Metric spaces

lecture 5: Quotient spaces

Misha Verbitsky

IMPA, sala 236

January 11, 2022, 17:00

Local metrics and weakly intrinsic metrics (reminder)

CLAIM: Let d_i be a family of metrics (possibly infinite), and $d(x,y) := \sup_i d_i(x,y)$. Then d is also a metric.

Proof: We need to check only that $d(x,y) \leq d(x,z) + d(z,y)$. This is clear, because

$$d(x,y) = \sup_i d_i(x,y) \leqslant \sup_i (d_i(x,z) + d_i(z,y)) \leqslant$$
$$\leqslant \sup_i d_i(x,z) + \sup_i d_i(z,y) = d(x,z) + d(z,y).$$

DEFINITION: Let $\{U_i\}$ be an open covering of s metric space $\{M,d\}$. Denote by $d_{\{U_i\}}$ the metric $\sup_{\alpha} d_{\alpha}$, where the supremum is taken over all metrics d_{α} which satisfy $d_{\alpha}\big|_{U_i}=d$ for all open sets U_i in the cover. A metric d is called $\{U_i\}$ -local if $d_{\{U_i\}}=d$. It is called ε -local, if it is $\{U_i\}$ -local with respect to the covering $\{U_i\}$ consisting of all ε -balls, and local if it is ε -local for all $\varepsilon>0$.

DEFINITION: For any two points x,y in a metric space (M,d), an ε -chain, connecting x to y is a collection of points $x=z_0,z_1,...,z_{n-1},z_n=y$ such that $d(z_i,z_{i+1})\leqslant \varepsilon$. Its **defect** is the number $\sum_{i=0}^{n-1}d(z_i,z_{i+1})-d(x,y)$. The space (M,d) is **weakly intrinsic** if for any two points $x,y\in M$ such that $d(x,y)<\infty$ and any $\varepsilon>0$, $\delta>0$, there exists an ε -chain connecting x to y with defect $\leqslant \delta$.

Hopf-Rinow theorem (reminder)

DEFINITION: For any two subsets $A, B \subset M$, we denote by d(A, B) the number $\inf_{a \in A, b \in B} d(a, b)$.

DEFINITION: We say that a metric space (M,d) admits ε -midpoints if any $x,y \in M$ we have $d(B_x(r/2),B_y(r/2))=0$.

THEOREM: Let (M,d) be a metric space. Then the following conditions are equivalent.

- (1). (M,d) is weakly intrinsic.
- (2). (M, d) is local.
- (3). For any $x, y \in M$, and any $r_1, r_2 > 0$ such that $d(x, y) = r_1 + r_2$, we have $d(B_x(r_1), B_y(r_2)) = 0$.
- (4). (M,d) admits ε -midpoints.

Proof: Lecture 3. ■

THEOREM: (Hopf-Rinow)

Let M be a complete, locally compact space with a weakly intrinsic metric. Then every closed metric ball $B^{cl}_x(r)$ in M is compact.

Proof: Lecture 4. ■

Normal parametrization (reminder)

DEFINITION: A continuous path $\gamma: [a,b] \longrightarrow M$ is called **minimizing**, if its arc-length is equal to $d(\gamma(a), \gamma(b))$.

DEFINITION: Given a homeomorphism $\varphi: [a,b] \longrightarrow [a,b]$, and a path $\gamma: [a,b] \longrightarrow M$, the composition $\varphi \circ \gamma$ is also a path from $x:=\gamma(a)$ to $y:=\gamma(b)$. Such a path is called a reparametrization of γ .

DEFINITION: Let $\gamma: [a,b] \longrightarrow M$ be a path, and γ_1 takes $t \in \mathbb{R}^{\geqslant 0}$ to $\gamma(t)$, where t is the minimal of all $x \in [a,b]$ such that $L_d(\gamma\big|_{[a,x]}) = t$ (here, as everywhere, L_d denotes the arc length). When $t_i \in \mathbb{R}^{\geqslant 0}$ is the sequence converging to t, the sequence $\gamma(t_i)$ converges to t, because $L_d(\gamma_1\big|_{[t_i,t]}) \geqslant d(\gamma_1(t),\gamma_1(t_i))$. Therefore, γ_1 is continuous. Such a path γ_1 is called **the normal parametrization** of γ .

Normal parametrization and minimizing geodesics (reminder)

CLAIM: Let $\gamma: [a,b] \longrightarrow M$ be minimizing, and $\gamma_1: [0,\alpha] \longrightarrow M$ its normal parametrization. Then γ_1 is an isometry.

