Metric spaces

lecture 2: Intrinsic metrics

Misha Verbitsky

IMPA, sala 232

January 4, 2022, 17:00

Admissible paths

DEFINITION: Let M be a topological space. A class of admissible paths is a set \mathcal{C} of continuous maps $[a,b] \longrightarrow M$ with the following properties.

- 1. The concatenation. For any two paths $[a,b] \xrightarrow{\gamma_1} M$, $[b,c] \xrightarrow{\gamma_2} M$, satisfying $\gamma_1(b) = \gamma_2(b)$, the concatenation $\gamma: [a,c] \longrightarrow M$ (that is, the path equal to γ_1 on [a,b] and to γ_2 on [b,c]) is also admissible.
- 2. Linear reparametrization. For any linear map $\varphi: [a,b] \longrightarrow [c,d]$ and any admissible path $\gamma: [c,d] \longrightarrow M$, the path $\varphi \circ \gamma$ is also admissible.
- 3. Restriction. For each path $[a,b] \xrightarrow{\gamma} M$, and an interval $[c,d] \subset [a,b]$, the restriction $\gamma|_{[c,d]}$ is also admissible.

Admissible paths (examples)

EXAMPLE: Polygonal chains in \mathbb{R}^n constitute an admissible class.

EXAMPLE: Piecewise polynomial paths are obtained by concatenation of a collection of paths γ_i : $[x_i, x_{i+1}]$, given by polynomial maps $R \mapsto \mathbb{R}^n$. Clearly, piecewise polynomial paths constitute an admissible class.

EXAMPLE: Piecewise smooth paths are obtained by concatenation of a collection of paths γ_i : $[x_i, x_{i+1}]$, given by smooth maps $R \mapsto \mathbb{R}^n$. Clearly, piecewise smooth paths constitute an admissible class.

DEFINITION: A *C*-Lipschitz map is a map of metric spaces $\varphi: M \longrightarrow M'$ satisfying $Cd(x,y) \geqslant d(\varphi(x),\varphi(y))$. Lipschitz map is a *C*-Lipschitz map with some constant *C*.

EXAMPLE: Lipschitz paths in a metric space constitute an admissible class

EXAMPLE: Rectifiable paths in a metric space constitute an admissible class

Length structures

DEFINITION: Let M be a topological space. A length structure on M is a class \mathcal{C} of admissible paths together with a length functional $L: \mathcal{C} \longrightarrow \mathbb{R}^{\geqslant 0} \cup \infty$ which satisfies the following axioms.

- 1. Additivity: for any path $\gamma: [a,c] \longrightarrow M$ and any $b \in [a,c]$, one has $L(\gamma) = L(\gamma|_{[a,b]}) + L(\gamma|_{[b,c]})$.
- 2. The length is continuous as a function of the ends: for any path $\gamma: [a,c] \longrightarrow M$, the function $L(\gamma|_{[a,b]})$ depends on $b \in [a,c]$ continuously.
- 3 **Invariance under reparametrizations:** for any homeomorphism $\varphi: [a,b] \longrightarrow [a,b]$ and any admissible path $\gamma: [a,c] \longrightarrow M$ such that $\varphi \circ \gamma$ is also admissible, one has $L(\gamma) = L(\varphi \circ \gamma)$.
- 4. Compatibility with the topology: for any point $x \in M$, and any closed set $Z \subset M$, such that $x \notin Z$, there is a number $\varepsilon > 0$ such that $L(\gamma) > \varepsilon$ for any admissible path connecting Z to x.

EXAMPLE: The arc-length on the class of rectifiable paths **gives a length** structure.

The metric associated with a length structure

DEFINITION: Let M be a topological space equipped with a length structure L. The **path metric** d_L associated with L is defined as $d_L(x,y) := \inf_{\gamma} L(\gamma)$, where the infimum is taken over all admissible paths connecting x to y.

CLAIM: d_L is a metric.

Proof: d_L is symmetric because the parameter change $t \longrightarrow (b-t) + a$ takes a path connecting x to y to a path connecting y to x, and does not change the length. Positivity of $d_L(x,y)$ for all $x \neq y$ follows from the condition 4, applied when $Z = \{y\}$. Indeed, there exists a number $\varepsilon > 0$ such that any path γ connecting x to $Z = \{y\}$ satisfies $L(\gamma) > 0$, hence $d_L(x,y) > \varepsilon$. Triangle inequality follows from the concatenation. Let γ_1 be a path connecting x to y, and γ_1 a path connecting y to z. We can chose γ_1 , γ_2 such that $L(\gamma_1) < d_L(x,y) + \varepsilon$, and $L(\gamma_2) < d_L(y,z) + \varepsilon$, for any given $\varepsilon > 0$. Denote by γ the concatenation of γ_1 and γ_2 , it is an admissible path connecting x to z, and satisfies $L(\gamma) = L(\gamma_1) + L(\gamma_2) < d_L(x,y) + d_L(y,z) + 2\varepsilon$ This gives

$$d_L(x,y) + d_L(y,z) \geqslant L(\gamma) + 2\varepsilon \geqslant d_L(x,z) + 2\varepsilon.$$

