Metric spaces

lecture 10: Cartan-Hadamard theorem

Misha Verbitsky

IMPA, sala 236

January 25, 2022, 17:00

Alexandrov spaces (reminder)

DEFINITION: Let a,b,c be points on a geodesic metric space (M,d), and r=d(a,b), and $\gamma:[0,r]\longrightarrow M$ a minimizing geodesic connecting a to b. Consider the function $d_c:[0,r]\longrightarrow \mathbb{R}^{\geqslant 0}$ taking t to $d(c,\gamma(t))$. Let $\triangle(\overline{a},\overline{b},\overline{c})\subset \mathbb{R}^2$ be the comparison triangle, and $d_{\overline{c}}:[0,r]\longrightarrow \mathbb{R}^{\geqslant 0}$ the function taking t to $d(\overline{c},\overline{\gamma}(t))$, where $\overline{\gamma}:[0,r]\longrightarrow \mathbb{R}^2$ is the side of the comparison triangle with the normal parametrization. The function $d_{\overline{c}}$ is called **the comparison function**.

DEFINITION: An intrinsic metric space (M,d) has **non-negative curvature** if any point has a neighbourhood V with intrinsic metric such that for any geodesic triangle in V, one has $d_c \geqslant d_{\overline{c}}$, and has **non-positive curvature** if $d_c \leqslant d_{\overline{c}}$. An intrinsic metric space M is called **CAT(0)-space**, after Elie Cartan, A. D. Alexandrov and V. A. Toponogov, if the inequality $d_c \leqslant d_{\overline{c}}$ holds for all geodesic triangles.

REMARK: Intrinsic metric spaces with these curvature restrictions are called **Alexandrov spaces.**

PROPOSITION: Let $z \in M$, where M is a CAT(0)-space. Then the function $d_z(x) := d(z,x)$ is convex.

Distance between geodesics in CAT(0)-spaces (reminder)

LEMMA: (Convexity lemma)

Let γ_i : $[0,t_i] \longrightarrow M$, i=1,2 be geodesics in a CAT(0)-space, and κ : $[0,1] \longrightarrow \mathbb{R}^{\geqslant 0}$ takes $u \in [0,1]$ to $d(\gamma_1(t_1u), \gamma_2(t_2u))$. Then κ is convex.

DEFINITION: Define the uniform distance between continuous maps γ_i : $[0,t_i] \longrightarrow M$ as $d_{\Gamma}(\gamma_1,\gamma_2) := \sup_{x \in [0,1]} d(\gamma_1(xt_1),\gamma_2(xt_2))$. The corresponding convergence of sequences is called the uniform convergence.

EXERCISE: Check that it is a metric.

THEOREM: Let M be a CAT(0)-space, and $(\Gamma_p(M), d_{\Gamma})$ be the metric space of all normally parametrized geodesics $\gamma: [0,t] \longrightarrow M$, $\gamma(0) = p$, $t \in \mathbb{R}$. Let $\pi: \Gamma_p(M) \longrightarrow M$ take the geodesic $\gamma: [0,t] \longrightarrow M$ to $\gamma(t)$. Then π is an isometry.

REMARK: Let M be a CAT(0)-space, and $\gamma_i: [0,t_i] \longrightarrow M$ a sequence of (normal parametrized) geodesics such that the ends $a_i:=\gamma_i(0),\ b_i:=\gamma_i(t_i)$ converge to a,b. Then the sequence $\gamma_i: [0,t_i] \longrightarrow M$ uniformly converges to the geodesic $\gamma: [0,t] \longrightarrow M$ connecting a to b.

Homotopy and the space of geodesics

Fix a point p in a CAT(0)-space M. Let $0 \le \lambda \le 1$, and let $P_{\lambda} : \Gamma_p(M) \longrightarrow \Gamma_p(M)$ take the geodesic $\gamma : [0,t] \longrightarrow M$ to $\gamma|_{[0,\lambda t]}$.

REMARK: Since $\Gamma_p(M)$ is isometric to M, one can consider P_{λ} as a map from M to itself. By convexity lemma, $d(\gamma(\lambda t), \gamma_1(\lambda t_1)) \leq d(\gamma(t), \gamma_1(t_1))$, hence the map P_{λ} is 1-Lipschitz.

