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Stone-Weierstrass approximation theorem

DEFINITION: Let M be a topological space, and ||f| := sup,/|f| the
sup-norm on functions. C°-topology on the space CO(M) of continuous,
bounded real-valued functions is the topology defined by the sup-norm.

EXERCISE: Prove that C%°(M) with sup-norm is a complete metric
space.

DEFINITION: Let A ¢ C°M be a subspace in the space of continuous
functions. We say that A separates the points of M if for all distinct points
x,y € M, there exists f € A such that f(x) # f(y).

THEOREM: (Stone-Weierstrass theorem)
Let A ¢ COM be a subring separating points, and A its closure. Then
A=COM.
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Hilbert spaces

DEFINITION: Hilbert space over C is a complete, infinite-dimensional Her-
mitian space which is second countable (that is, has a countable dense set).

DEFINITION: Orthonormal basis in a Hilbert space H is a set of pairwise
orthogonal vectors {xo} which satisfy |xo| = 1, and such that H is the closure
of the subspace generated by the set {z.}.

THEOREM: Any Hilbert space has a basis, and all such bases are
countable.

Proof: A basis is found using Zorn lemma. If it's not countable, open balls
with centers in z, and radius € < 271/2 don't intersect, which means that the
second countability axiom is not satisfied. m

THEOREM: AIll Hilbert spaces are isometric.

Proof: Each Hilbert space has a countable orthonormal basis. =
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Fourier series

EXAMPLE: Let (M,u) be a space with measure. Consider the space V
of measurable functions f : M — C such that [,,|f|°s < oco. For each
f,g € V, the integral [ fgu is well defined, by Cauchy inequality: [|fglp <
\/fM|f|2ufM lg|21.  This gives a Hermitian form on V. Let L2(M) denote
the completion of V with respect to this metric. It is called the space of
square-integrable functions on M. Its elements are called L2-functions.

CLAIM: (” Fourier series”) Functions ey (t) = e2™V—1k L c7 on S1 =R/Z
form an orthonormal basis in the Hilbert space L2(S1).

Proof. Step 1: Orthogonality is clear from [¢1 2™V =1/t =0 for all k% 0
(prove it).

Step 2: The space of Fourier polynomials 3% ager(t) is dense in the space
of continuous functions on the circle by the Stone-Weierstrass approximation
theorem. Therefore, the closure of the space of functions which admit Fourier

series is L2(S1). m
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Fourier series on a torus

REMARK: Let tq,...,t, be coordinates on R™. We can think of t; as of angle
coordinates on the torus T"™ = R"™/Z", considered as a product of n copies of
S1. Consider the Fourier monomials Fy, 0, = exp(2ry/—=1 X7 I;t;), where
l1,...,ln are integers. Clearly,

L2(T™) & L2(SHRL?(S1)®..®L2(S1) .
n times
where & denotes the completed tensor product. This implies that the Fourier
monomials form a Hilbert basis in L2(T™).

REMARK: This also follows directly from the Stone-Weierstrass theorem.

THEOREM: Let V be a Hilbert space, Map(T™,V) continuous maps, and
L2(T™, V) a completion of Map(T™,V) with respect to the L?-norm |v|? =
Jm |v(z)|?dz. Consider an orthonormal basis uq,...,un,... in V. Then an or-
thonormal basis in Map(7™,V) is given by monomial maps F;, _; u; taking
s€T™ to Fy, . 1,(s)u;.

Proof: Orthonormality of the collection {Fj, , u;} is clear. To prove its
completeness (that is, the density of the subspace generated by {Fll,...,lnuj})'
notice that Map(7T™,V) is a completion of &; Map(T™,V;), where V; = (v;).
Now, {F}, . 1,u;} is an orthonormal basis in V; = Map(7",C). =

5



Hodge theory, lecture 12 M. Verbitsky

Weight decomposition for U(1)-representations

EXERCISE: Let p: U(1) — GL(V) be a finite-dimensional irreducible com-
plex representation of the Lie group U(1). Prove that dimC = 1 and there
exists n € Z such that t € U(1) = R/Z acts on V as p(t)(v) = 2™V 1nty,

DEFINITION: A representation of U(1) with p(t)(v) = e2™V—17ty is called
an irreducible weight n representation.