Examples of length structures

EXAMPLE: Let $M = \mathbb{R}^n$ with the standard topology, and \mathcal{C} the class of all piecewise-linear paths (polygonal chains) $[x_0, x_1] \cup [x_1, x_2] \cup ... \cup [x_{n-1}, x_n]$. Define the length functional taking $\gamma = [x_0, x_1] \cup [x_1, x_2] \cup ... \cup [x_{n-1}, x_n] \in \mathcal{C}$ to $L(\gamma) = \sum |d(x_i, x_{i+1})|$.

CLAIM: The metric d_L constructed from this length structure is equal to the standard Euclidean metric.

Proof: Indeed, the shortest polygonal chain connecting two points is an interval of a line. ■

EXAMPLE: ("crossing of a swamp": conformally flat metric)

Let $M=\mathbb{R}^n$ and \mathcal{C} the class of all piecewise-linear paths (polygonal chains). Fix a continuous, positive function $f: \mathbb{R}^n \longrightarrow \mathbb{R}^{>0}$. Define the length functional as

$$L(\gamma) = \sum \int_{[x_i, x_{i+1}]} f dt$$

where dt is the unit 1-form on the interval.

EXERCISE: Prove that this defines a length structure.

Finsler metrics

EXAMPLE: Let M be \mathbb{R}^n , and \mathcal{C} the class of all piecewise smooth paths. Define the length functional as $L(\gamma(t)) := \int_a^b |\gamma'(t)| dt$.

CLAIM: This functional defines a length structure.

Proof: Indeed, it is equal to the arc length. ■

EXAMPLE: (A Finsler metric)

Let $U \subset \mathbb{R}^n$ be an open set, and $\nu_x : T_x \mathbb{R}^n \longrightarrow \mathbb{R}$ the norm on the tangent space, continuously depending on x. For any piecewisely smooth path $\gamma : [a,b] \longrightarrow U$, define $L_{\nu}(\gamma(t)) := \int_a^b \nu_{\gamma(t)}(\gamma'(t)) dt$

PROPOSITION: This defines a length functional on the class of piecewisely smooth paths.

Proof: Additivity and continuity of L are clear. Compatibility with topology is implied by $L_{\nu} \geqslant L_d$, where L_d is the arc length associated with an Euclidean metric such that the corresponding norm on $T_x\mathbb{R}^n$ is smaller than ν_x .

Finsler metrics and Riemannian metrics

Invariance of L_{ν} under the reparametrization is implied by the formula

$$L_{\nu}(\varphi \circ \gamma) = \int_{a}^{b} \nu_{\gamma(\varphi(t))}(\varphi \circ \gamma)'(t)dt =$$

$$= \int_{a}^{b} \nu_{\gamma(\varphi(t))}(\varphi'(t)\gamma'(\varphi(t))dt = \int_{a}^{b} \varphi'(t)\nu_{\gamma(\varphi(t))}(\gamma'(\varphi(t))dt =$$

$$= \int_{\varphi(a)}^{\varphi(b)} \nu_{\gamma(\varphi(t))}(\gamma'(\varphi(t))d\varphi(t) = L_{\nu}(\gamma)$$

DEFINITION: Let M be a manifold, and ν_x : $T_x\mathbb{R}^n \longrightarrow \mathbb{R}$ the norm on the tangent space, continuously depending on x. Define a functional L_{ν} on the class of piecewise smooth paths by

$$L_{\nu}(\gamma(t)) := \int_{a}^{b} \nu_{\gamma(t)}(\gamma'(t)) dt.$$

The corresponding path metric on M is called a Finsler metric. When the norm ν_x is Euclidean for all points, this metric is called a Riemannian metric, and the Euclidean scalar product g_x a Riemannian form. Usually it is considered as a section of the bundle $\operatorname{Sym}^2(T^*M)$ of symmetric 2-forms on M.

Geodesics (reminder)

DEFINITION: A path $\gamma: [a,b] \longrightarrow M$ is called a minimizing geodesic if $d(\gamma(x),\gamma(y)) = |x-y|$ for all $x,y \in [a,b]$. In other words, a map $\gamma: [a,b] \longrightarrow M$ is a minimizing geodesic if and only if it is an isometry.

