Metric spaces

lecture 11: Hadamard spaces are CAT(0)

Misha Verbitsky

IMPA, sala 236

January 27, 2022, 17:00

Alexandrov spaces (reminder)

DEFINITION: Let a,b,c be points on a geodesic metric space (M,d), and r=d(a,b), and $\gamma:[0,r]\longrightarrow M$ a minimizing geodesic connecting a to b. Consider the function $d_c:[0,r]\longrightarrow \mathbb{R}^{\geqslant 0}$ taking t to $d(c,\gamma(t))$. Let $\triangle(\overline{a},\overline{b},\overline{c})\subset \mathbb{R}^2$ be the comparison triangle, and $d_{\overline{c}}:[0,r]\longrightarrow \mathbb{R}^{\geqslant 0}$ the function taking t to $d(\overline{c},\overline{\gamma}(t))$, where $\overline{\gamma}:[0,r]\longrightarrow \mathbb{R}^2$ is the side of the comparison triangle with the normal parametrization. The function $d_{\overline{c}}$ is called **the comparison function**.

DEFINITION: An intrinsic metric space (M,d) has **non-negative curvature** if any point has a neighbourhood V with intrinsic metric such that for any geodesic triangle in V, one has $d_c \geqslant d_{\overline{c}}$, and has **non-positive curvature** if $d_c \leqslant d_{\overline{c}}$. An intrinsic metric space M is called **CAT(0)-space**, after Elie Cartan, A. D. Alexandrov and V. A. Toponogov, if the inequality $d_c \leqslant d_{\overline{c}}$ holds for all geodesic triangles.

REMARK: Intrinsic metric spaces with these curvature restrictions are called **Alexandrov spaces.**

PROPOSITION: Let $z \in M$, where M is a CAT(0)-space. Then the function $d_z(x) := d(z,x)$ is convex.

Angles in Alexandrov spaces (reminder)

DEFINITION: Let a,b,c be points in a metric space (M,d). A comparizon triangle $\triangle(\overline{a},\overline{b},\overline{c})$ is a triangle in \mathbb{R}^2 , with vertices $\overline{a},\overline{b},\overline{c}$, and side lengths $|\overline{a},\overline{b}|=d(a,b),\ |\overline{a},\overline{c}|=d(a,c),\ |\overline{b},\overline{c}|=d(b,c)$. This triangle exists, and is uniquely determined, up to an isometry, (the existence follows from the triangle inequality). The angle $\angle(\overline{a},\overline{b},\overline{c})\in[0,\pi]$ in the triangle $\overline{a},\overline{b},\overline{c}$ is denoted $\theta(a,b,c)$; it is called the comparizon angle.

DEFINITION: Let a,b,c be three points on a metric space, and $\triangle(\overline{a},\overline{b},\overline{c})$ the comparison triangle. Consider the minimizing geodesics γ_1,γ_2 , connecting a to b and a to c. The angle comparison condition for non-positive curvature is inequality $\angle(\gamma_1,a,\gamma_2) \leqslant \angle(\overline{ca}\overline{b})$. The angle comparison condition for non-negative curvature is inequality $\angle(\gamma_1,a,\gamma_2) \geqslant \angle(\overline{ca}\overline{b})$ together with the equality $\angle(\gamma_+,p,\mu) + \angle(\gamma_-,p,\mu) = \pi$ for any two adjacent angles $\angle(\gamma_+,p,\mu)$, $\angle(\gamma_-,p,\mu)$.

THEOREM: The angle comparison condition is equivalent to the Alexandrov condition $d_{\overline{c}} \leq d_c$ (or $d_{\overline{c}} \geq d_c$) for the same sign of the curvature.

Distance between geodesics in CAT(0)-spaces (reminder)

LEMMA: (Convexity lemma)

Let γ_i : $[0,t_i] \longrightarrow M$, i=1,2 be geodesics in a CAT(0)-space, and κ : $[0,1] \longrightarrow \mathbb{R}^{\geqslant 0}$ takes $u \in [0,1]$ to $d(\gamma_1(t_1u), \gamma_2(t_2u))$. Then κ is convex.

DEFINITION: Define the uniform distance between continuous maps γ_i : $[0,t_i] \longrightarrow M$ as $d_{\Gamma}(\gamma_1,\gamma_2) := \sup_{x \in [0,1]} d(\gamma_1(xt_1),\gamma_2(xt_2))$. The corresponding convergence of sequences is called the uniform convergence.

EXERCISE: Check that it is a metric.