DEFINITION: Let V be a Hermitian space (possibly infinitely-dimensional)
equipped with an action of U(1), and Vi, C V weight k representations, k € Z.
The direct sum @V, is called the weight decomposition for V if it is dense
in V.

EXAMPLE: Let L2(S1, W) the space of maps from S! to a Hermitian space
W. We define U(1)-action on L2(S1, W) by p(¢t)(f) = Ri(f) where R:(f(z)) =
f(x +t) shifts S1 by t. Clearly, this is a Hermitian representation, and its
weight decomposition is its Fourier decomposition.
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Weight decomposition for U(1)-representations (2)

CLAIM: Let @V, C V be the weight decomposition of a Hermitian repre-
sentation p of U(1). Then any vector v € V can be decomposed onto a
converging serie v = ) ;-7 v;, With v; € V;. This decomposition is called the
weight decomposition for v.

Proof. Step 1: Clearly, all V; are pairwise orthogonal; indeed, forany t € U(1)
and Lp c Vp, Lq - Vq, ) # j, we have

GQW\/__lpt(CEpaxq) = (p(t)(zp), zq) = (Tp, p(—t)3q) =
—2my/—1 thEq) — 6271'\/——1 qt

— (xpa € (pra qu)

giving p = q whenever (zp,zq) # O.

Step 2: Let wm;; : V —V, be the orthogonal projection. Then |:13|2 >
Zf:_p|7rz-(:c)|2 because orthogonal projection is always distance-decreasing.
Therefore, the serie > ;<7 m;(x) converges. Its limit is a vector =’ which sat-
isfies (z,u) = (a/,u) for any u € @rcyz Vi- Since @rez Vi is dense in V, this
implies x = 2/. =
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Weight decomposition and Fourier series

LEMMA: Let W be a Hermitian representation of U(1) admitting a weight
decomposition. Then any subquotient of W also admits a weight de-
composition.

Proof: This is clear for quotients. Any closed subspace V C W gives a direct
sum decomposition W = V@VL, hence it also can be realized as a quotient.
[ |

LEMMA: Let p: U(1) — U(W) be a Hermitian representation of U(1), and
L2(S1, W) the space of maps from S to W with the U(1)-action by translation
as defined earlier. Then W can be realized as a sub-representation of
L2(St,w).

Proof: For any =z € W consider a, € L?(S1,W) taking t € U(1) = R/Z to
p(t)(x). Clearly, x — o, defines a homomorphism of representations. =

THEOREM: Let W be a Hermitian representation of U(1). Then W admits
a weight decomposition W = @,z W;.

Proof: We realize W as a subrepresentation in L2(S1, W), and use the Fourier
series to obtain the weight decomposition of L2(S1, W). =
8



Hodge theory, lecture 12 M. Verbitsky

Weight decomposition for 7T"-action

EXERCISE: Consider the n-dimensional torus T" as a Lie group, T" = U(1)".
Prove that any finite-dimensional Hermitian representation of 7" is a
direct sum of 1-dimensional representations, with action of T™ given by
p(t1,....tn)(x) = exp(2mv/—1 Y, pit;)z, for some p1,...,pn € Z", called the
weights of the 1-dimensional representation.

DEFINITION: Let V be a Hermitian space (possibly infinitely-dimensional)
equipped with an action of T™, and V, C V weight o representations, o € Z".
The direct sum @P,c7zn Vo is called the weight decomposition for V if it is
dense in V.

THEOREM: Let W be a Hermitian vector space. Then the Fourier series
provide the weight decomposition on L2(T", W). =

THEOREM: Let W be a Hermitian representation of 7. Then W admits

—_—

a weight decomposition V = @, c7n Wa.

Proof: We realize W as a subrepresentation in L2(T", W), and use the Fourier

series to obtain the weight decomposition of L2(T", W). m
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Weight decomposition for T"-action on differential forms

REMARK: Let M be a manifold with the T™-action, and

—~

/\*(M) — @QGZHA*(M)plr“apk

be the weight decomposition on the differential forms. Then the de Rham
differential preserves each term A*(M)p,...p..- Indeed, d commutes with
the action of the Lie algebra of T, and A*(M)p,,...p, are its eigenspaces.

