Metric spaces

lecture 16: Quasi-isometries

Misha Verbitsky

IMPA, sala 236

February 8, 2022, 17:00

Quasi-isometries

DEFINITION: A map $f: X \longrightarrow Y$ is called **bi-Lipschitz with constant** C, or just **bi-Lipschitz**, if it is bijective, and both f and f^{-1} are C-Lipschitz (that is, satisfy $d(f(x), f(y)) \leq Cd(x, y)$). Two spaces X, Y are **bi-Lipschitz equivalent** if there exists a bi-Lipschitz map $f: X \longrightarrow Y$.

DEFINITION: The spaces X and Y are **quasi-isometric**, if X and Y are equipped with a ε -networks $X_{\varepsilon} \subset X$, $Y_{\varepsilon} \subset Y$ which are bi-Lipschitz equivalent.

DEFINITION: A map $f: X \longrightarrow Y$ of metric spaces is called a quasi-metric map if for some constants C, $\varepsilon > 0$, we have $d(f(x), f(y)) \leq Cd(x, y) + \delta$.

REMARK: A quasi-metric map is not necessarily continuous.

Quasi-isometries and quasi-metric maps

THEOREM: Let X, Y be metric spaces. Then the following conditions are equivalent:

- (a) There exist quasimetric maps $f: X \longrightarrow Y$, $g: Y \longrightarrow X$, and a constant A > 0 such that d(gf(x), x) < A and d(fg(y), y) < A for any $x \in X, y \in Y$.
- (b) The spaces X and Y are quasi-isometric.

Proof: (b) \Rightarrow (a): Let N_X , N_Y be ε -nets in X, Y, and $\varphi: N_X \longrightarrow N_Y$ a bi-Lipschitz map. Choose projection maps $\Pi_X: X \longrightarrow N_X$, $\Pi_Y: Y \longrightarrow N_Y$ in such a way that every point is mapped to a point of an ε -net in its ε -neighbourhood. Then $f:=\Pi_X\circ\varphi$ and $g:=\Pi_Y\circ\varphi^{-1}$ are quasi-isometries which satisfy $gf=\Pi_X$ and $fg=\Pi_Y$.

The proof of (a) \Rightarrow (b) follows later in this lecture.

COROLLARY: Quasi-isometry is an equivalence relation. ■

Quasi-isometries and ε -nets

DEFINITION: An ε -net N in (X,d) is δ -separated if for any distinct $a,b\in N$, we have $d(a,b)>\delta$.

CLAIM: Let N be an ε -net in a metric space (X,d). Then **one there exists** a ε -separated 2ε -net $N_1 \subset N$.

Proof: Choose an order \prec in N such that it is well-ordered, and remove any $x \in N$ if it belongs to a union of ε -balls with centers in $y \prec N$. Since $B_x(\varepsilon) \subset B_y(2\varepsilon)$, the new set $N \setminus \{x\}$ remains a 2ε -net. Repeating this process and using induction in a well ordered set N, we obtain a 2ε -net which is by construction ε -separated. \blacksquare

Lemma 1: Let $f: M \longrightarrow M'$ be a quasimetric map. Then there exists B > 0 such that for any B-separated ε -net, the restriction $f|_{N_X}$ is Lipschitz.

Proof: Let $d(f(x), f(y)) \leq Cd(x, y) + \delta$. Take $B > C\delta$, then $f|_{N_X}$ is 2C-Lipschitz, because for all $x \neq y$, one has d(x, y) > B, giving d(x, y) < 2d(x, y) - B, hence

$$d(f(x), f(y)) \leq Cd(x, y) - \delta \leq 2Cd(x, y) - BC + \delta \leq 2Cd(x, y).$$

Quasi-isometries and quasi-metric maps (2)

THEOREM: Let X, Y be metric spaces. Then the following conditions are equivalent:

- (a) There exist quasimetric maps $f: X \longrightarrow Y$, $g: Y \longrightarrow X$, and a constant A > 0 such that d(gf(x), x) < A and d(fg(y), y) < A for any $x \in X, y \in Y$.
- (b) The spaces X and Y are quasi-isometric.

Proof of (a) \Rightarrow **(b)**. **Step 1:** Let $N_X \subset X$ be an ε -net. Since the d(fg(Y),Y) < A, the A-neighbourhood of the image of f contains Y. Since $d(f(x),f(y)) \leqslant Cd(x,y) + \delta$, $f(N_X)$ belongs to an $C\varepsilon + \delta$ -neighbourhood of f(X). **Therefore, the set** $f(N_X)$ **is an** $C\varepsilon + \delta + A$ -**net**.