REMARK: Let $P: M \times [0,1] \longrightarrow M$ take (m,t) to $P_t(m)$. Since P_{λ} is 1-Lipschitz, P is also 1-Lipschitz, hence continuous.

COROLLARY: Any CAT(0)-space is contractible.

Proof: The map P defines a homotopy between identity and the map taking M to p.

The convexity radius

DEFINITION: Let M be an Alexandrov space of non-positive curvature. A normal ball in M is a ball $B_x(\varepsilon)$ which is a CAT(0)-space.

REMARK: An open ball in a CAT(0)-space is normal. Indeed, CAT(0)-inequalities imply that it is convex.

DEFINITION: Let M be an Alexandrov space of non-positive curvature. Convexity radius of M in $x \in M$ is the supremum of all ε such that $B_x(\varepsilon)$ is a normal ball.

CLAIM: Denote the convexity radius in x by $\rho(x)$. Then the function ρ is 1-Lipschitz.

Proof: Follows from the "standard argument" (we have used it a few times already).

General form of the "standard argument": Let $\mathfrak S$ be a subset in the set of all balls in a metric space, such that for any ball $B_x(r) \in \mathfrak S$, all ball contained in $B_x(r)$ also belong to $\mathfrak S$. Then the function $\rho_{\mathfrak S}(x) := \sup_r \{r \mid B_r(x) \in \mathfrak S\}$ is 1-Lipschitz.

EXERCISE: Prove this statement.

Convexity radius for a subset

DEFINITION: Convexity radius for a subset $Z \subset M$ is $\inf_{z \in Z} \rho(z)$, where $\rho(z)$ denotes the convexity radius of M in $z \in Z$.

CLAIM: Convexity radius is positive for any compact subset $Z \subset M$ in an Alexandrov space M of non-positive curvature.

Proof: Small open balls in M are convex, hence $\rho(z) > 0$ for all $z \in M$. Since ρ is Lipschitz, it is continuous, then ρ reaches its minimum (which is positive) on any compact $Z \subset M$.

Convexity lemma for non-minimizing geodesics

DEFINITION: A geodesic is a map $\gamma: [a,b] \longrightarrow M$ such that [a,b] is a union of intervals $[a,b] = \bigcup_i [x_i,x_{i+1}]$, and $\gamma |_{[x_i,x_{i+1}]}$ is a minimizing geodesic. Denote by $\Gamma(M)$ the space of all normally parametrized geodesics with the metric d_{Γ} , and let $\Gamma_p(M) \subset \Gamma(M)$ denote the space of geodesics starting in p.

PROPOSITION: Let $\gamma:[0,t] \longrightarrow M$, $\gamma':[0,t'] \longrightarrow M$ be geodesics in an Alexandrov space of non-positive curvature. Assume that the convexity radius in γ is equal to ε , and $d_{\Gamma}(\gamma,\gamma')<\frac{1}{2}\varepsilon$. Define $\kappa:[0,1] \longrightarrow \mathbb{R}^{\geqslant 0}$ as $\kappa(u):=d(\gamma(ut),\gamma'(ut'))$. Then κ is a convex function.

Proof: Convexity of a function $\kappa:[0,1] \to \mathbb{R}^{\geqslant 0}$ is local in its domain. The geodesics γ and γ' can be obtained as a union of the minimizing fragments $\gamma\big|_{[\lambda t,(\lambda+t^{-1}\delta)t]}$ and $\gamma'\big|_{[\lambda t',(\lambda+t^{-1}\delta)t']}$ of length $\leqslant \delta$ which sit in normal balls if $\delta < \frac{\varepsilon \min t,t'}{2t}$, hence the the restriction of κ to each interval $[\lambda,\lambda+t^{-1}\delta]$ is convex.

Distance between the non-minimizing geodesics

COROLLARY: Let $\gamma: [0,t] \longrightarrow M$, $\gamma': [0,t'] \longrightarrow M$ be normally parametrized geodesics in an Alexandrov space of non-positive curvature, radius of convexity of γ is ε , and $d_{\Gamma}(\gamma,\gamma') < \varepsilon/2$. Then the distance between geodesics is the maximum of the distance between their ends,

$$d_{\Gamma}(\gamma, \gamma') = \max(d(\gamma(0), \gamma'(0)), d(\gamma(t), \gamma'(t')))$$

Proof: The convex function $\kappa: [0,1] \longrightarrow \mathbb{R}$ takes its maximum in 0 or 1.