REMARK: Let a = } ap,,.p, be the weight decomposition. The forms
apq,...,p, @re obtained by averaging

2™V =1 Ylim1Pitiq = Avgn 2™V 1 izt ~Pitig,

hence they are smooth.
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De Rham cohomology and 7"-action

THEOREM: Let M be a smooth manifold, and T™ a torus acting on M by
diffeomorphisms. Denote by A*(M)T" the complex of T™-invariant differen-
tial forms. Then the natural embedding A*(M)T" < A*(M) induces an
iIsomorphism on de Rham cohomology.

Proof. Step 1: Let a € A*(M) be a form and a = Y} ap,....p, its weight
decomposition, with ap,,..p, € Ap, . (M) a form of weight py,...,pn. Since
T"-action commutes with de Rham differential, these forms are closed when

« IS closed.

Step 2: Let rq,...,rn, be the standard generators of the Lie algebra of T™
rescaled in such a way that Lie; (exp(2nv—1 > 1 pit;)) = V—1pg, and ip, :
N{(M) — N=1(M) the convolution operator. Since Lie,, = {d,ir, }, we have
PLOp,...pn = d(ir,Qpq,...p,) Whenever ayp .. p, is closed. Therefore, all terms
In the weight decomposition a = > ap,,...p, are exact except ag o .. o-

Step 3: In the direct sum decomposition of the de Rham complex

* Ak T T *
the second component has trivial cohomology, because Lie,,_ is invertible on

Lier (closed form) is exact. m
11
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Constant forms on a torus

DEFINITION: Let 7" = (S1)” be a compact torus equipped with a action on
itself by shifts, and A%, ,(M). the space of T"-invariant forms on T"™. These
forms are called constant differential forms. Clearly, constant forms have
constant coefficients in the usual (flat) coordinates on the torus.

THEOREM: The natural embedding A%, . (T") — A*(T™) induces an iso-
morphism A%, . (T") = H*(T").

Proof: The embedding A%, . (T") = A*(T")I» — A*(T™) induces an iso-

morphism on cohomology, however, all constant forms are closed, hence
H*(Aionst(Tn% d) — /\ionst(Tn)' u

12
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Holomorphic vector fields

DEFINITION: Let (M,I) be a complex manifold, and X € TM a real vector
field. It is called holomorphic if Liex(I) = 0, that is, if the corresponding
flow of diffeomorphisms is holomorphic.

CLAIM: Let (M, I) be a complex manifold, and X € TM a holomorphic vector
field. Then X¢:= I(X) is also holomorphic, and commutes with X.

LEMMA: Let X be a holomorphic vector field, and X¢ = I(X). Then
{dc,iX} = — LieXc.

Proof: Using {IdI~1,ix} = I{d, I LixI}I~1, we obtain {d% iy} = —I{d,ixc}[~1 =
I LiexeI~1. However, X¢ is holomorphic, hence I LiexcI~1 = Lieyc. m

PROPOSITION: Let X be a holomorphic vector field, and X¢ = I(X).
Then {9,ix} = 3(Liex —v/—1 Liexe).

Proof: 0 = %(d + +v/—1d°), hence
_ 1 1
{8,@'X} = 5 Liex +v—1 {dc,iX} = E(LieX —v —1 LieXc).

13
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Dolbeault cohomology of an elliptic curve

PROPOSITION: Let X = C/Z? be an elliptic curve, and A*(X) = D72 N (X)p1,po
its weight decomposition under the T2-action. Consider the space T2-invariant
forms A*(X)T° = A*(X)po. Then the natural embedding A*(X)T° <
A*(X) induces an isomorphism of Dolbeault cohomology.

Proof: Let a € A*(X)p,p, be a 0-closed form, with (p,q) # (0,0). Suppose,
for example, that p # 0, and X is the generator of the corresponding compo-
nent of the Lie algebra such that Liexy a = pv/—1 «. Since X¢ belongs to the
same Lie algebra, we have Lieyc(a) = va, where v € /—1R. Then

v—1p+ ’Ua
2
hence a is 9-exact. This implies that © has no cohomology on

D AN Xprp

p1,p27#(0,0)

1 _ _
= E(LleX —/—1 LieXc)C\{ = {6, ’LX}Oé — 87;X057 (* * *)

14
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Dolbeault cohomology of a disk

COROLLARY: Let K C C be a compact subset, K9 its interior, and n €
AOL(KO) a form smoothly extending to a neighbourhood of K. Then 7 is
0-exact.