THEOREM: Let M be a CAT(0)-space, and $(\Gamma_p(M), d_{\Gamma})$ be the metric space of all normally parametrized geodesics $\gamma: [0,t] \longrightarrow M$, $\gamma(0) = p$, $t \in \mathbb{R}$. Let $\pi: \Gamma_p(M) \longrightarrow M$ take the geodesic $\gamma: [0,t] \longrightarrow M$ to $\gamma(t)$. Then π is an isometry.

REMARK: Let M be a CAT(0)-space, and $\gamma_i: [0,t_i] \longrightarrow M$ a sequence of (normal parametrized) geodesics such that the ends $a_i:=\gamma_i(0),\ b_i:=\gamma_i(t_i)$ converge to a,b. Then the sequence $\gamma_i: [0,t_i] \longrightarrow M$ uniformly converges to the geodesic $\gamma: [0,t] \longrightarrow M$ connecting a to b.

The convexity radius (reminder)

DEFINITION: Let M be an Alexandrov space of non-positive curvature. A normal ball in M is a ball $B_x(\varepsilon)$ which is a CAT(0)-space.

DEFINITION: Let M be an Alexandrov space of non-positive curvature. Convexity radius of M in $x \in M$ is the supremum of all ε such that $B_x(\varepsilon)$ is a normal ball.

CLAIM: Denote the convexity radius in x by $\rho(x)$. Then the function ρ is 1-Lipschitz.

DEFINITION: Convexity radius for a subset $Z \subset M$ is $\inf_{z \in Z} \rho(z)$, where $\rho(z)$ denotes the convexity radius of M in $z \in Z$.

CLAIM: Convexity radius is positive for any compact subset $Z \subset M$ in an Alexandrov space M of non-positive curvature.

PROPOSITION: Let $\gamma:[0,t] \longrightarrow M$, $\gamma':[0,t'] \longrightarrow M$ be geodesics in an Alexandrov space of non-positive curvature. Assume that the convexity radius in γ is equal to ε , and $d_{\Gamma}(\gamma,\gamma')<\frac{1}{2}\varepsilon$. Define $\kappa:[0,1] \longrightarrow \mathbb{R}^{\geqslant 0}$ as $\kappa(u):=d(\gamma(ut),\gamma'(ut'))$. Then κ is a convex function.

Cartan-Hadamard theorem (reminder)

DEFINITION: A complete, simply connected Alexandrov space of non-positive curvature is called a **Hadamard space**.

THEOREM: (Cartan-Hadamard)

Let M be a Hadamard space. Consider the map $\Gamma_p(M) \stackrel{\pi}{\longrightarrow} M$ taking a geodesic to its second end. Then π is a homeomorphism.

THEOREM: (Cartan-Hadamard)

Let M be a complete Alexandrov space of non-positive curvature. Consider the map $\Gamma_p(M) \stackrel{\pi}{\longrightarrow} M$ taking a geodesic to its second end. Then π is a covering.

Convexity for a neighbourhood of a geodesic

LEMMA: Let M be a Hadamard space and $a,b \in M$. Then there exists a neighbourhood $U_a \ni a, U_b \ni b$, such that for all $a' \in U_a, b' \in U_b$, the function $\kappa : [0,1] \longrightarrow \mathbb{R}^{\geqslant 0}$ as $\kappa(u) := d(\gamma(ut), \gamma'(ut'))$ associated with the geodesics [a,b] and [a',b'] is convex.

Proof. Step 1: Let π_a : $\Gamma_a(M) \longrightarrow M$ be the standard homeomorphism, and ε the convexity radius for the geodesic [a,b]. Then $d_{\Gamma}([a,b],[a,b']) = d(b,b')$ when $d_{\Gamma}([a,b],[a,b']) \leqslant \varepsilon/2$, hence $d_{\Gamma}([a,b],[a,b']) = d(b,b')$ for all $b' \in \pi_a^{-1}(B_{[a,b]}(\varepsilon/2))$.

Step 2: The same argument proves that for all $a' \in \pi_{b'}^{-1}(B_{[a,b']}(\varepsilon/2))$, we have $d_{\Gamma}([a',b'],[a,b']) = d(a,a')$. Triangle inequality implies

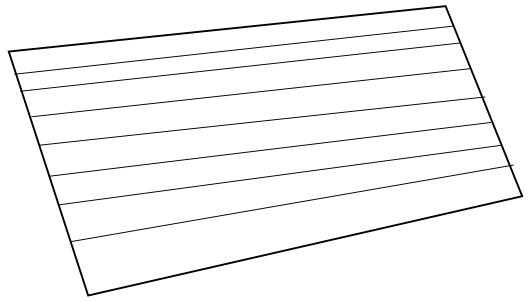
$$d_{\Gamma}([a,b],[a',b']) \leq d_{\Gamma}([a',b'],[a,b']) + d_{\Gamma}([a,b],[a,b']) \leq d(a,a') + d(b,b').$$

When this number is less than $\varepsilon/2$, κ is convex (Lecture 10).

