Metric spaces

lecture 3: Local metrics

Misha Verbitsky

IMPA, sala 23

January 6, 2022, 17:00

Intrinsic metrics (reminder)

Let (M,d) be a metric space, and $\gamma: [a,b] \mapsto M$ a continuous path (here [a,b] denotes the closed interval). Let $x_0 = a < x_1 < ... < x_{n-1} < b = x_n$ be the partition of the interval, and $L_{\gamma}(x_1,...x_{n-1}) := \sum_{i=0}^{n-1} d(\gamma(x_i),\gamma(x_{i+1}))$ the length of the corresponding polygonal chain.

DEFINITION: We define the arc-length (or the length) of the path γ as

$$L_d(\gamma) := \sup_{a < x_1 < \dots < x_{n-1} < b} L_{\gamma}(x_1, \dots x_{n-1}),$$

where supremum is taken over all partitions of the interval [a,b]. A path is called **rectifiable** if its arc-length is finite.

DEFINITION: A metric d on M us called **intrinsic metric** if $d(x,y) = \inf_{\gamma} L_d(\gamma)$, where the infimum is taken over all rectifiable paths γ connecting x to y.

Herbert Busemann

Herbert Busemann (1905 – 1994)

Busemann defined the intrinsic metric, Finsler manifolds, and many other concepts of metric geometry.

Herbert Busemann: "Untitled" (1972), Noho Modern gallery, Los Angeles

Conflict

Herbert Busemann: "Conflict" (1972), Noho Modern gallery, Los Angeles

Weakly intrinsic metrics

DEFINITION: For any two points x,y in a metric space (M,d), **an** ε -chain, connecting x to y is a collection of points $x=z_0,z_1,...,z_{n-1},z_n=y$ such that $d(z_i,z_{i+1})\leqslant \varepsilon$. Its **defect** is the number $\sum_{i=0}^{n-1}d(z_i,z_{i+1})-d(x,y)$. The space (M,d) is **weakly intrinsic** if for any two points $x,y\in M$ such that $d(x,y)<\infty$ and any $\varepsilon>0$, $\delta>0$, there exists an ε -chain connecting x to y with defect $\leqslant \delta$.

CLAIM: Intrinsic metrics are weakly intrinsic.

Proof. Step 1: For any partition of a recrifiable path $\gamma:[a,b] \longrightarrow M$ there exists a sub-partition $t_0 = a < t_1 < t_2 < ... < t_n = b$ such that $d(\gamma(t_i), \gamma(t_{i+1})) < \varepsilon$. To find such a smaller partition, we cover the image of γ by ε -balls and find a finite subcover.

Step 2: Choose a path γ connecting x to y such that $d(x,y) < L_d(\gamma) - \frac{1}{2}\delta$. Take a partition $x_1, ..., x_n$ of γ such that $L_{\gamma}(x_1, ..., x_m) + \frac{1}{2}\delta > L_d(\gamma)$; the same is true for any sub-partition, $t_1, ..., t_n$, because $L_{\gamma}(x_1, ..., x_m) \leqslant L_{\gamma}(t_1, ..., t_n) \leqslant L_d(\gamma)$. Then $|L_{\gamma}(t_1, ..., t_n) - L_d(\gamma)| < \frac{1}{2}\delta$ and $|d(x,y) - L_d(\gamma)| < \frac{1}{2}\delta$, hence $|L_{\gamma}(t_1, ..., t_n) - d(x,y)| < \delta$.

Weakly intrinsic metrics (2)

Step 3: Using Step 1, we choose a sub-partition $u_1,...,u_n$ of the partition constructed in Step 2 in such a way that $d(\gamma(u_i),\gamma(u_{i+1}))<\varepsilon$. After passing to a sub-partition, the number $\sum_i d(\gamma(u_i),\gamma(u_{i+1}))$ would possibly increase, hence the property

$$d(x,y) + \delta \geqslant L_d(\gamma) \geqslant \sum_i d(\gamma(u_i), \gamma(u_{i+1})) > d(x,y) - \delta$$

is retained. Then $\gamma(u_0), \gamma(u_1), ...$ is an ε -chain with defect at most δ .