Proof: Choosing an appropriate lattice 72 C C, we may assume that K is a
subset of an elliptic curve X. Since n extends to a neighbourhood of K, we
can use partition of unity to extend it to a smooth form n on X. Applying
the weight decomposition 1 = >_ .72 7a, We obtain that the form n —ngg is
0-exact. However, the constant part ng o = const - dz A dz = const - 9(zdz) (for
(1,1)-form) or ng o = const - dz = const - 9(z) for (0,1)-form is also J-exact. m

15
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Poincaré-Dolbeault-Grothendieck lemma
DEFINITION: Polydisc D" is a product of n discs D C C.

THEOREM: (Poincaré-Dolbeault-Grothendieck lemma)
Let n € AP4(D"™), q > 0, be a d-closed form on a polydisc, smoothly extended
to a neighbourhood of its closure D"* C C*. Then n is 0-exact.

We proved it for n = 1. Now we prove it for all n.

16
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O-homotopy operator on 72

From now on, 1-dimensional complex torus is always C/Z[v/—1] and the
n-dimensional complex torus 72" is a product of n copies of T2 =

C/Z[V=T].

CLAIM: Let p € AP4(M),;, be a form of weight (a,b) on a torus T2 =
C/Z[v—11], and X the coordinate vector field along the real axis. Then

{8,ix}(pw) = 3(b+ v~T1a).

Proof: {9,ix} = %(LieX —+/—1 Liexe¢), and X°¢ is the coordinate vector field
along the imaginary axis, acting on p by multiplication by /—156. =

DEFINITION: Given u = 3", ,c72 tqp define

P(p):= > 20b+v=1a) tugy.
(a,b)7#(0,0)
The operator P commutes with all operators which commute with the
T2-action on itself: with d, d° iy, iye, etc.

COROLLARY: Then {9, Pix}) = pu— pupo. In particular, if p is d-closed,
we also have 0P(ix(n)) = pu — po. =
17
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Homotopy operator . on T2"

Let U C T2" be a polydisk. Since U is contractible, all constant (p, q)-forms
on a torus with ¢ > 0 are 9-exact on U: 9z; = 9(%;), which can be well defined
on U because it is contractible.

For any disk U C T2, fix a cutoff function pe wWhich is 1 on U and O outside of a
contractible e-neighbourhood of U. Consider the map Q : AP-1(T2) — AP,O(T2)
taking p to ug o and replacing any constant summand of form aNOZ; by peZ;a.

CLAIM: In these assumptions, we have {9,v}(x) = p on U for any form
pe APH(T?), where y(a) = P(ix(a)) + Q(u).

Proof: If 490 = 0, we have Q(u) = 0, and this expression becomes {9, P(ix)}) =
©— po,0 Proven above. If = pg o, it becomes 9(Q(w))|y = p. =

Corollary 1: Let U C T2 pe a polydisk, and p. a cutoff function which is 1
on U and O outside of a contractible e-neighbourhood of U. We chose p: in
such a way that Lied/dxi(pg) = 0 at any point (z1,...,xn) such that |z;| < 1.
Let v, denote the operator v along the k-th component in T2n — (TQ)”, and
0 the 0 along this component. Then {0;,v.}(x) = on U for any form
divisible by dz,, and {0,v}|y =0 for | # k. m

18
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Poincaré-Dolbeault-Grothendieck lemma

THEOREM: (Poincaré-Dolbeault-Grothendieck lemma)
Let n € AOP(D™) be a d-closed form on a polydisc, smoothly extended to a
neighbourhood of its closure D*» C C*. Then n is d-exact.

We prove the following version of Poincaré-Dolbeault-Grothendieck.

THEOREM: Let U C T2™ be a sufficiently small polydisk, and u € AP:4(T2")
a form with ¢ > 0 which is d-closed on U. Then there exists o € AP:4—1(72n)
such that o = p on U.

Proof. Step 1: Let 9; : APY(T™) —s AP4T1(T™) be the operator a — dz; A

%a, where z; is i-th coordinate on 7. Then 0 = Y ,0;. Denote by ~; the
homotopy operator defined above. If a = dz; A 8, one has {9;,v;}(a) = a. If

a contains no monomials divisible by dz;, one has

0i{0;, vi} () = 0;7;0;(a) = {0;,v;} 00 = O,
hence d;(a — {9;,%})|y = 0. This implies that im [{9;,7;} — Id”U lies in the
space R;(U) of forms without dz; in monomial decomposition and with

all coefficients holomorphic as functions on z;.
19
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Poincaré-Dolbeault-Grothendieck lemma (2)

THEOREM: Let U C T2™ be a sufficiently small polydisk, and pu € AP:4(T2")
a form with ¢ > 0 which is 8-closed on U. Then there exists a € AP4—1(12m)
such that 6o = p on U.

