(y).

THEOREM: (Stone-Weierstrass theorem)

Let A ⊂ C0M be a subring separating points, and A its closure. Then

A = C0M.
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Hilbert spaces

DEFINITION: Hilbert space over C is a complete, infinite-dimensional Her-

mitian space which is second countable (that is, has a countable dense set).

DEFINITION: Orthonormal basis in a Hilbert space H is a set of pairwise

orthogonal vectors {xα} which satisfy |xα| = 1, and such that H is the closure

of the subspace generated by the set {xα}.

THEOREM: Any Hilbert space has a basis, and all such bases are

countable.

Proof: A basis is found using Zorn lemma. If it’s not countable, open balls

with centers in xα and radius ε < 2−1/2 don’t intersect, which means that the

second countability axiom is not satisfied.

THEOREM: All Hilbert spaces are isometric.

Proof: Each Hilbert space has a countable orthonormal basis.
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Fourier series

EXAMPLE: Let (M,µ) be a space with measure. Consider the space V

of measurable functions f : M −→ C such that
∫
M |f |2µ < ∞. For each

f, g ∈ V , the integral
∫
fgµ is well defined, by Cauchy inequality:

∫
|fg|µ <√∫

M |f |2µ
∫
M |g|2µ. This gives a Hermitian form on V . Let L2(M) denote

the completion of V with respect to this metric. It is called the space of

square-integrable functions on M . Its elements are called L2-functions.

CLAIM: (”Fourier series”) Functions ek(t) = e2π
√
−1 kt, k ∈ Z on S1 = R/Z

form an orthonormal basis in the Hilbert space L2(S1).

Proof. Step 1: Orthogonality is clear from
∫
S1 e2π

√
−1 ktdt = 0 for all k ̸= 0

(prove it).

Step 2: The space of Fourier polynomials
∑n

i=−n akek(t) is dense in the space

of continuous functions on the circle by the Stone-Weierstrass approximation

theorem. Therefore, the closure of the space of functions which admit Fourier

series is L2(S1).
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Fourier series on a torus

REMARK: Let t1, ..., tn be coordinates on Rn. We can think of ti as of angle
coordinates on the torus Tn = Rn/Zn, considered as a product of n copies of
S1. Consider the Fourier monomials Fl1,...,ln := exp(2π

√
−1

∑n
i=1 liti), where

l1, ..., ln are integers. Clearly,

L2(Tn) ∼= L2(S1)⊗̂L2(S1)⊗̂...⊗̂L2(S1)︸ ︷︷ ︸
n times

.

where ⊗̂ denotes the completed tensor product. This implies that the Fourier
monomials form a Hilbert basis in L2(Tn).

REMARK: This also follows directly from the Stone-Weierstrass theorem.

THEOREM: Let V be a Hilbert space, Map(Tn, V ) continuous maps, and
L2(Tn, V ) a completion of Map(Tn, V ) with respect to the L2-norm |v|2 =∫
Tn |v(x)|2dx. Consider an orthonormal basis u1, ..., un, ... in V . Then an or-
thonormal basis in Map(Tn, V ) is given by monomial maps Fl1,...,lnuj taking
s ∈ Tn to Fl1,...,ln(s)uj.

Proof: Orthonormality of the collection {Fl1,...,lnuj} is clear. To prove its
completeness (that is, the density of the subspace generated by {Fl1,...,lnuj}),
notice that Map(Tn, V ) is a completion of ⊕iMap(Tn, Vi), where Vi = ⟨vi⟩.
Now, {Fl1,...,lnui} is an orthonormal basis in Vi = Map(Tn,C).
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Weight decomposition for U(1)-representations

EXERCISE: Let ρ : U(1)−→GL(V ) be a finite-dimensional irreducible com-

plex representation of the Lie group U(1). Prove that dimC = 1 and there

exists n ∈ Z such that t ∈ U(1) = R/Z acts on V as ρ(t)(v) = e2π
√
−1 ntv.

DEFINITION: A representation of U(1) with ρ(t)(v) = e2π
√
−1 ntv is called

an irreducible weight n representation.