Local metrics

CLAIM: Let d_i be a family of metrics (possibly infinite), and $d(x,y) := \sup_i d_i(x,y)$. Then d is also a metric.

Proof: We need to check only that $d(x,y) \leq d(x,z) + d(z,y)$. This is clear, because

$$d(x,y) = \sup_{i} d_{i}(x,y) \leqslant \sup_{i} (d_{i}(x,z) + d_{i}(z,y)) \leqslant$$
$$\leqslant \sup_{i} d_{i}(x,z) + \sup_{i} d_{i}(z,y) = d(x,z) + d(z,y).$$

DEFINITION: Let $\{U_i\}$ be an open covering of s metric space $\{M,d\}$. Denote by $d_{\{U_i\}}$ the metric $\sup_{\alpha} d_{\alpha}$, where the supremum is taken over all metrics d_{α} which satisfy $d_{\alpha}\big|_{U_i}=d$ for all open sets U_i in the cover. A metric d is called $\{U_i\}$ -local if $d_{\{U_i\}}=d$. It is called ε -local, if it is $\{U_i\}$ -local with respect to the covering $\{U_i\}$ consisting of all ε -balls, and local if it is ε -local for all $\varepsilon>0$.

REMARK: This definition is useful if we have a covering $\pi: \tilde{M} \longrightarrow M$, and want to extend a metric from M to \tilde{M} .

EXERCISE: Find all finite local metrics on a line \mathbb{R} . Construct a non-local metric on \mathbb{R} .

Weakly intrinsic implies local

THEOREM: Let (M,d) be a metric space, with d weakly intrinsic. Then (M,d) is local.

Proof. Step 1: Denote by d_{ε} the supremum of all metrics which are equal to d on all ε -balls. Clearly, d is local if and only if $d = d_{\varepsilon}$ for all $\varepsilon > 0$.

Step 2: Let $x,y\in M$, $d(x,y)<\infty$, and $x=z_0,z_1,...,z_{n-1},z_n=y$ be an ε -chain with defect $\leqslant \delta$. Then

$$d(x,y) \le d_{\varepsilon}(x,y) \le \sum_{i=0}^{n-1} d_{\varepsilon}(z_i, z_{i+1}) = \sum_{i=0}^{n-1} d(z_i, z_{i+1}) \le d(x,y) + \delta$$

(the equality is true because $d_{\varepsilon} = d$ on any ε -ball). Passing to the limit $\delta \to 0$, we obtain $d(x,y) = d_{\varepsilon}(x,y)$.

Local implies weakly intrinsic

The converse is also true.

THEOREM: Let (M,d) be a metric space, with d local. Then (M,d) is weakly intrinsic.

Proof: Define $d'_{\varepsilon}(x,y)$ as infimum of $\sum_{i=0}^{n-1} d(z_i,z_{i+1})$ for all ε -chains $z_0=x,z_1,...,z_n=y$. Clearly, $d=d'_{\varepsilon}$ on all $\frac{1}{2}\varepsilon$ -balls; since d is local, this implies $d'_{\varepsilon}\leqslant d$. On the other hand $d'_{\varepsilon}\geqslant d$ by triangle inequality. This gives $d=d'_{\varepsilon}$. Then $d(x,y)=\inf_{x_1,...,x_{n-1}}\sum_{i=0}^{n-1} d(z_i,z_{i+1})$ where the infimum is taken over all sequences $z_0=x,z_1,...,z_n=y$ such that $d(z_i,z_{i+1})<\varepsilon$, hence d is weakly intrinsic. \blacksquare

The distance between metric balls

DEFINITION: For any two subsets $A, B \subset M$, we denote by d(A, B) the number $\inf_{a \in A, b \in B} d(a, b)$.

DEFINITION: We say that a metric space (M,d) admits ε -midpoints if any $x,y \in M$ we have $d(B_x(r/2),B_y(r/2))=0$.

THEOREM: Let (M,d) be a metric space. Then the following conditions are equivalent.

- (1). (M,d) is weakly intrinsic.
- (2). (M, d) is local.
- (3). For any $x, y \in M$, and any $r_1, r_2 > 0$ such that $d(x, y) = r_1 + r_2$, we have $d(B_x(r_1), B_y(r_2)) = 0$.
- (4). (M,d) admits ε -midpoints.