Proof. Step 1: Any interval of a minimizing path is minimizing. Indeed, consider a partition $[a,c] \cup [b,c] = [a,b]$. Then

$$d(\gamma(a), \gamma(b)) \leqslant L_{\gamma}(c) \leqslant L_{d}(\gamma) = d(\gamma(a), \gamma(b)).$$

This gives $L_{\gamma}(c) = d(\gamma(a), \gamma(c)) + d(\gamma(c), \gamma(b)) = d(\gamma(a), \gamma(b))$. Then

$$L_d(\gamma) = L_d(\gamma|_{[a,c]}) + L_d(\gamma|_{[c,b]}) \geqslant d(\gamma(a), \gamma(c)) + d(\gamma(c), \gamma(b)) = d(\gamma(a), \gamma(b))$$

hence the inequalities $L_d(\gamma|_{[a,c]}) \ge d(\gamma(a),\gamma(c))$ and $L_d(\gamma|_{[c,b]}) \ge d(\gamma(c),\gamma(b))$ are equalities.

Step 2: Let $v \in [0, \alpha]$. The same argument applied to a partition $[0, v] = [0, u] \cup [u, v]$ would imply that

$$L_d(\gamma_1|_{[0,u]}) + L_d(\gamma_1|_{[u,v]}) = u + L_d(\gamma_1|_{[u,v]}) = L_d(\gamma_1|_{[0,v]}) = v,$$

giving $L_d(\gamma_1|_{[u,v]}) = v - u$. Then Step 1 gives $v - u = L_d(\gamma_1|_{[u,v]}) = d(\gamma_1(u), \gamma_1(v))$, hence γ_1 is an isometry.

Existence of minimizing geodesics

DEFINITION: A minimizing geodesic is an isometry $\gamma: [a,b] \longrightarrow M$.

REMARK: It is the same as a minimizing path which is naturally parametrized.

THEOREM: Let M be a locally compact, complete space with an almost intrinsic metric, and $x_0, x_1 \in M$. Then there exists a minimizing geodesic, connecting x_0 to x_1 .

Proof. Step 1: Let $d(x_0,x_1)=\alpha$. Rescaling the metric by a factor of α^{-1} , we may assume that $\alpha=1$. Since $d(\overline{B}_{x_0}(1/2),\overline{B}_{x_1}(1/2)=0$, and both balls are compact, **their intersection is non-empty.** Indeed, the function $y \stackrel{f}{\mapsto} d(y,\overline{B}_{x_1}(1/2))$ is Lipschitz, hence continuous, hence it has a minimum in somewhere on $B_{x_0}(1/2)$; since $d(\overline{B}_{x_0}(1/2),\overline{B}_{x_1}(1/2)=0$, infimum of f on $\overline{B}_{x_0}(1/2)$ is zero. Choose a point $x_{1/2}$ in $\overline{B}_{x_0}(1/2)\cap \overline{B}_{x_1}(1/2)$. Then the defect of the sequence $x_0,x_{1/2},x_1$ is equal 0.

Existence of minimizing geodesics (2)

THEOREM: Let M be a locally compact, complete space with an almost intrinsic metric, and $x_0, x_1 \in M$. Then there exists a minimizing geodesic, connecting x_0 to x_1 .

Proof. Step 1: We assume that $d(x_0, x_1) = 1$. Then there exists a point $x_{1/2} \in M$ such that $d(x_0, x_{1/2}) = d(x_{1/2}, x_1) = 1/2$.

Step 2: We apply the same argument to the pairs $x_0, x_{1/2}$ and $x_{1/2}, x_1$ to obtain points $x_{1/4}$ and $x_{3/4}$ such that $d(x_0, x_{1/4}) = 1/4$, $d(x_{1/4}, x_{1/2}) = 1/4$, $d(x_{1/2}, x_{3/4}) = 1/4$, $d(x_{3/4}, x_1) = 1/4$. The defect of the sequence $x_0, x_{1/4}, x_{1/2}, x_{3/4}, x_1$ is again equal 0.

Using induction, we extend this construction to any dyadic rational number $u = \frac{m}{2^n} \in [0,1]$, and obtain a collection of points x_u such that $d(x_u, x_v) = |u - v|$.

Step 3: We obtained an isometric embedding φ_0 from the set $D_{[0,1]}$ of dyadic rational numbers in [0,1] to M. Any isometry can be extended to a metric completion; this gives an isometry $\varphi: [0,1] \mapsto M$. By definition, φ is a minimizing geodesic.