DEFINITION: Let V be a Hermitian space (possibly infinitely-dimensional)

equipped with an action of U(1), and Vk ⊂ V weight k representations, k ∈ Z.
The direct sum

⊕
Vk is called the weight decomposition for V if it is dense

in V .

EXAMPLE: Let L2(S1,W ) the space of maps from S1 to a Hermitian space

W . We define U(1)-action on L2(S1,W ) by ρ(t)(f) = Rt(f) where Rt(f(x)) =

f(x + t) shifts S1 by t. Clearly, this is a Hermitian representation, and its

weight decomposition is its Fourier decomposition.
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Weight decomposition for U(1)-representations (2)

CLAIM: Let
⊕

Vk ⊂ V be the weight decomposition of a Hermitian repre-

sentation ρ of U(1). Then any vector v ∈ V can be decomposed onto a

converging serie v =
∑

i∈Z vi, with vi ∈ Vi. This decomposition is called the

weight decomposition for v.

Proof. Step 1: Clearly, all Vi are pairwise orthogonal; indeed, for any t ∈ U(1)

and xp ∈ Vp, xq ∈ Vq, i ̸= j, we have

e2π
√
−1 pt(xp, xq) = (ρ(t)(xp), xq) = (xp, ρ(−t)xq) =

= (xp, e
−2π

√
−1 qtxq) = e2π

√
−1 qt(xp, xq)

giving p = q whenever (xp, xq) ̸= 0.

Step 2: Let πi : V −→ Vi be the orthogonal projection. Then |x|2 ⩾∑p
i=−p |πi(x)|

2 because orthogonal projection is always distance-decreasing.

Therefore, the serie
∑

i∈Z πi(x) converges. Its limit is a vector x′ which sat-

isfies (x, u) = (x′, u) for any u ∈
⊕

k∈Z Vk. Since
⊕

k∈Z Vk is dense in V , this

implies x = x′.
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Weight decomposition and Fourier series

LEMMA: Let W be a Hermitian representation of U(1) admitting a weight
decomposition. Then any subquotient of W also admits a weight de-
composition.

Proof: This is clear for quotients. Any closed subspace V ⊂ W gives a direct
sum decomposition W = V ⊕ V ⊥, hence it also can be realized as a quotient.

LEMMA: Let ρ : U(1)−→ U(W ) be a Hermitian representation of U(1), and
L2(S1,W ) the space of maps from S1 to W with the U(1)-action by translation
as defined earlier. Then W can be realized as a sub-representation of
L2(S1,W ).

Proof: For any x ∈ W consider αx ∈ L2(S1,W ) taking t ∈ U(1) = R/Z to
ρ(t)(x). Clearly, x 7→ αx defines a homomorphism of representations.

THEOREM: Let W be a Hermitian representation of U(1). Then W admits
a weight decomposition W =

⊕̂
i∈ZWi.

Proof: We realize W as a subrepresentation in L2(S1,W ), and use the Fourier
series to obtain the weight decomposition of L2(S1,W ).
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Weight decomposition for Tn-action

EXERCISE: Consider the n-dimensional torus Tn as a Lie group, Tn = U(1)n.

Prove that any finite-dimensional Hermitian representation of Tn is a

direct sum of 1-dimensional representations, with action of Tn given by

ρ(t1, ..., tn)(x) = exp(2π
√
−1

∑n
i=1 piti)x, for some p1, ..., pn ∈ Zn, called the

weights of the 1-dimensional representation.

DEFINITION: Let V be a Hermitian space (possibly infinitely-dimensional)

equipped with an action of Tn, and Vα ⊂ V weight α representations, α ∈ Zn.

The direct sum
⊕

α∈Zn Vα is called the weight decomposition for V if it is

dense in V .

THEOREM: Let W be a Hermitian vector space. Then the Fourier series

provide the weight decomposition on L2(Tn,W ).

THEOREM: Let W be a Hermitian representation of Tn. Then W admits

a weight decomposition V = ̂⊕
α∈Zn Wα.