REMARK: The first two are equivalent as we have already shown. Also, (3) clearly implies (4). We are going to prove $(1) \Rightarrow (3)$ and $(4) \Rightarrow (1)$.

The distance between metric balls (2)

Proof. Step 1: Weak intrinsic implies that for all $\varepsilon, \delta > 0$ there exists an ε -chain $x = t_0, ..., t_n = y$ with defect $\leq \delta$. Clearly, the defect is monotonous if we pass from $t_0, ..., t_n$ to a subset with the same ordering.

Step 2: Let t_k be the last of t_i which belongs to $B_x(r_1)$, and t_l the first of t_i which belongs to $B_y(r_2)$. Since $t_{k+1} \notin B_x(r_1)$, we have $d(x,t_{k+1}) > r_1$, and $d(t_k,t_{k+1}) < \varepsilon$ implies that $r_1 > d(x,t_k) \geqslant r_1 - \varepsilon$. Similarly, $r_2 > d(y,t_l) \geqslant r_2 - \varepsilon$.

Step 3: Since the defect of the chain t_0, t_k, t_l, t_n is bounded by δ (Step 1), we have $d(x, t_k) + d(y, t_l) + d(t_l, t_k) < r_1 + r_2 + \delta$. Then Step 2 implies

$$d(t_l, t_k) < r_1 + r_2 + \delta - d(x, t_k) - d(y, t_l) < \delta + 2\varepsilon.$$

We have obtained $d(B_x(r_1), B_y(r_2)) < \delta + 2\varepsilon$. Passing to the limit as $\varepsilon, \delta \to 0$, we get $d(B_x(r_1), B_y(r_2)) = 0$, hence $(1) \Rightarrow (3)$.

The distance between metric balls (3)

Step 4: We are going to prove that $(4) \Rightarrow (1)$ (existence of ε -midpoints implies that d is weak intrinsic). Let $x,y \in M$ be a points which satisfy $d(x,y)=r<\infty$. We fix $\varepsilon\gg\delta>0$. Choose points $x'\in B_x(r/2)$ and $y'\in B_y(r/2)$ such that $d(x',y')<\frac{1}{3}\delta$. Clearly, the defect δ_0 of the chain x,x',y',y is bounded by $\frac{1}{3}\delta$.

Step 5: To prove that (M,d) is weakly intrinsic, it remains to construct two ε -chains $a_0 = x, a_1, ..., a_l = x'$ and $b_0 = y, b_1, ..., b_m = y'$, such that $d(a_i, a_{i+1}) < \varepsilon$ and $d(b_j, b_{j+1}) < \varepsilon$, and the defect δ_a , δ_b of these chains is bounded by $\frac{1}{3}\delta$. Then the defect of the chain $x = a_0, ..., a_n = x', y' = b_m, ..., y = b_0$ is bounded by $\sum_i (a_i, a_{i+1}) + \sum_j d(b_j, b_{j+1}) + d(x', y') - r \leqslant \delta_a + d(x, x') + \delta_b + d(y, y') + d(x', y') - r \leqslant \delta_a + \delta_b + \delta_0 \leqslant \delta$.

Step 6: Let $\lceil \alpha \rceil$ denote the smallest integer $u \geqslant \alpha$. We use induction in $m = \lceil \frac{d(x,y)}{\varepsilon} \rceil$. Assume that an ε -chain with defect $<\delta$ connecting x to y exists whenever $\lceil \frac{d(x,y)}{\varepsilon} \rceil < n$, for any given $\delta > 0$. Clearly, $\lceil \frac{d(x,x')}{\varepsilon} \rceil < \lceil \frac{d(x,y)}{\varepsilon} \rceil$ unless $\frac{d(x,x')}{\varepsilon} < 1$. In the latter case, we take the ε -chain $x = z_0, x' = z_1, y' = z_2, y = z_3$, and observe that $d(z_0,z_1)+d(z_1,z_2)+d(z_2,z_2)< d(x,y)+\frac{1}{3}\delta$. Otherwise, we apply the induction assumption to find the chains $a_0 = x, a_1, ..., a_l = x'$ and $b_0 = y, b_1, ..., b_m = y'$ (Step 5).