The quotient topology

DEFINITION: Let M be a topological space, and \sim an equivalence relation. A subset $U \subset M/\!\!\sim$ is **open in the quotient topology** if its preimage in M is open. This defines the quotient topology on the quotient space $M/\!\!\sim$.

A caution: The quotient space might be non-Hausdorff, even if M is Hausdorff. Give an example when this happens.

DEFINITION: Let G be a group acting on a topological space M. The **quotient space** M/G is the space M/\sim of equivalence classes by the relation $x \sim y \Leftrightarrow x \in G \cdot y$. The quotient space is also called **the space of orbits of the action of** G.

REMARK: Let G be a group which acts on a topological space M by homeomorphisms. Then the natural projection $M \stackrel{\pi}{\longrightarrow} M/G$ is an open map (a map is open if it takes open sets to open sets).

Example: the topological space of a graph

DEFINITION: Let Γ be a graph, and S the set of its edges. Consider S as the space with discrete topology, and let $X:=S\times [0,1]$ be a disconnected union of S copies of an interval. For each $s\in S$, the points $s\times \{1\}$ and $s\times \{0\}$ corresponds to the ends of the intervals, each of them identified with the corresponding edge of the graph. If the edges s_1 and s_2 have a common vertex we write $x_1\sim x_2$, where $x_i=s_i\times \{1\}$ or $x_i=s_i\times \{1\}$ are the corresponding points of X. The topological space of a graph is the quotient $X/\!\!\sim$.

EXERCISE: The topological space of a graph is always Hausdorff (prove it).

Pseudo-metric spaces

DEFINITION: Let M be a set. A metric on M is a function $d: M \times M \longrightarrow \mathbb{R}^{\geqslant 0} \cup \infty$, satisfying the following conditions.

- * [Symmetry:] d(x, y) = d(y, x),
- * [Triangle inequality:] $d(x,y) \leq d(x,z) + d(z,y)$.

for any $x, y, z \in M$.

d(x,x) = 0 for all $x \in M$.

REMARK: Metrics are defined by three axioms, the definition of pseudometrics omit the first one:

* [Non-degeneracy:] $d(x,y) = 0 \Leftrightarrow x = y$.

REMARK: The condition d(x,y) = 0 defines an equivalence relation on M (prove it).

CLAIM: Let $x \sim y$ be points in a pseudo-metric space (M,d). Then d(x,z) = d(y,z) for any $z \in M$.

Proof: Triangle inequality gives $d(x,z) \le d(x,y) + d(y,z) = d(y,z)$, and similarly $d(y,z) \le d(y,x) + d(x,z) = d(x,z)$.

DEFINITION: Let $x \in M$ be a point in a pseudo-metric space, and $\varepsilon \in \mathbb{R}^{\geqslant 0}$. The set $B_{\varepsilon}(x) = \{y \in X \mid d(x,y) < \varepsilon\}$ is called **an open ball** of radius ε with center in x, or an ε -ball.

Metric spaces as quotients of pseudo-metric spaces

DEFINITION: An open set in a pseudo-metric space M is a union of open balls.

REMARK: This topology is non-Hausdorff if d is not a metric. Indeed, for each points $x \sim y$, every open ball which contains x also contains y, because d(z,x) = d(z,y), hence x and y cannot be separated.

Let (M,d) be a pseudo-metric space. Since d(x,z)=d(y,z) for all $x\sim y$, the function d is well defined on the space $\underline{M}:=M/\!\!\sim$ of equivalence classes. Clearly, d defines a metric on the set \underline{M} .

CLAIM: Every pseudo-metric space (M,d) is equipped with a surjective map $\pi: M \longrightarrow M$, where $(\underline{M},\underline{d})$ is a metric space which satisfies

$$d(x,y) = \underline{d}(\pi(x), \pi(y)) \quad (*)$$

REMARK: Conversely, if $\pi: M \longrightarrow \underline{M}$ is a map from M to a metric space, the formula (*) defines a pseudo-metric on M.

Pseudo-metric on the quotient space

DEFINITION: Let \sim be an equivalence relation on a metric space (X,d). Define a function $d_{\sim}: X/\!\!\!\sim \times X/\!\!\!\sim \longrightarrow \mathbb{R}^{\geqslant 0}$ on the quotient $X/\!\!\!\sim$ using $d_{\sim}(x,y)=\inf\sum d(p_i,p_{i+1})+d(q_{i+1},q_{i+2})$, where the infimum is taken over all collections of points $p_i,q_i\in X$ such that $p_0\sim x,q_n\sim y$, and $p_i\sim q_i$

CLAIM: d_{\sim} is a pseudo-metric on the quotient space X/\sim .

