Metric spaces

lecture 13: Hyperbolic space is CAT(0)

Misha Verbitsky

IMPA, sala 236

February 1, 2022, 17:00

Space forms (reminder)

DEFINITION: Simply connected space form is a homogeneous manifold of one of the following types:

positive curvature: S^n (an n-dimensional sphere), equipped with an action of the group SO(n+1) of rotations

zero curvature: \mathbb{R}^n (an n-dimensional Euclidean space), equipped with an action of isometries

negative curvature: SO(1,n)/O(n), equipped with the natural SO(1,n)-action. This space is also called **hyperbolic space**, and in dimension 2 hyperbolic plane or Poincaré plane or Bolyai-Lobachevsky plane

Riemannian metric on space forms (reminder)

LEMMA: Let G = SO(n) act on \mathbb{R}^n in a natural way. Then there exists a unique G-invariant symmetric 2-form: the standard Euclidean metric.

COROLLARY: Let M = G/H be a simply connected space form. Then M admits a unique, up to a constant multiplier, G-invariant Riemannian form.

Proof: The isotropy group is SO(n-1) in all three cases, and the previous lemma can be applied. \blacksquare

REMARK: From now on, all space forms are assumed to be homogeneous Riemannian manifolds.

COROLLARY: Let $M \subset \mathbb{R}^{n+1}$ be a space form realized as above, and $x,y \in M$ distinct points. Then the geodesic connecting x to y is a subset of the 1-dimensional manifold $M \cap \langle x,y \rangle$ obtained by intersecting M and a 2-dimensional subspace generated by x,y.

COROLLARY: Let M = G/H be a simply connected space form, and $x_i, y_i \in M$, i = 1, 2 two pairs of points which satisfy $d(x_1, y_1) = d(x_2, y_2)$. Then there exists an isometry $g \in G$ mapping (x_1, y_1) to (x_2, y_2) .

Tance (reminder)

REMARK: The term "tance" is due to Alexandre Anan'in.

DEFINITION: We realize the hyperbolic space \mathbb{H} as a hyperboloid $\{(x_0, ..., x_n) \in \mathbb{R}^{n+1} \mid x_0^2 = 1 + \sum x_i^2\}$ in \mathbb{R}^{n+1} . Define **tance** between two points $x, y \in M$ as $ta(x,y) = g(x,y)^2$, where g is the pairing on \mathbb{R}^{n+1} .

REMARK:

$$g(x,y) = \sqrt{1 + \sum_{i=1}^{n} x_i^2} \sqrt{1 + \sum_{i=1}^{n} y_i^2} - \sum_{i=1}^{n} x_i y_i.$$

By Cauchy inequality, $\sum_{i=1}^n x_i y_i \leqslant \sqrt{\sum_{i=1}^n x_i^2} \sqrt{\sum_{i=1}^n y_i^2}$. Then $ta(x,y) \geqslant 1$, with equality realized if and only if x=y.

PROPOSITION: The geodesic distance d(x,y) is a monotonous function of ta(x,y).

Proof: A pair of points is uniquely up to $\operatorname{Iso}(\mathbb{H}^n)$ -action determined by $\operatorname{ta}(x,y)$ and by d(x,y) as we have already shown. A continuos bijection from $\mathbb{R}^{\geqslant 0}$ to $\mathbb{R}^{\geqslant 1}$ is always monotonous. \blacksquare

REMARK: Integrating the distance function, it is possible to show that $\cosh(d(x,y))^2 = \tan(x,y)$. We won't use this result.

Alexandrov spaces (reminder)

DEFINITION: Let a,b,c be points on a geodesic metric space (M,d), and r=d(a,b), and $\gamma:[0,r]\longrightarrow M$ a minimizing geodesic connecting a to b. Consider the function $d_c:[0,r]\longrightarrow \mathbb{R}^{\geqslant 0}$ taking t to $d(c,\gamma(t))$. Let $\triangle(\overline{a},\overline{b},\overline{c})\subset \mathbb{R}^2$ be the comparison triangle, and $d_{\overline{c}}:[0,r]\longrightarrow \mathbb{R}^{\geqslant 0}$ the function taking t to $d(\overline{c},\overline{\gamma}(t))$, where $\overline{\gamma}:[0,r]\longrightarrow \mathbb{R}^2$ is the side of the comparison triangle with the normal parametrization. The function $d_{\overline{c}}$ is called **the comparison function**.