Thin triangles and quadrilaterals

DEFINITION: A triangle is $\triangle(pxy)$ called **thin** if the function κ associated with the geodesics [px] and [py] is convex. A quadrilateral (abcd) is called **thin** if the function κ associated with the geodesics [ab] and [dc] is convex.

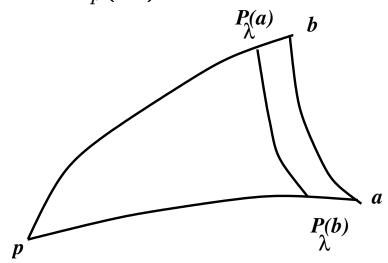
COROLLARY: Let M be a Hadamard space, and $\triangle(abcd)$ a geodesic quadrilateral. Then it is possible to partition two opposite sides into smaller intervals and connect them by geodesics in such a way that all successive quadrilaterals are thin.



Hadamard spaces are CAT(0)

THEOREM: Let M be a Hadamard space. Then M is CAT(0).

Proof. Step 1: From Cartan-Hadamard theorem it follows that a geodesic connecting two points in M is unique, moreover, the homotopy $P_{\lambda}: \Gamma_p(M) \longrightarrow \Gamma_p(M)$ taking a geodesic $\gamma: [0,t] \longrightarrow M$ to $\gamma |_{[0,\lambda t]}$ is continuous. Consider a geodesic triangle $\triangle pab$, and let $a_{\lambda} = P_{\lambda}(a), b_{\lambda} = P_{\lambda}(b)$ be the points obtained from a,b using the identification $M = \Gamma_p(M)$.



From the angle comparison criterion (Lecture 8) we obtain that CAT(0)-inequality would follow if $\theta(apb) \leq \angle([pa], p, [pb])$. Since

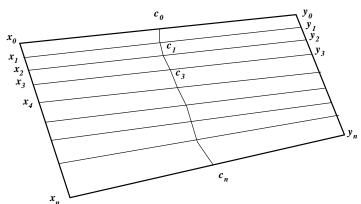
$$\angle([pa], p, [pb]) = \lim_{\lambda \to o} \theta(a_{\lambda}pb_{\lambda}),$$

this would follow if we prove that $\theta(a_{\lambda}pb_{\lambda}) \leq \theta(apb)$ is monotonously non-increasing as a function of λ .

Hadamard spaces are CAT(0) (Step 2-3)

Step 2: Suppose that the function $d(a_{\lambda},b\lambda)$ is convex as a function of λ . Then $\frac{1}{\lambda}d(a_{\lambda},b\lambda)\leqslant d(a,b)$, hence the comparison triangle $\Delta(p,a_{\lambda},b\lambda)$ scaled with λ^{-1} has two sides d(p,a) and d(p,b) and the third side $\frac{1}{\lambda}d(a_{\lambda},b\lambda)< d(a,b)$. We obtain that $\theta(a_{\lambda}pb_{\lambda})\leqslant \theta(apb)$ whenever the function $\kappa(\lambda)=d(a_{\lambda},b\lambda)$ is convex as a function of λ . This function is the standard κ (the uniform distance) associated with the geodesics [p,a] and [p,b], hence it is convex for thin triangles.

Step 3: Consider a quadrilateral which is cut unto a union of thin quadrilaterals $(x_iy_iy_{i+1}x_{i+1})$ as on the picture.



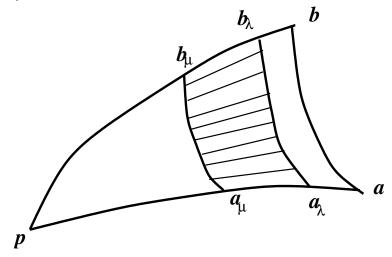
Let c_i be the middle point of each geodesic $[x_i, y_i]$. Then

$$d(c_0, c_n) \leqslant \sum_{i=0}^{n-1} d(c_i, c_{i+1}) \leqslant \frac{1}{2} \sum_{i=0}^{n-1} d(x_i, x_{i+1}) + d(y_i, y_{i+1}) = d(x_0, x_n) + d(y_0, y_n).$$

because each quadrilateral $(x_iy_iy_{i+1}x_{i+1})$ is thin.