Proof. Step 1: Let §; : AP4(D") —s AP4T1(D") be the operator o —» dz; A
d‘i «, and ~; the homotopy defined above. Then im [{82,%} Id]|U lies in the
space R;(U) of forms without dz; in monomial decomposition and with all

coefficients holomorphic as functions on z;.

Step 2: Let R; denote the space of forms a on T2" such that «|; belongs
to the space R;(U) defined above. Properties of ~;:
(1). im [{82-,%}—Id] C R;. (2). {9s,7}Hlu =0, ifi# 5. (3). the restriction

{52-,%-}”31. vanishes on U. (4). v;(R;) C Rj, 9;(R;) C R; for all i # j.
roperty (1) is proven in Step 1, property (2) and (4) follow because ~; is

independent from the z;-coordinate for all j # i. Finally, (3) follows because

for all forms a without dz; in its monomial decomposition one has {v;,0}(a) =

7i(0; ().
Step 3: Properties (1), (3) and (4) give [{5@%} —Id} (Riy; "R, N...NR;, ) C

R; N Ril M Rig M...N Rik for ¢« ¢ {iq,ip,...,9;}, and {57;,"}/7;}
otherwise.

RilﬂRiQQ---ﬂRik =0

20
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Poincaré-Dolbeault-Grothendieck lemma (3)

Step 3: Properties (1), (3) and (4) give [{51-,%} —Id} (RiyNR;;N..NR;) C

R; N Ril M Rig M ... N Rik for ¢« ¢ {i1,10,...,7;}, and {5@,’)@}
otherwise.

Ry NRi,N..NR;, = O

Step 4: Let v:=3;~;. Since {9;,v;} =0 for i # j, Step 3 gives
{0,7} - (n—kK)Id|(Ry "Ry NoNR)C Y RiNRy NRiy NN R;,

1711,8D, .l

Step 5: Let Wy = A*(T?"), and W), C W),_1 the subspace generated by all
Ri, NR;,N...NR;, for iy <ip < ... <ij. Step 4 implies [{9,~}—(n—k) Id”Wk C
Wk_l_l.

Step 6: W, is the space of (p,0)-forms holomorphic on U, and it does not
contain any (p,q)-forms for ¢ > 0. Using induction in d = n — k, we can
assume that any od-closed (p,q)-form in Wy, is 9-exact when ¢ > 0.
To prove PDG-lemma, it would suffice to prove the same for any o-
closed form o € Wj. Step 5 gives (n — k)a — {9,v}(a) = (n — k)a — 0v(a) €
W41, and this form is 0-exact by the induction assumption. This gives
(n — k)a— 0v(a) = 0n, hence « is 9-exact. =
21
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Hartogs theorem

THEOREM: Let f be a holomorphic function on C"\ K, where K C C" is a
compact, and n > 1. Then f can be extended to a holomorphic function
on C",

Proof. Step 1: Replacing K by a bigger compact, we can assume that f
is smoothly extended to a small neighbourhood of the closure M\K. Then
f can be extended to a smooth function on C", holomorphic outside of K.
Then o := 0f is a d-closed (0, 1)-form with compact support.

Step 2: Using the standard open embedding of C" to CP"™, we may consider
a as a 0-closed (0,1)-form on CP". Since HY(CP™) = 0, this gives a = 9,
where ¢ is a continuous function on CP™. In particular, ¢ is bounded on
Cr c CcpP™.

Step 3: Since dp vanishes outside of K, the function ¢ is holomorphic outside
of K. Since bounded holomorphic functions on C are constant, ¢ is constant
on any affine line not intersecting K.

Step 4: This implies that ¢ = const on the union of all affine lines not inter-
secting K. Since n > 1, the complement of this set is compact. Substracting
constant if necessary, we obtain that ¢ is a function with compact support.

Step 5: O(f—¢) =a—a =0, hence f— ¢ is holomorphic. However, ¢ has

compact support, and therefore f = f — ¢ outside of a compact. =
22