DEFINITION: An intrinsic metric space (M,d) has **non-negative curvature** if any point has a neighbourhood V with intrinsic metric such that for any geodesic triangle in V, one has $d_c \geqslant d_{\overline{c}}$, and has **non-positive curvature** if $d_c \leqslant d_{\overline{c}}$. An geodesic metric space M is called **CAT(0)-space**, after Elie Cartan, A. D. Alexandrov and V. A. Toponogov, if the inequality $d_c \leqslant d_{\overline{c}}$ holds for all geodesic triangles.

REMARK: Intrinsic metric spaces with these curvature restrictions are called **Alexandrov spaces.**

PROPOSITION: Let $z \in M$, where M is a CAT(0)-space. Then the function $d_z(x) := d(z,x)$ is convex.

Angles in Alexandrov spaces (reminder)

DEFINITION: Let a,b,c be points in a metric space (M,d). A comparison triangle $\triangle(\overline{a},\overline{b},\overline{c})$ is a triangle in \mathbb{R}^2 , with vertices $\overline{a},\overline{b},\overline{c}$, and side lengths $|\overline{a},\overline{b}|=d(a,b),\ |\overline{a},\overline{c}|=d(a,c),\ |\overline{b},\overline{c}|=d(b,c)$. This triangle exists, and is uniquely determined, up to an isometry, (the existence follows from the triangle inequality). The angle $\angle(\overline{a},\overline{b},\overline{c})\in[0,\pi]$ in the triangle $\overline{a},\overline{b},\overline{c}$ is denoted $\theta(a,b,c)$; it is called the comparizon angle.

DEFINITION: Let a,b,c be three points on a metric space, and $\triangle(\overline{a},\overline{b},\overline{c})$ the comparison triangle. Consider the minimizing geodesics γ_1,γ_2 , connecting a to b and a to c. The angle comparison condition for non-positive curvature is inequality $\angle(\gamma_1,a,\gamma_2) \leqslant \angle(\overline{ca}\overline{b})$. The angle comparison condition for non-negative curvature is inequality $\angle(\gamma_1,a,\gamma_2) \geqslant \angle(\overline{ca}\overline{b})$ together with the equality $\angle(\gamma_+,p,\mu) + \angle(\gamma_-,p,\mu) = \pi$ for any two adjacent angles $\angle(\gamma_+,p,\mu)$, $\angle(\gamma_-,p,\mu)$.

THEOREM: The angle comparison condition is equivalent to the Alexandrov condition $d_{\overline{c}} \leq d_c$ (or $d_{\overline{c}} \geq d_c$) for the same sign of the curvature.

Sum of the angles

REMARK: From the angle comparizon it follows immediately that the sum of the angles of any geodesic triangle in CAT(0)-space is $\leq \pi$. Indeed, from CAT(0) it follows that the angles in $\triangle(abc)$ are all \leq than the angles in $\triangle(\bar{a}b\bar{c})$, and the sum of those is π because $\triangle(\bar{a}b\bar{c}) \subset \mathbb{R}^2$.

Lagrange has shown that the axioms of Euclide (without the parallel postulate) imply that the sum of the angles of any geodesic triangle on a plane is $\leq \pi$.

We will prove that the hyperbolic space satisfies CAT(0)-conditions.

The positive cone

Let g denote the standard signature (1,n) scalar product on $V=\mathbb{R}^{n+1}=\mathbb{R}^{1,n}$, $g(v,v)=v_0^2=\sum_{i=1}^n v_i^2$. A vector $v\in V$ is called **positive** if g(v,v)>0 and the 0-th coordinate of v is positive. Clearly, $(x_0,...,x_n)$ is positive if and only if $x_0^2\geqslant \sum_{i=1}^n x_i^2>0$ and $x_0>0$. By Cauchy inequality,

$$\sum_{i=1}^{n} (x_i + y_i)^2 = \sum_{i=1}^{n} x_i^2 + \sum_{i=1}^{n} y_i^2 + 2\sum_{i=1}^{n} x_i y_i \le$$