REMARK: A geodesic is a map $\gamma: [a,b] \longrightarrow M$ such that [a,b] is a union of intervals $[a,b] = \bigcup [x_i,x_{i+1}]$, and $\gamma |_{[x_i,x_{i+1}]}$ is a minimizing geodesic. This definition is very important in differential geometry, but we (almost) never will use it.

REMARK: We are interested in metric spaces where every two points can be connected by a minimizing geodesic; such metrics are called **geodesic** metrics. Riemannian metric on a complete Riemannian manifolds have this property. In the next lecture I will explain how to construct such metrics.

Arc-length and rectifiable paths (reminder)

Let (M,d) be a metric space, and $\gamma: [a,b] \mapsto M$ a continuous path (here [a,b] denotes the closed interval). Let $x_0=a < x_1 < ... < x_{n-1} < b = x_n$ be the partition of the interval, and $L_{\gamma}(x_1,...x_{n-1}) := \sum_{i=0}^{n-1} d(\gamma(x_i),\gamma(x_{i+1}))$ the length of the corresponding polygonal chain.

DEFINITION: We define the arc-length (or the length) of the path γ as

$$L_d(\gamma) := \sup_{a < x_1 < \dots < x_{n-1} < b} L_{\gamma}(x_1, \dots x_{n-1}),$$

where supremum is taken over all partitions of the interval [a,b]. A path is called **rectifiable** if its arc-length is finite.

CLAIM: Let \mathcal{C} be the class of rectifiable paths, and $L_d: \mathcal{C} \longrightarrow \mathbb{R}$ the arclength. Then (\mathcal{C}, L_d) is a length structure.

Arc-length as a length structure

DEFINITION: Let (M,d) be a metric space, and $L_d: \mathcal{C} \longrightarrow \mathbb{R}$ the arc-length functional on the class of rectifiable paths. Denote by \widehat{d} the corresponding path metric. It is called **the path metric, induced by** d.

REMARK: Clearly, $\widehat{d} \geqslant d$. Indeed, for any path γ connecting x to y, $L_d(\gamma) \geqslant d(x,y)$ by the triangle inequality.

DEFINITION: A metric d on M is called **intrinsic** of $\hat{d} = d$.

THEOREM: For any metric space (M,d), the metric \hat{d} is intrinsic, that is, $\hat{\hat{d}} = \hat{d}$.

Proof. Step 1: Since $\hat{d} \geqslant d$, we have $L_d(\gamma) \leqslant L_{\hat{d}}(\gamma)$ for any path γ in M.

Step 2: Let $\gamma: [a,b] \to M$ be a rectifiable path. Take a partition $x_1,...,x_{n-1}$ of the interval such that $L_{\widehat{d}}(\gamma) - \sum \widehat{d}(\gamma(x_i),\gamma(x_{i+1})) < \varepsilon$. Then

$$L_{\widehat{d}}(\gamma) - \varepsilon \leqslant \sum_{i} \widehat{d}\left(\gamma\Big|_{[x_{i},x_{i+1}]}\right) \leqslant \sum_{i} L_{d}\left(\gamma\Big|_{[x_{i},x_{i+1}]}\right) = L_{d}(\gamma).$$

Passing to the limit $\varepsilon \to 0$, we obtain $L_{\widehat{d}}(\gamma) \leqslant L_d(\gamma)$. Since $\widehat{d} \geqslant d$, his gives $L_{\widehat{d}}(\gamma) = L_d(\gamma)$, hence $\widehat{d} = \widehat{d}$.

Intrinsic metrics and length structures

THEOREM: Let (M, \mathcal{C}, L) be a topological space equipped with a length structure, and d the associated path metric. Then d is intrinsic.

Proof. Step 1: Let γ be an admissible path connecting a and b in M. By definition, $d(a,b) \leqslant L(\gamma)$. On the other hand, $L_d(\gamma)$ is the supremum of $\sum_i d(\gamma(x_i), \gamma(x_{i+1}))$ for all partitions of [a,b]. Therefore, for each $\varepsilon > 0$ there exists a partition $x_1, ..., x_{n-1}$ of [a,b] such that

$$L_d(\gamma) \leqslant \sum_i d(\gamma(x_i), \gamma(x_{i+1})) + \varepsilon \leqslant \sum_i L(\gamma_{[x_i, x_{i+1}]}) + \varepsilon = L(\gamma) + \varepsilon.$$

Passing to the limit $\varepsilon \to 0$, we obtain $L_d(\gamma) \leqslant L(\gamma)$, hence $\hat{d} \leqslant d$.

Step 2: The converse inequality $\hat{d} \geqslant d$ is clear.

The following version of Hopf-Rinow theorem is due to Stefan Cohn-Vossen.

THEOREM: Let (M,d) be a complete, locally compact space with intrinsic metric. Then any two points of M can be connected by a minimizing geodesic. Moreover, any closed ball in M is compact.

Proof: Next lecture.