COROLLARY: Let $\Gamma_p(M) \stackrel{\pi}{\longrightarrow} M$ take a geodesic to its second end. Let ε be the convexity radius for γ . Then π defines an isometry between $B_{1/2\varepsilon}(\gamma) \subset \Gamma_p(M)$ and $B_{1/2\varepsilon}(\pi(\gamma))$.

Covering maps

DEFINITION: Let $\varphi: \tilde{M} \longrightarrow M$ be a continuous map of manifolds (or CW complexes). We say that φ is a covering if φ is locally a homeomorphism, and for any $x \in M$ there exists a neighbourhood $U \ni x$ such that is a disconnected union of several manifolds U_i such that the restriction $\varphi|_{U_i}$ is a homeomorphism.

REMARK: From now on, M is connected, locally contractible topological space.

EXERCISE: Prove that a local homeomorphism of compacts spaces is a covering.

DEFINITION: Let Γ be a discrete group continuously acting on a topological space M. This action is called **properly discontinuous** if M is locally compact, and the space of orbits of Γ is Hausdorff.

THEOREM: Let Γ be a discrete group acting on M properly discontinuously. Suppose that the stabilizer group $\Gamma': \operatorname{St}_{\Gamma}(x)$ is the same for all $x \in M$. Then $M \longrightarrow M/\Gamma$ is a covering. Moreover, all covering maps are obtained like that.

Proof: Left as an exercise.

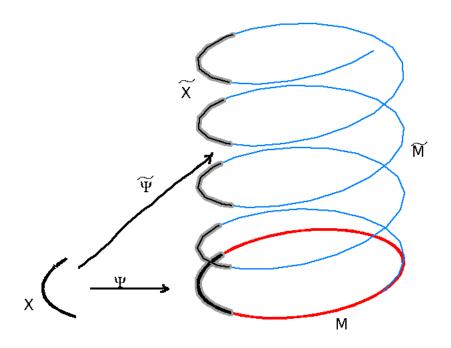
Homotopy lifting

DEFINITION: A topological space M is **locally contractible** if any point of M has a contractible neighbourhood.

REMARK: Non-positive curvature Alexandrov spaces are locally CAT(0), hence locally contractible.

LEMMA: ("Homotopy lifting lemma")

Let M be a locally contractible topological space. The map $\varphi: \tilde{M} \longrightarrow M$ is a covering iff φ is locally a homeomorphism, and for any path $\Psi: [0,1] \longrightarrow M$ and any $x \in \varphi^{-1}(\Psi(0))$, there is a lifting $\tilde{\Psi}: [0,1] \longrightarrow \tilde{M}$ such that $\tilde{\Psi}(0) = x$ and $\varphi(\tilde{\Psi}(t)) = \Psi(t)$. Moreover, the lifting is uniquely determined by the homotopy class of Ψ in the set of all paths connecting $\Psi(0)$ to $\Psi(1)$.



Homotopy lifting

COROLLARY: If M is simply connected, all connected coverings $\tilde{M} \longrightarrow M$ are isomorphic to M.

REMARK: If M is a geodesic metric space, to prove that $\varphi: \tilde{M} \longrightarrow M$ is a covering, it is sufficient to prove homotopy lifting for piecewise geodesic paths. This would follow if we prove the homotopy lifting for geodesics.

Local convexity

DEFINITION: Let $U \subset M$ be an open subset in a negatively curved locally compact Alexandrov space. We say that U is **strictly convex** if any two points in \overline{U} can be connected by a geodesic which belongs to \overline{U} , and any geodesic connecting x to $y \in \overline{U}$ belongs to $U \cup \{x,y\}$.

EXAMPLE: Let ε be the convexity radius of a geodesic $\gamma \subset M$. Then $\varepsilon/2$ -neighbourhood of any $\varepsilon/2$ -segment of γ is strictly convex.

PROPOSITION: Let $\gamma \subset M$ be a finite geodesic in a negatively curved locally compact Alexandrov space (M,d), ε its convexity radius, and U an $\varepsilon/2$ -neighbourhood of γ . Then U is strictly convex.