$$\le \sum_{i=1}^{n} x_i^2 + \sum_{i=1}^{n} y_i^2 + 2\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2} \le \left(\sqrt{\sum_{i=1}^{n} x_i^2} + \sqrt{\sum_{i=1}^{n} y_i^2}\right)^2,$$

hence for any positive vectors x, y, their sum satisfies

$$(x_0 + y_0)^2 \ge \left(\sqrt{\sum_{i=1}^n x_i^2} + \sqrt{\sum_{i=1}^n y_i^2}\right)^2 \ge \sum_{i=1}^n (x_i + y_i)^2.$$

DEFINITION: We have proven that the set of positive vectors in V is a convex cone, called positive cone. For any positive x, p, the vector x + p is positive, hence x - p which is orthogonal to x + p has negative square. Indeed, g is negative definite on an orthogonal complement to a positive vector, because its signature is (1, n).

Reflections in a positive cone

The reflection in a hyperplane.

Consider a vector $u \in V$ which satisfies g(v,v) = -2, and let $r_v : u \mapsto u + g(u,v)v$. Then $g(r_v(u),r_v(u)) = g(u,u) + g(v,v)g(u,v)^2 + 2g(u,v)^2 = g(u,u)$, hence it is an isometry. It acts as identity on v^{\perp} and takes v to -v, hence it is a reflection. To find v such that $r_v(p) = x$, we write x - p = g(p,v)v, which gives $v = 2\sqrt{-g(x-p,x-p)(x-p)}$. The space v^{\perp} intersects with the plane $\langle p,x\rangle$ in the line $\mathbb{R}\cdot(x+p)$, and the corresponding point of M is $\sqrt{g(x+p,x+p)^{-1}(x+p)}$. This is the midpoint between x and y.

Central symmetry.

Let $v \in V$ be a vector which satisfies g(v,v)=2, and $c_v(u):=(u,v)v-u$. This map is an isometry, because $g(c_v(u),c_v(u))=g(u,u)+g(v,v)g(u,v)^2-2g(u,v)^2=g(u,u)$; it fixes v and acts on $T_vM=V^\perp$ as $-\operatorname{Id}$, hence $u\mapsto c_v(u)$ is a central symmetry with center in $2^{-1/2}v\in M$.

COROLLARY: The central symmetry c_v reflects any geodesic passing through v to itself.

Proof: Indeed, geodesics correspond to 2-dimensional planes $L \subset V$, and those are preserved by reflections with center in L.

Hyperbolic spaces are CAT(0)

THEOREM: The CAT(0) angle comparison condition holds in the hyperbolic space \mathbb{H}^n .

Proof: Let $\langle p, x \rangle \cap M$ and $\langle p, y \rangle \cap M$ be geodesics. We find the midpoints x' between p and x and y' between p and p. Then we take the next midpoint x'' between x' and p a

Consider the comparison triangles $\triangle(\overline{xpy})$ and $\triangle(\overline{x}'\overline{py}')$; by definition, $\theta(x'py')$ is the angle at p in $\triangle(\overline{x}'\overline{py}')$, and $\theta(xpy)$ is the angle at p in $\triangle(\overline{xpy})$. Since $|\overline{xp}| = 2|\overline{x}'\overline{p}|$ and $|\overline{yp}| = 2|\overline{y}'\overline{p}|$, the inequality $\theta(x'py') \leqslant \theta(xpy)$ is equivalent to $|\overline{x}',\overline{y}'| \leqslant 2|\overline{x},\overline{y}|$, which would imply the angle comparison and hence the CAT(0)-property.

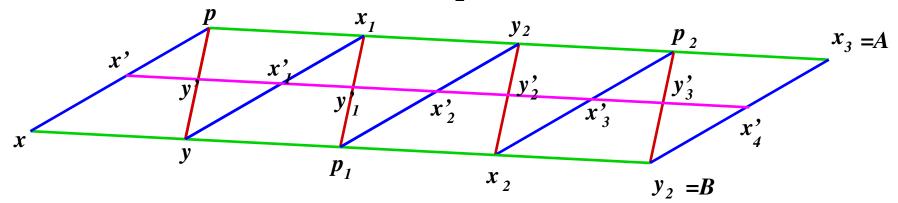
We reduced the CAT(0) property to the following lemma of hyperbolic geometry. Note that any geodesic triangle in \mathbb{H}^n belongs to a hyperbolic plane $H^2 \subset H^n$, which is easily seen because points are vectors in V and geodesics are subspaces connecting these points.