Proof: We realize W as a subrepresentation in L2(Tn,W ), and use the Fourier

series to obtain the weight decomposition of L2(Tn,W ).
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Weight decomposition for Tn-action on differential forms

REMARK: Let M be a manifold with the Tn-action, and

Λ∗(M) =
⊕̂

α∈ZnΛ
∗(M)p1,...,pk

be the weight decomposition on the differential forms. Then the de Rham

differential preserves each term Λ∗(M)p1,...,pk. Indeed, d commutes with

the action of the Lie algebra of Tn, and Λ∗(M)p1,...,pk are its eigenspaces.

REMARK: Let α =
∑

αp1,...,pk be the weight decomposition. The forms

αp1,...,pk are obtained by averaging

e2π
√
−1

∑n
i=1 pitiα = AvTn e2π

√
−1

∑n
i=1−pitiα

hence they are smooth.
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De Rham cohomology and Tn-action

THEOREM: Let M be a smooth manifold, and Tn a torus acting on M by
diffeomorphisms. Denote by Λ∗(M)T

n
the complex of Tn-invariant differen-

tial forms. Then the natural embedding Λ∗(M)T
n
↪→ Λ∗(M) induces an

isomorphism on de Rham cohomology.

Proof. Step 1: Let α ∈ Λ∗(M) be a form and α =
∑

αp1,...,pn its weight
decomposition, with αp1,...,pn ∈ Λ∗

p1,...,pn
(M) a form of weight p1, ..., pn. Since

Tn-action commutes with de Rham differential, these forms are closed when
α is closed.

Step 2: Let r1, ..., rn be the standard generators of the Lie algebra of Tn

rescaled in such a way that Lierk(exp(2π
√
−1

∑n
i=1 piti)) =

√
−1 pk, and irk :

Λi(M)−→ Λi−1(M) the convolution operator. Since Lierk = {d, irk}, we have
pkαp1,...,pn = d(irkαp1,...,pn) whenever αp1,...,pn is closed. Therefore, all terms
in the weight decomposition α =

∑
αp1,...,pn are exact except α0,0,...,0.

Step 3: In the direct sum decomposition of the de Rham complex

Λ∗(M) = Λ∗(M)T
n
⊕

⊕̂
p1,...,pk ̸=(0,0,...,0)

Λ∗
p1,...,pk

(M)

the second component has trivial cohomology, because Lierk is invertible on⊕
pk ̸=0Λ

∗
p1,...,pn

(M) (deduce it from pkαp1,...,pk = d(irkαp1,...,pk)), and
Lierk(closed form) is exact.
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Constant forms on a torus

DEFINITION: Let Tn = (S1)n be a compact torus equipped with a action on

itself by shifts, and Λ∗
const(M). the space of Tn-invariant forms on Tn. These

forms are called constant differential forms. Clearly, constant forms have

constant coefficients in the usual (flat) coordinates on the torus.

THEOREM: The natural embedding Λ∗
const(T

n) ↪→ Λ∗(Tn) induces an iso-

morphism Λ∗
const(T

n) = H∗(Tn).

Proof: The embedding Λ∗
const(T

n) = Λ∗(Tn)Tn ↪→ Λ∗(Tn) induces an iso-

morphism on cohomology, however, all constant forms are closed, hence

H∗(Λ∗
const(T

n), d) = Λ∗
const(T

n).
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Holomorphic vector fields

DEFINITION: Let (M, I) be a complex manifold, and X ∈ TM a real vector
field. It is called holomorphic if LieX(I) = 0, that is, if the corresponding
flow of diffeomorphisms is holomorphic.

CLAIM: Let (M, I) be a complex manifold, and X ∈ TM a holomorphic vector
field. Then Xc := I(X) is also holomorphic, and commutes with X.

LEMMA: Let X be a holomorphic vector field, and Xc = I(X). Then
{dc, iX} = −LieXc.