Proof: We need only to prove the triangle inequality. However, d_{\sim} is infimym of the lengths of the chains $p_0, p_1, q_1, q_2, p_2, p_3, q_3, q_4, ...$ connecting x to y, where the distance between $p_i \sim q_i$ is set to 0. If x is connected to y, and y to z by such a chain, then x is connected to y by a concatenation of these two chains, giving $d_{\sim}(x,z) \leq d_{\sim}(x,y) + d_{\sim}(y,z)$.

DEFINITION: Let \sim be an equivalence relation on a metric space (X,d). Then the pseudometric d_{\sim} on X/\sim is called **the quotient space metric**. **The metric quotient space** is obtained from X/\sim by identifying all points x,y which satisfy $d_{\sim}(x,y)=0$.

EXAMPLE: Let M be a group acting on a metric space (X,d) by isometries, and $x \sim y$ if x,y belong to the same G-orbit. Then for any $a,b \in M/G$, the distance $d_{\sim}(a,b)$ is the infimum of the distance between the representatives of a,b in X.

Metric graphs

DEFINITION: Disconnected union of metric spaces (X_{α}, d_{α}) indexed by the index α is the union $\coprod X_{\alpha}$ with the metric d(x, y) which is equal to $d_{\alpha}(x, y)$ when $x, y \in X_{\alpha}$, and to ∞ when $x \in X_{\alpha}, y \in X_{\beta}$ and $\alpha \neq \beta$.

DEFINITION: Let I_{α} be a collection of intervals, isometric to $[0,x_{\alpha}]$, and \sim the equivalence relation, obtained by gluing of some vertices. The metric factor $\frac{\prod_{\alpha}I_{\alpha}}{\sim}$ is called **the metric graph.** it is called **locally finite** if every point is identified with a finite number of points.

REMARK: When $\frac{\coprod_{\alpha} I_{\alpha}}{\sim}$ is locally finite, this space is homeomorphic to a topological space of a graph.

CLAIM: The metric on a metric graph is always intrinsic.

Proof: Every chain $p_0, p_1, q_1, q_2, p_2, p_3...$ connecting x to y can be realized by a connected union of intervals of the same length inside the graph. \blacksquare

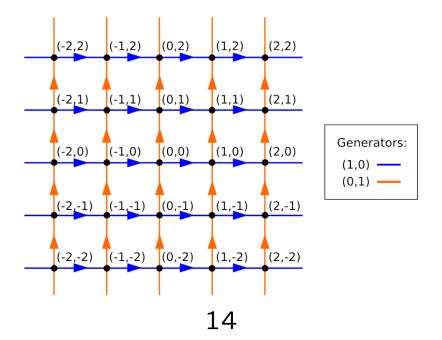
A caution: The natural map from the topological space of a graph Γ to the metric graph is a homeomorphism for a locally finite graph. It may fail to be bijective for a graph which is not locally finite. Also, it is never a homeomorphism, unless Γ is locally finite.

Cayley graph

DEFINITION: A set of generators of a group G is a set $S \subset G$ generating G multiplicatively. We would always assume that $s \in S \Leftrightarrow s^{-1} \in S$.

DEFINITION: Let G be a group, and $\{s_i\}$ a collection of generators. The Cayley graph of the pair $(G, \{s_i\})$ is the metric graph, with the set of vertices identified with G, and edges connecting g and gs_i . The length of all edges the Cayley graph is set to the same number t, usually t=1.

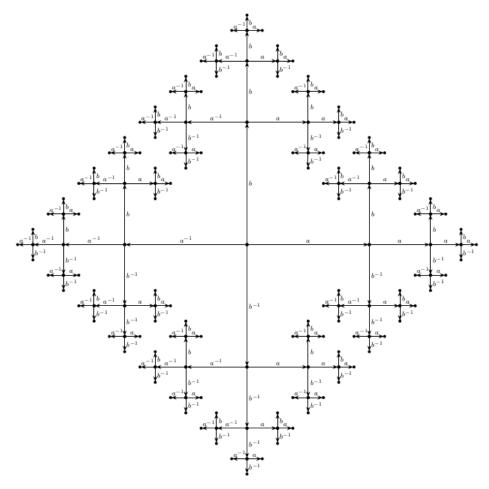
EXAMPLE: The Cayley graph for \mathbb{Z}^n with the standard set of generators is a cubic lattice.