Hadamard spaces are CAT(0) (Step 4)

Step 4: Consider now a triangle $\triangle(pab)$ a quadrilateral $(a_{\lambda}a_{\mu}b_{\mu}b_{\lambda})$ cut into thin triangles as on this picture



Step 3 implies that the distance between middle points of the geodesics $[a_{\lambda},a_{\mu}]$ and $[b_{\lambda},b_{\mu}]$ is less than $\frac{1}{2}(d(a_{\lambda},b_{\lambda})+d(a_{\mu},b_{\mu})$. We obtained that the function $\kappa(\lambda):=d(a_{\lambda},b_{\lambda})$ satisfies

$$\kappa\left(\frac{\lambda+\mu}{2}\right) \leqslant \frac{1}{2}(\kappa(\lambda)+\kappa(\mu))$$

which implies that κ is convex. From Step 2 it follows that M is CAT(0).

Homogeneous spaces

DEFINITION: A Lie group is a smooth manifold equipped with a group structure such that the group operations are smooth. Lie group G acts on a manifold M if the group action is given by the smooth map $G \times M \longrightarrow M$.

DEFINITION: Let G be a Lie group acting on a manifold M transitively. Then M is called a homogeneous space. For any $x \in M$ the subgroup $\operatorname{St}_x(G) = \{g \in G \mid g(x) = x\}$ is called **stabilizer of a point** x, or **isotropy subgroup**.

CLAIM: For any homogeneous manifold M with transitive action of G, one has M = G/H, where $H = \operatorname{St}_x(G)$ is an isotropy subgroup.

Proof: The natural surjective map $G \longrightarrow M$ putting g to g(x) identifies M with the space of conjugacy classes G/H.

REMARK: Let g(x) = y. Then $St_x(G)^g = St_y(G)$: all the isotropy groups are conjugate.

Isotropy representation

DEFINITION: Let M = G/H be a homogeneous space, $x \in M$ and $St_x(G)$ the corresponding stabilizer group. The **isotropy representation** is the natural action of $St_x(G)$ on T_xM .

DEFINITION: A Riemannian form Φ on a homogeneous manifold M = G/H is called **invariant** if it is mapped to itself by all diffeomorphisms which come from $g \in G$.

REMARK: Let Φ_x be an isotropy invariant scalar product on T_xM . For any $y \in M$ obtained as y = g(x), consider the form Φ_y on T_yM obtained as $\Phi_y := g(\Phi)$. The choice of g is not unique, however, for another $g' \in G$ which satisfies g'(x) = y, we have g = g'h where $h \in \operatorname{St}_x(G)$. Since Φ_x is h-invariant, the metric Φ_y is independent from the choice of g.

We proved

THEOREM: Homogeneous Riemannian forms on M = G/H are in bijective correspondence with isotropy invariant spalar products on T_xM , for any $x \in M$.

Space forms

DEFINITION: Simply connected space form is a homogeneous manifold of one of the following types:

positive curvature: S^n (an n-dimensional sphere), equipped with an action of the group SO(n+1) of rotations

zero curvature: \mathbb{R}^n (an n-dimensional Euclidean space), equipped with an action of isometries

negative curvature: SO(1,n)/O(n), equipped with the natural SO(1,n)-action. This space is also called **hyperbolic space**, and in dimension 2 hyperbolic plane or Poincaré plane or Bolyai-Lobachevsky plane

Riemannian metric on space forms

LEMMA: Let G = SO(n) act on \mathbb{R}^n in a natural way. Then there exists a unique G-invariant symmetric 2-form: the standard Euclidean metric.

Proof: Let g,g' be two G-invariant symmetric 2-forms. Since S^{n-1} is an orbit of G, we have g(x,x)=g(y,y) for any $x,y\in S^{n-1}$. Multiplying g' by a constant, we may assume that g(x,x)=g'(x,x) for any $x\in S^{n-1}$. Then $g(\lambda x,\lambda x)=g'(\lambda x,\lambda x)$ for any $x\in S^{n-1}$, $\lambda\in\mathbb{R}$; however, all vectors can be written as λx .

COROLLARY: Let M = G/H be a simply connected space form. Then M admits a unique, up to a constant multiplier, G-invariant Riemannian form.

Proof: The isotropy group is SO(n-1) in all three cases, and the previous lemma can be applied. \blacksquare

REMARK: From now on, all space forms are assumed to be homogeneous Riemannian manifolds.