Proof: Using {IdI−1, iX} = I{d, I−1iXI}I−1, we obtain {dc, iX} = −I{d, iXc}I−1 =
I LieXc I−1. However, Xc is holomorphic, hence I LieXc I−1 = LieXc.

PROPOSITION: Let X be a holomorphic vector field, and Xc = I(X).
Then {∂, iX} = 1

2(LieX −
√
−1 LieXc).

Proof: ∂ = 1
2(d+

√
−1 dc), hence

{∂, iX} =
1

2
LieX +

√
−1 {dc, iX} =

1

2
(LieX −

√
−1 LieXc).
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Dolbeault cohomology of an elliptic curve

PROPOSITION: Let X = C/Z2 be an elliptic curve, and Λ∗(X) =
⊕

α∈Z2 Λ∗(X)p1,p2
its weight decomposition under the T2-action. Consider the space T2-invariant

forms Λ∗(X)T
2

= Λ∗(X)0,0. Then the natural embedding Λ∗(X)T
2

↪→
Λ∗(X) induces an isomorphism of Dolbeault cohomology.

Proof: Let α ∈ Λ∗(X)p1,p2 be a ∂-closed form, with (p, q) ̸= (0,0). Suppose,

for example, that p ̸= 0, and X is the generator of the corresponding compo-

nent of the Lie algebra such that LieX α = p
√
−1 α. Since Xc belongs to the

same Lie algebra, we have LieXc(α) = vα, where v ∈
√
−1 R. Then

√
−1 p+ v

2
α =

1

2
(LieX −

√
−1 LieXc)α = {∂, iX}α = ∂iXα, (∗ ∗ ∗)

hence α is ∂-exact. This implies that ∂ has no cohomology on⊕
p1,p2 ̸=(0,0)

Λ∗(X)p1,p2.
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Dolbeault cohomology of a disk

COROLLARY: Let K ⊂ C be a compact subset, K0 its interior, and η ∈
Λ0,1(K0) a form smoothly extending to a neighbourhood of K. Then η is

∂-exact.

Proof: Choosing an appropriate lattice Z2 ⊂ C, we may assume that K is a

subset of an elliptic curve X. Since η extends to a neighbourhood of K, we

can use partition of unity to extend it to a smooth form η̃ on X. Applying

the weight decomposition η̃ =
∑

α∈Z2 ηα, we obtain that the form η − η0,0 is

∂-exact. However, the constant part η0,0 = const · dz ∧ dz = const · ∂(zdz) (for

(1,1)-form) or η0,0 = const · dz = const · ∂(z) for (0,1)-form is also ∂-exact.
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Poincaré-Dolbeault-Grothendieck lemma

DEFINITION: Polydisc Dn is a product of n discs D ⊂ C.

THEOREM: (Poincaré-Dolbeault-Grothendieck lemma)

Let η ∈ Λp,q(Dn), q > 0, be a ∂-closed form on a polydisc, smoothly extended

to a neighbourhood of its closure Dn ⊂ Cn. Then η is ∂-exact.

We proved it for n = 1. Now we prove it for all n.
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∂-homotopy operator on T2

From now on, 1-dimensional complex torus is always C/Z[
√
−1 ] and the

n-dimensional complex torus T2n is a product of n copies of T2 =
C/Z[

√
−1 ].

CLAIM: Let µ ∈ Λp,q(M)a,b be a form of weight (a, b) on a torus T2 =
C/Z[

√
−1 ], and X the coordinate vector field along the real axis. Then

{∂, iX}(µ) = 1
2(b+

√
−1 a).

Proof: {∂, iX} = 1
2(LieX −

√
−1 LieXc), and Xc is the coordinate vector field

along the imaginary axis, acting on µ by multiplication by
√
−1 b.

DEFINITION: Given µ =
∑

a,b∈Z2 µa,b define

P (µ) :=
∑

(a,b)̸=(0,0)

2(b+
√
−1 a)−1µa,b.

The operator P commutes with all operators which commute with the

T2-action on itself: with d, dc, iX, iXc, etc.