Proof. Step 1: Let \tilde{K} be the universal cover of $K:=\overline{U}$, equipped with a local metric \tilde{d} induced from M. The metric \tilde{d} on \tilde{K} is geodesic by Cohn-Vossen theorem: indeed, it is local, hence intrinsic, and \tilde{K} is locally compact. Also, $d_K \geqslant d$. Denote by $\Gamma(\tilde{K})$ the space of finite length geodesics in \tilde{K} equipped with a uniform metric induced by \tilde{d} . As we have already established, the natural map $\Gamma(\tilde{K}) \longrightarrow \tilde{K} \times \tilde{K}$ is locally an isometry; since the limit of the

geodesic is a geodesic, its image is complete, hence closed. Since d_K is locally equal to d, any geodesic in (\tilde{K}, \tilde{d}) is a geodesic in M.

Step 2: Let $\Gamma_0 \subset \Gamma(\tilde{K})$ be the set of all geodesics in $\Gamma(\tilde{K})$ connecting x to y which belong to the interior $\tilde{K}^\circ \cup \{x,y\}$. Any geodesic in \tilde{K} belongs to Γ_0 or has an interior point in $\partial \tilde{K}$. The later case is impossible, because in any $\varepsilon/2$ -neighbourhood of an $\varepsilon/2$ -segment γ_0 of γ , the uniform distance function κ associated with γ_1 and γ_0 is strictly convex, hence it cannot reach the maximum $\varepsilon/2$ in any interior point of γ_1 . Therefore, $\Gamma_0 = \Gamma(\tilde{K})$.

COROLLARY: In these assumptions, the natural map $\Pi: \Gamma(\tilde{K}) \longrightarrow \tilde{K} \times \tilde{K}$, taking a geodesic to its ends, is bijective and preserves the distance.

Proof: From convexity of the function κ , we obtain that this map preserves the metric; it is surjective, because \tilde{K} is a geodesic space, and injective, because the κ function associated with two geodesics with the same ends in an $\varepsilon/2$ -neighbourhood of γ is convex, hence it vanishes identically.

Cartan-Hadamard theorem

DEFINITION: A complete, simply connected Alexandrov space of non-positive curvature is called a **Hadamard space**.

THEOREM: (Cartan-Hadamard)

Let M be a Hadamard space. Consider the map $\Gamma_p(M) \stackrel{\pi}{\longrightarrow} M$ taking a geodesic to its second end. Then π is a homeomorphism.

Proof: Later today.

COROLLARY: Any geodesic in a Hadamard space M is minimizing. Moreover, any two points in M can be connected by a unique geodesic.

COROLLARY: Any Hadamard space is contractible.

Proof: The homotopy $P_{\lambda}: \Gamma_p(M) \longrightarrow \Gamma_p(M)$ which defines a contraction of M to a point is 1-Lipschitz in any ball of radius less than the convexity radius, hence continuous. Therefore, it defines a comotopy between the identity map and a projection to a point. \blacksquare

The proof of Cartan-Hadamard theorem

THEOREM: (Cartan-Hadamard)

Let M be a complete Alexandrov space of non-positive curvature. Consider the map $\Gamma_p(M) \stackrel{\pi}{\longrightarrow} M$ taking a geodesic to its second end. Then π is a covering.

Proof. Step 1: Let $\pi: X \longrightarrow Y$ be a local isometry of complete metric spaces with geodesic metric. As explained today, homotopy lifting for piecewise geodesics implies that π is a covering. I am going to prove that such a map is always a covering, if X is a complete metric space.

Step 2: Let $\gamma:[0,r]\longrightarrow Y$ be a piecewise geodesic path in Y. Locally in a neighbourhood of any point the homotopy lifting holds, because π is a local isometry; also, a lifting $\tilde{\gamma}$ of γ to X on an interval [0,a] is uniquely determined by the point $\tilde{\gamma}(0)\in X$. Fix $x\in\pi^{-1}(\gamma(0))$, and let $r_0\in[0,r]$ be the supremum of all points $t\in[0,r]$ such that the lifting $\tilde{\gamma}:[0,t]\longrightarrow X$, starting from $\tilde{\gamma}(0)=x$, exists. Put $\tilde{\gamma}(r_0):=\lim_{t\to r}\tilde{\gamma}(t)$. This limit exists and is well defined, because $\tilde{\gamma}$ is a local isometry, and X is complete. Since π is a local isometry in a neighbourhood of $\tilde{\gamma}(r_0)$, the lifting γ can be extended to some neighbourhood of $r_0\in[0,r]$, which implies that $r_0=r$.