LEMMA: Let $\triangle(xpy)$ be a triangle in \mathbb{H}^2 , and x', y' the midpoints between p and x and between p and y. Then $d(x',y') \leqslant \frac{1}{2}d(x,y)$.

The midpoints in a hyperbolic triangle

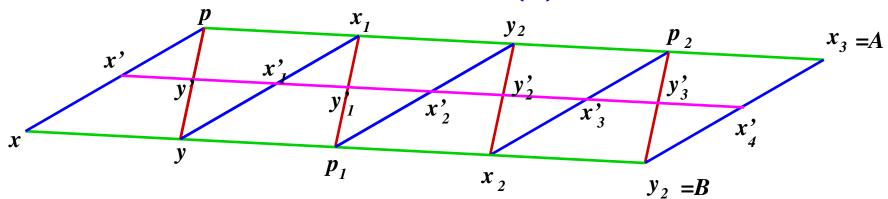
LEMMA: Let $\triangle(xpy)$ be a triangle in \mathbb{H}^2 , and x', y' the midpoints between p and x and between p and y. Then $d(x',y') \leq \frac{1}{2}d(x,y)$.

Proof. Step 1: Apply the central symmetry centered in y' to the triangle $\triangle(xpy)$, then the central symmetry in the image of x' and so on, as shown on the picture. This gives a sequence of congruent triangles $\triangle(xpy)$, $\triangle(pyx_1)$, $\triangle(yx_1p_1)$, with the midlines [x'y'], $[y'x'_1]$, and so on.



Since the central symmetry preserves a geodesic passing through its center, the midpoints $x', y', x'_1, y'_1, ...$ sit on the same line.

The midpoints in a hyperbolic triangle (2)



Suppose we have drawn 2n triangles; the last midpoint is x'_n . Let A be the point in the top right corner. The length of $[x', x'_n]$ is 2nd(x', y'), because all points x'_i and y'_i belong to the same geodesic, and there are 2n equal segments of length d(x', y').

The top green line connecting p and A has n segments of length d(x,y), which gives $d(p,A) \le nd(x,y)$. Clearly, $d(x',p) = \frac{1}{2}d(x,p)$ and $d(A,x'_n) = \frac{1}{2}d(x,p)$

The triangle inequality associated with the polygonal chain $x^\prime, p, A, x_n^\prime$ gives

$$2nd(x',y') = d(x',x'_n) \leqslant \frac{1}{2}d(x,p) + nd(x,y) + \frac{1}{2}d(x,p) = nd(x,y) + d(x,p).$$

Dividing by n and passing to the limit $n \to \infty$, we obtain

$$2d(x',y') \le \lim_{n \to \infty} d(x,y) + \frac{1}{n} d(x,p) = d(x,y).$$

Area in a hyperbolic plane

COROLLARY: An area of an n-sided polygon in a hyperbolic plane is equal to $\pi(n-2) - \sum \alpha_i$, where α_i are its plane angles.

Proof: This formula defies an additive, isometry invariant function $V: \mathfrak{B} \longrightarrow \mathbb{R}^{\geqslant 0}$ on the Boolean algebra \mathfrak{B} of all polygons in \mathbb{H}^2 . Its additivity follows from an inductive argument where we cut a polygon A onto two pieces A_1 and A_2 by a line and show that $V(A) = V(A_1) + V(A_n)$; induction by a number of lines implies additivity for any cut.

It takes non-negative values on any triangle (and, by additivity, on any polygon) because a sum of the angles of a triangle is $\leq \pi$, which follows from CAT(0)-property.

Now, from the first lectures on measure theory it follows that any additive, isometry-invariant function $V: \mathfrak{B} \longrightarrow \mathbb{R}^{\geqslant 0}$ is proportional to the volume (the standard argument which proves this assertion is valid not only for the Euclidean plane, but for any homogeneous Riemannian manifold).