Cayley graph for a free group

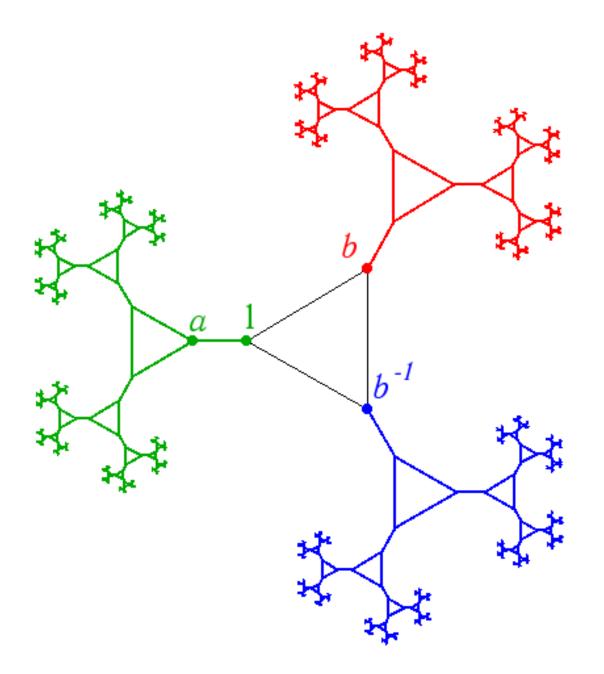
REMARK: Metric geometry of the Cayley graph is the main subject of the geometric group theory.

EXAMPLE: The Cayley graph for a free group is a regular tree,



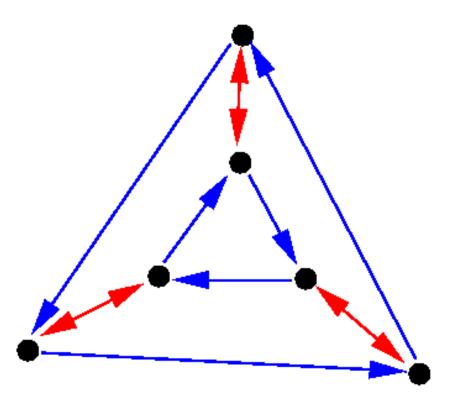
Cayley graph for a free group \mathbb{F}_2 with generators a, b, a^{-1} , b^{-1} .

Cayley graph for $\mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/3\mathbb{Z}$



Cayley graph for the amalgamated product $\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/3\mathbb{Z}$.

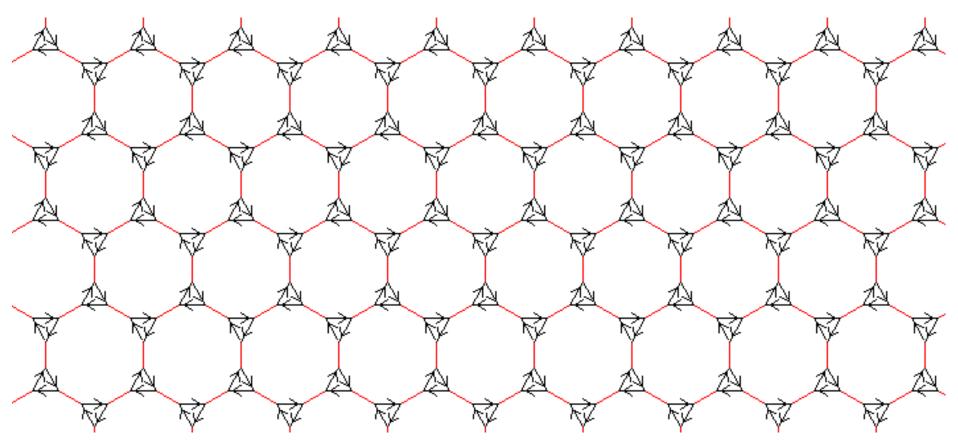
Cayley graph for the symmetric group Σ_3



Cayley graph for Σ .

The symmetric group $\Sigma_3 = \langle k, r \mid k^2 = r^3 = (krk)^3 = 1 \rangle$ is defined by a generator k (red), r (black), and relation $k^2 = r^3 = (krk)^3 = 1$.

Cayley graph for the group $\langle k, r \mid k^2 = r^3 = (kr)^6 = 1 \rangle$



Cayley graph for the group generated by k (red), r (black), and relations $k^2=r^3=(kr)^6=1.$