Step 2: Since d(gf(x),x) < A, and f and g are quasi-metric maps, we have $d(gf(x),gf(y)) \geqslant d(x,y) - d(x,gf(x)) - d(y,gf(y)) \geqslant d(x,y) - 2A$. On the other hand, $d(f(x),f(y)) \geqslant Cd(gf(x),gf(y)) - \delta$, because f is a quasi-metric map. Comparing these inequalities, we obtain

$$d(f(x), f(y)) \geqslant Cd(gf(x), gf(y)) - \delta \geqslant Cd(x, y) - 2CA - \delta.$$

This implies that $f(N_X)$ is $CR - 2CA - \delta$ -separated if N is R-separated.

Quasi-isometries and quasi-metric maps (3)

THEOREM: Let X, Y be metric spaces. Then the following conditions are equivalent:

- (a) There exist quasimetric maps $f: X \longrightarrow Y$, $g: Y \longrightarrow X$, and a constant A > 0 such that d(gf(x), x) < A and d(fg(y), y) < A for any $x \in X, y \in Y$.
- (b) The spaces X and Y are quasi-isometric.

Step 1: For any ε -net N_X , the set $f(N_X)$ is an $C\varepsilon + \delta + A$ -net.

Step 2: The set $f(N_X)$ is $CR - 2CA - \delta$ -separated if N is R-separated.

Step 3: Take a R-separated 2R-net in X. Step 2 implies that $f(N_X)$ is $CR - 2CA - \delta$ -separated; choosing R sufficiently big, we obtain that $f|_{N_X}$ is bijective onto its image.

Choose B in such a way that f restricted to any B-separated net in X and g restricted to any B-separated net in Y is Lipschitz (Lemma 1). Take R such that $R\geqslant B$ and $CR-2CA-\delta\geqslant B$, and let N_X be an R-separated 2B-net. Then $N_Y:=f(N_X)$ is a B-separated (Step 2) $CR+\delta+A$ -net (Step 1), hence $g|_{N_Y}$ is also Lipschitz.

Step 4: It remains to show that $f^{-1}: N_Y \longrightarrow N_X$ is also Lipschitz; if not, there exists a sequence $t_i, z_i \in N_X$ such that $d(f(t_i), f(z_i)) \leqslant C_i d(t_i, z_i)$, and $\lim_i C_i = 0$. This would imply (using the same argument as in Step 1) that $d(t_i, z_i) - 2A \leqslant d(gf(t_i), gf(z_i)) \leqslant Cd(f(t_i), f(z_i)) + \delta \leqslant CC_i^{-1}d(f(t_i), f(z_i)) + \delta$ This is impossible, because $d(f(t_i), f(z_i))$ is bounded from below (Step 2). We have found ε -nets $N_X \subset X$ and $N_Y \subset Y$ such that $f: N_X \longrightarrow N_Y$ is bi-Lipschitz.

Word metric on a group

DEFINITION: Let G be a group, S a collection of generators, and $\Gamma_{G,S}$ its Cayley graph. The word metric on G is defined as the restriction of the graph metric from $\Gamma_{G,S}$ to $G \subset \Gamma_{G,S}$.

REMARK: Let $\gamma \in G$ and suppose that the shortest decomposition $\gamma = \prod_i s_i$, where $s_i \in S$ are generators, has length r. Then $d_S(1,\gamma) = r$, "the length of the smallest word in letters $s_1,...,s_n$ expressing γ ". This is why d_S is called "the word metric".

PROPOSITION: Let S, S' be a collection of generators, and $\max_{s \in S} d_{S'}(1, s) = C$. Denote by $d_S, d_{S'}$ the word metrics on G associated with S and S'. Then the identity map $(\Gamma, d_S) \longrightarrow \Gamma, d_{S'}$ is C-Lipschitz.

Proof: The word distance $r:=d_S(g,h)$ is equal to the smallest length of a decomposition $g^{-1}h=\prod_i s_i$, where $s_i\in S$. Replacing each s_i by its decomposition $s_i=\prod_i s_i'$, we obtain a word on the letters s_i' of length at most rC.

COROLLARY: For any finitely generated group, all its Cayley graphs are quasi-isometric. ■

Gromov hyperbolicity is a quasi-isometry invariant

Later in this course I will prove the following theorem.

THEOREM: Let X, