Metric spaces

lecture 7: Angles and cones

Misha Verbitsky

IMPA, sala 236

January 16, 2022, 17:00

Angles

REMARK: In the sequel, every time I mention \mathbb{R}^n , I consider it as a metric space with the Euclidean distance metric.

DEFINITION: Let a,b,c be points in a metric space (M,d). A comparizon triangle $\triangle(\overline{a},\overline{b},\overline{c})$ is a triangle in \mathbb{R}^2 , with vertices $\overline{a},\overline{b},\overline{c}$, and side lengths $|\overline{a},\overline{b}|=d(a,b),\ |\overline{a},\overline{c}|=d(a,c),\ |\overline{b},\overline{c}|=d(b,c)$. This triangle exists, and is uniquely determined, up to an isometry, (the existence follows from the triangle inequality). The angle $\measuredangle(\overline{a},\overline{b},\overline{c})\in[0,\pi]$ in the triangle $\overline{a},\overline{b},\overline{c}$ is denoted $\theta(a,b,c)$; it is called the comparizon angle.

DEFINITION: Let $\gamma_1: [0,a] \longrightarrow M$, $\gamma_2: [0,b] \longrightarrow M$ two paths in a metric space M, with $\gamma_1(0) = \gamma_2(0) = p$. The angle between the paths γ_1, γ_2 is the number

$$\measuredangle(\gamma_1, p, \gamma_2) := \lim_{t, s \to 0} \theta(\gamma_1(t), p, \gamma_2(s)),$$

if the limit is defined (otherwise, we say that the angle does not exist). The **upper angle** is

$$\angle \sup(\gamma_1, p, \gamma_2) := \limsup_{t,s\to 0} \theta(\gamma_1(t), p, \gamma_2(s)).$$

EXERCISE: Prove that the angle between smooth paths in \mathbb{R}^n exists and is equal to the angle between their tangents.

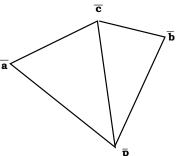
Triangle inequality for upper angles

EXERCISE: Let γ : $[0,a] \longrightarrow M$ be a minimizing geodesic, and $\gamma(0) = p$. Prove that the angle $\measuredangle(\gamma, p, \gamma)$ exists and is equal to zero.

THEOREM: Let γ_i : $[0,a] \longrightarrow M$, i=1,2,3 be paths in M, $\gamma_i(0)=p$. Then the following version of the triangle inequality holds:

$$\angle \sup(\gamma_1, p, \gamma_2) + \angle \sup(\gamma_2, p, \gamma_3) \geqslant \angle \sup(\gamma_1, p, \gamma_3).$$

Proof. Step 1: To simplify the notation, we parametrize γ_i in such a way that $d(p,\gamma_i(x))=x$. Let $a=\gamma_1(s), b=\gamma_3(t), \ c=\gamma_2(u)$. Consider the comparizon triangles $\triangle(\overline{p},\overline{a},\overline{c})$ and $\triangle(\overline{p},\overline{c},\overline{b})$, and draw them on the plane, on different sides of the line $(\overline{p},\overline{c})$.



Since a point \overline{x} in the triangle $\triangle(\overline{p}, \overline{a}, \overline{b})$ with sides s and t satisfies $d(\overline{p}, \overline{x}) < s + t$, for any u > s + t, the point \overline{c} lies outside the triangle $\triangle(\overline{p}, \overline{a}, \overline{b})$. Either the quadrilateral $(\overline{p}, \overline{a}, \overline{c}, \overline{b})$ remains convex for all u, or it stops being convex for u sufficiently small. In this case, by continuity, for some u > 0, \overline{c} lies on the interval $[\overline{a}, \overline{b}]$.

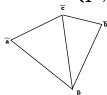
Triangle inequality for upper angles (2)

THEOREM: Let γ_i : $[0,a] \longrightarrow M$, i=1,2,3 be paths in M, $\gamma_i(0)=p$. Then the following version of the triangle inequality holds:

$$\angle \sup(\gamma_1, p, \gamma_2) + \angle \sup(\gamma_2, p, \gamma_3) \geqslant \angle \sup(\gamma_1, p, \gamma_3).$$

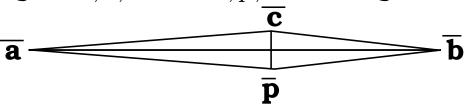
Proof. Step 1: (abbreviated)

Consider the comparizon triangles $\triangle(\overline{p}, \overline{a}, \overline{c})$ and $\triangle(\overline{p}, \overline{c}, \overline{b})$, and draw them on the plane, on different sides of the line $(\overline{p}, \overline{c})$.



Then quadrilateral $(\overline{p}, \overline{a}, \overline{c}, \overline{b})$ remains convex for all u, or it stops being convex for u sufficiently small.

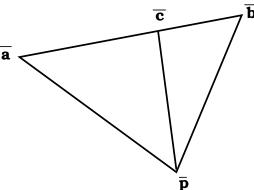
Step 2: We prove that in the first case, the triangle inequality is trivial. When $u \to 0$, the triangles $\overline{a}, \overline{c}, \overline{b}$ and $\overline{a}, \overline{p}, \overline{b}$ converge to a line:



This implies, in particular, the sum of angles in \overline{p} converges to π . Then $\angle \sup(\gamma_1, p, \gamma_2) + \angle \sup(\gamma_2, p, \gamma_3) \ge \pi \ge \angle \sup(\gamma_1, p, \gamma_3)$, because in our definition no angle can be bigger than π .

Triangle inequality for upper angles (2)

Step 3: Consider the comparizon triangles for \overline{c} on the line connecting \overline{b} and \overline{a} .



Then

$$\theta(a, p, c) + \theta(c, p, b) = \angle(\overline{a}, \overline{p}, \overline{b}) = \arccos\left(\frac{s^2 + t^2 - |\overline{a}, \overline{b}|^2}{2st}\right) \quad (*)$$

where s = d(p, a) and t = d(p, b).

Step 4: By definition, $|\overline{a}, \overline{c}| = |\overline{a}, \overline{b}| + |\overline{b}, \overline{c}| = d(a, b) + d(b, c) \geqslant d(a, c)$. Monotonicity of arccosine, together with $|\overline{a}, \overline{b}| = d(a, c) + d(c, b) \geqslant d(a, b)$ gives

$$\measuredangle(\overline{a}, \overline{p}, \overline{b}) = \arccos\left(\frac{s^2 + u^2 - |\overline{a}, \overline{b}|^2}{2su}\right) \geqslant \arccos\left(\frac{s^2 + u^2 - d(a, b)^2}{2su}\right) = \theta(a, p, b). \quad (**)$$

Step 5: Comparing (*) and (**) we obtain $\theta(a, p, c) + \theta(c, p, b) \ge \theta(a, p, b)$; the triangle inequality for \angle_{sup} follows.

The space of directions

DEFINITION: We say that a path $\gamma:[0,a] \longrightarrow M$ has a direction if the angle $\angle(\gamma,\gamma(0),\gamma)$ exists. The paths $\alpha,\beta:[0,a] \longrightarrow M$, $\alpha(0)=\beta(0)=p$ have the same direction if $\angle\sup(\alpha,p,\beta)=0$.

EXAMPLE: A minimizing geodesic $\gamma: [0,a] \longrightarrow M$ has a direction. Indeed, for any reals $t_2 > t_1 > 0$, we have $d(\gamma(0), \gamma(t_2)) = d(\gamma(0), \gamma(t_1)) + d(\gamma(t_1), \gamma(t_2))$, hence all sides of the corresponding comparizon triangle are collinear. This gives $\angle(\gamma(t_1), \gamma(0), \gamma(t_2)) = 0$.

REMARK: Given two paths α, β : $[0, a] \longrightarrow M$, $\alpha(0) = \beta(0) = p$ which have a direction, we write $\alpha \sim \beta$ if $\angle_{\text{Sup}}(\alpha, p, \beta) = 0$. Triangle inequality for upper angles, implies that σ defines an equivalence relation.

DEFINITION: The space of directions in $b \in M$ is the set of \sim -equivalence classes of paths $\gamma: [0,a] \longrightarrow M$, $\gamma(0)=p$ which have directions.

CLAIM: The function $\alpha, \beta \mapsto \measuredangle_{sup}(\alpha, p, \beta)$ defines a metric on the space of directions. \blacksquare

The cone

DEFINITION: The diameter diam(M) of a metric space M is the number $\sup_{x,y\in M}d(x,y)$.

DEFINITION: Let (X,d) be a metric space, diam $X \leqslant \pi$. Consider the topological space C(X) with the quotient topology, obtained from $X \times [0, \infty[$ by gluing $X \times \{0\}$ into a single point, called **the origin**, or **the apex**, and C(X) **the cone over** X. Define the function $d_C: C(X) \times C(X) \longrightarrow \mathbb{R}^{>0}$ as

$$d(p,q) = \sqrt{t^2 + s^2 - 2ts\cos(d(x,y))},$$

where p = (x, t), q = (y, s).

REMARK: Soon enouth we shall see that d_C is a metric. It is called the cone metric, and C(X) the metric cone.

REMARK: This definition has the following geometric meaning. Let γ : $[0,d(x,y)] \longrightarrow X$ be a minimizing geodesic connecting x to $y \in X$. Draw a geodesic A of the same length on a unit circle in \mathbb{R}^2 . Its cone C(A) is a circular sector in \mathbb{R}^2 , obtained as a cone over A. We define the distance in C(A) in such a way that the embedding to \mathbb{R}^2 is an isometry.

A cone over a triangle is a polyhedral metric space

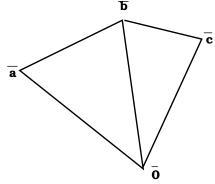
REMARK: The thriangle inequality is very easy to see for the cones over geodesic spaces. When any two points in X are connected by minimizing geodesics, any two points in C(X) belong to a cone over an interval which is isometric to a polyhedral domain in \mathbb{R}^2 bounded by two rays. Any three points in C(X) are situated on a polyhedral space, obtained by gluing three such polyhedral domains over their boundaries, and the triangle inequality in C(X) follows from the one in this polyhedral metric space.

Triangle inequality for the cone metric

THEOREM: The function d_C satisfies the triangle inequality.

Proof. Step 1: Let $(\alpha, t), (\beta, s)$ be points in the cone C(X), and $\triangle(\overline{0}, \overline{a}, \overline{b})$ the comparison triangle with sides t, s and the angle $\measuredangle(\overline{a}, \overline{0}, \overline{b}) = d(\alpha, \beta)$. **Then** $d_C(a, b) = |\overline{a}, \overline{b}|$.

Step 2: Let $a=(\alpha,r), b=(\beta,s), c=(\gamma,t)$ be points on C(X), and $\triangle(\overline{0},\overline{a},\overline{b})$, $\triangle(\overline{0},\overline{b},\overline{c})$ the corresponding comparison triangles, with a common side $[\overline{0},\overline{b}]$, drawn on different sides of the interval $(\overline{0},\overline{b})$.



By definition, $d_c(a,c) = \sqrt{r^2 + t^2 - 2rt\cos(d(\alpha,\beta))}$ and

$$|\overline{a},\overline{c}| = \sqrt{r^2 + t^2 - 2rt\cos(\measuredangle(\overline{a},\overline{0},\overline{b}) + \measuredangle(\overline{b},\overline{0},\overline{c}))} \geqslant \sqrt{r^2 + t^2 - 2rt\cos(d(\alpha,\beta))}$$
 because $\measuredangle(\overline{a},\overline{0},\overline{b}) = d(\alpha,\beta)$ and $\measuredangle(\overline{b},\overline{0},\overline{c}) = d(\beta,\gamma)$. Then
$$d_C(a,c) \leqslant |\overline{a},\overline{c}| \leqslant |\overline{a},\overline{b}| + |\overline{b},\overline{c}| = d_C(a,b) + d_C(b,c).$$

Properties of the cone

PROPERTIES OF THE METRIC CONE:

- 1. For any $x \in X$, the path γ : $[0,a] \longrightarrow C(X)$, taking a to (x,a) is a minimizing geodesic.
- 2. Let $x,y \in X$, and let $\gamma_1 := (x,[0,a]), \ \gamma_2 := (y,[0,b]) \subset C(X)$ be the corresponding geodesic in the cone. Then $\measuredangle(\gamma_1,0,\gamma_2)=d(x,y)$.
- 3. A cone over the interval of length α is isometric to a circular sector of angle α .

CLAIM: Let X be a space with interior metric and minimizing geodesics. Then the metric in C(X) is also interior and has minimizing geodesics.

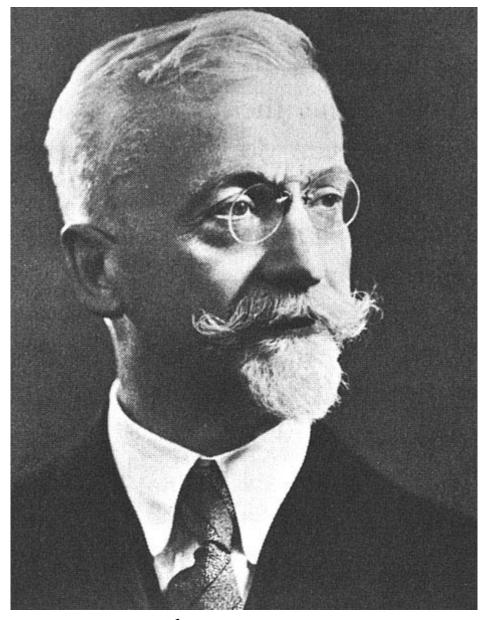
Proof: For any minimizing geodesic $\gamma \subset X$, the cone $C(\gamma)$ is isometric to a circular sector of angle α . Then any two points (a,s) and (b,t) can be realized as points on a circular sector $C(\gamma)$, isometrically embedded to C(X), and they can be connected by a minimizing geodesic within $C(\gamma)$.

Alexandrov spaces

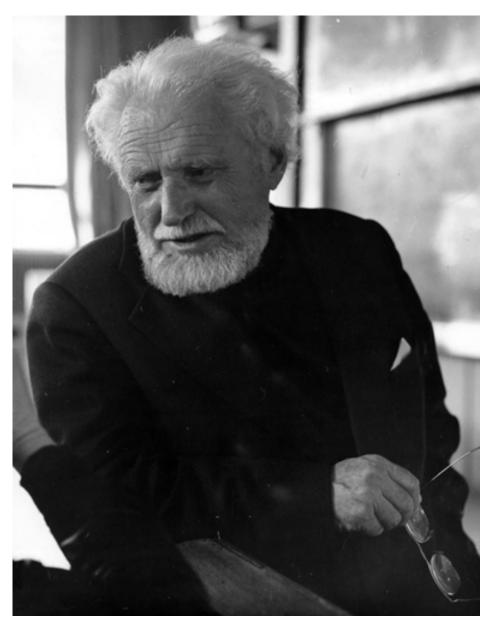
DEFINITION: Let a,b,c be points on a metric space (M,d) with geodesic metric, and r=d(a,b), and $\gamma:[0,r]\longrightarrow M$ a minimizing geodesic connecting a to b. Consider the function $d_c:[0,r]\longrightarrow \mathbb{R}^{\geqslant 0}$ taking t to $d(c,\gamma(t))$. Let $\Delta(\overline{a},\overline{b},\overline{c})\subset \mathbb{R}^2$ be the comparison triangle, and $d_{\overline{c}}:[0,r]\longrightarrow \mathbb{R}^{\geqslant 0}$ the function taking t to $d(\overline{c},\overline{\gamma}(t))$, where $\overline{\gamma}:[0,r]\longrightarrow \mathbb{R}^2$ is the side of the comparison triangle with the normal parametrization. The function $d_{\overline{c}}$ is called the comparison function.

DEFINITION: An intrinsic metric space (M,d) has non-negative curvature if any point has a neighbourhood V with intrinsic metric such that for any geodesic triangle in V, one has $d_c \geqslant d_{\overline{c}}$, and has non-positive curvature if $d_c \leqslant d_{\overline{c}}$. An intrinsic metric space M is called **CAT(0)-space**, after Elie Cartan, A. D. Alexandrov and V. A. Toponogov, if the inequality $d_c \leqslant d_{\overline{c}}$ holds for any geodesic triangle.

REMARK: Intrinsic metric spaces with these curvature restrictions are called **Alexandrov spaces**.

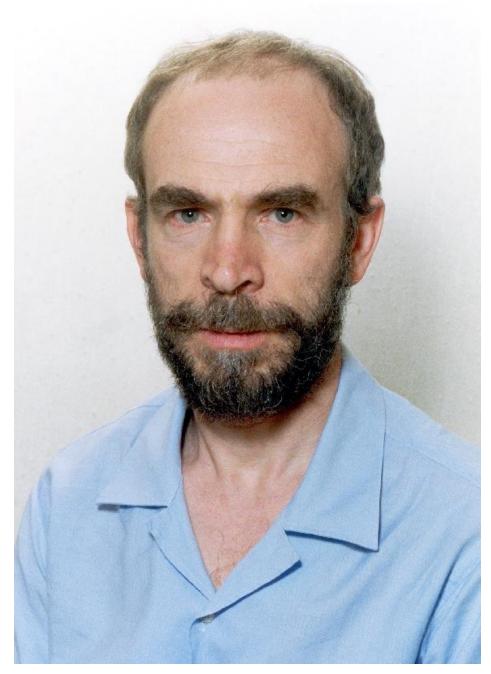


Élie Cartan, 1869-1951



Alexander Danilovich Alexandrov, 1912-1999

Viktor Andreevich Toponogov, 1930-2004



Misha Gromov (b. 23 Dec. 1943)

Examples of Alexandrov spaces

EXAMPLE: Let Z be a metric graph.

Then Z is a space of non-positive curvature.

EXAMPLE: Let L be a circle of length $d \le 2\pi$ with interior metric, and C(L) is cone. Then C(L) is a space of non-negative curvature.

EXAMPLE: A notebook is a polyhedral space of dimension 2, with the quotient metric, obtained by gluing several half-planes over the boundary line. The notebook is a CAT(0)-space.

EXAMPLE: A metric bouquet of spaces M_i with marked point x_i is obtained from these spaces by gluing the points x_i together (we put the quotient metric on it). A metric bouquet of spaces of non-positive curvature has non-positive curvature.

EXERCISE: Prove all these assertions.