COROLLARY: Then {∂, P iX}) = µ − µ0,0. In particular, if µ is ∂-closed,

we also have ∂P (iX(µ)) = µ− µ0.
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Homotopy operator γk on T2n

Let U ⊂ T2n be a polydisk. Since U is contractible, all constant (p, q)-forms
on a torus with q > 0 are ∂-exact on U : ∂zi = ∂(zi), which can be well defined
on U because it is contractible.

For any disk U ⊂ T2, fix a cutoff function ρε which is 1 on U and 0 outside of a
contractible ε-neighbourhood of U . Consider the map Q : Λp,1(T2)−→ Λp,0(T2)
taking µ to µ0,0 and replacing any constant summand of form α∧∂zi by ρεziα.

CLAIM: In these assumptions, we have {∂, γ}(µ) = µ on U for any form
µ ∈ Λp,1(T2), where γ(α) = P (iX(α)) +Q(µ).

Proof: If µ0,0 = 0, we have Q(µ) = 0, and this expression becomes {∂, P (iX)}) =
µ− µ0,0 proven above. If µ = µ0,0, it becomes ∂(Q(µ))|U = µ.

Corollary 1: Let U ⊂ T2n be a polydisk, and ρε a cutoff function which is 1
on U and 0 outside of a contractible ε-neighbourhood of U . We chose ρε in
such a way that Lied/dxi(ρε) = 0 at any point (x1, ..., xn) such that |xi| < 1.
Let γk denote the operator γ along the k-th component in T2n = (T2)n, and
∂k the ∂ along this component. Then {∂k, γk}(µ) = µ on U for any form µ

divisible by dzk, and {∂k, γl}|U = 0 for l ̸= k.
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Poincaré-Dolbeault-Grothendieck lemma

THEOREM: (Poincaré-Dolbeault-Grothendieck lemma)

Let η ∈ Λ0,p(Dn) be a ∂-closed form on a polydisc, smoothly extended to a

neighbourhood of its closure Dn ⊂ Cn. Then η is ∂-exact.

We prove the following version of Poincaré-Dolbeault-Grothendieck.

THEOREM: Let U ⊂ T2n be a sufficiently small polydisk, and µ ∈ Λp,q(T2n)

a form with q > 0 which is ∂-closed on U . Then there exists α ∈ Λp,q−1(T2n)

such that ∂α = µ on U.

Proof. Step 1: Let ∂i : Λp,q(Tn)−→ Λp,q+1(Tn) be the operator α−→ dzi ∧
d
dzi

α, where zi is i-th coordinate on Tn. Then ∂ =
∑

i ∂i. Denote by γi the

homotopy operator defined above. If α = dzi ∧ β, one has {∂i, γi}(α) = α. If

α contains no monomials divisible by dzi, one has

∂i{∂i, γi}(α) = ∂iγi∂i(α) = {∂i, γi}∂iα = ∂iα,

hence ∂i(α − {∂i, γi})|U = 0. This implies that im
[
{∂i, γi} − Id

]∣∣∣
U

lies in the

space Ri(U) of forms without dzi in monomial decomposition and with

all coefficients holomorphic as functions on zi.
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Poincaré-Dolbeault-Grothendieck lemma (2)

THEOREM: Let U ⊂ T2n be a sufficiently small polydisk, and µ ∈ Λp,q(T2n)
a form with q > 0 which is ∂-closed on U . Then there exists α ∈ Λp,q−1(T2n)
such that ∂α = µ on U.

Proof. Step 1: Let ∂i : Λp,q(Dn)−→ Λp,q+1(Dn) be the operator α−→ dzi ∧
d
dzi

α, and γi the homotopy defined above. Then im
[
{∂i, γi} − Id

]
|U lies in the

space Ri(U) of forms without dzi in monomial decomposition and with all
coefficients holomorphic as functions on zi.

Step 2: Let Ri denote the space of forms α on T2n such that α|U belongs
to the space Ri(U) defined above. Properties of γi:
(1). im

[
{∂i, γi}− Id

]
⊂ Ri. (2). {∂i, γj}|U = 0, if i ̸= j. (3). the restriction[

{∂i, γi}
]∣∣∣Ri

vanishes on U. (4). γi(Rj) ⊂ Rj, ∂i(Rj) ⊂ Rj for all i ̸= j.
Property (1) is proven in Step 1, property (2) and (4) follow because γi is
independent from the zj-coordinate for all j ̸= i. Finally, (3) follows because
for all forms α without dzi in its monomial decomposition one has {γi, ∂}(α) =
γi(∂i(α)).

Step 3: Properties (1), (3) and (4) give
[
{∂i, γi} − Id

]
(Ri1 ∩Ri2 ∩ ... ∩Rik) ⊂

Ri ∩ Ri1 ∩ Ri2 ∩ ... ∩ Rik for i /∈ {i1, i2, ..., ik}, and {∂i, γi}
∣∣∣∣Ri1

∩Ri2
∩...∩Rik

= 0

otherwise.
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Poincaré-Dolbeault-Grothendieck lemma (3)

Step 3: Properties (1), (3) and (4) give
[
{∂i, γi} − Id

]
(Ri1 ∩Ri2 ∩ ... ∩Rik) ⊂

Ri ∩ Ri1 ∩ Ri2 ∩ ... ∩ Rik for i /∈ {i1, i2, ..., ik}, and {∂i, γi}
∣∣∣∣Ri1

∩Ri2
∩...∩Rik

= 0

otherwise.

Step 4: Let γ :=
∑

i γi. Since {∂i, γj} = 0 for i ̸= j, Step 3 gives[
{∂, γ} − (n− k) Id

]
(Ri1 ∩Ri2 ∩ ... ∩Rik) ⊂

∑
i ̸=i1,i2,...,ik

Ri ∩Ri1 ∩Ri2 ∩ ... ∩Rik

Step 5: Let W0 = Λ∗(T2n), and Wk ⊂ Wk−1 the subspace generated by all
Ri1∩Ri2∩ ...∩Rik for i1 < i2 < ... < ik. Step 4 implies

[
{∂, γ}−(n−k) Id

]∣∣∣Wk
⊂

Wk+1.

Step 6: Wn is the space of (p,0)-forms holomorphic on U , and it does not
contain any (p, q)-forms for q > 0. Using induction in d = n − k, we can
assume that any ∂-closed (p, q)-form in Wk+1 is ∂-exact when q > 0.
To prove PDG-lemma, it would suffice to prove the same for any ∂-
closed form α ∈ Wk. Step 5 gives (n− k)α− {∂, γ}(α) = (n− k)α− ∂γ(α) ∈
Wk+1, and this form is ∂-exact by the induction assumption. This gives
(n− k)α− ∂γ(α) = ∂η, hence α is ∂-exact.
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Hartogs theorem

THEOREM: Let f be a holomorphic function on Cn\K, where K ⊂ Cn is a
compact, and n > 1. Then f can be extended to a holomorphic function
on Cn.

Proof. Step 1: Replacing K by a bigger compact, we can assume that f

is smoothly extended to a small neighbourhood of the closure M\K. Then
f can be extended to a smooth function on Cn, holomorphic outside of K.
Then α := ∂f̃ is a ∂-closed (0,1)-form with compact support.

Step 2: Using the standard open embedding of Cn to CPn, we may consider
α as a ∂-closed (0,1)-form on CPn. Since H1(CPn) = 0, this gives α = ∂φ,
where φ is a continuous function on CPn. In particular, φ is bounded on
Cn ⊂ CPn.

Step 3: Since ∂φ vanishes outside of K, the function φ is holomorphic outside
of K. Since bounded holomorphic functions on C are constant, φ is constant
on any affine line not intersecting K.

Step 4: This implies that φ = const on the union of all affine lines not inter-
secting K. Since n > 1, the complement of this set is compact. Substracting
constant if necessary, we obtain that φ is a function with compact support.

Step 5: ∂(f̃ −φ) = α−α = 0, hence f̃ −φ is holomorphic. However, φ has
compact support, and therefore f = f̃ − φ outside of a compact.
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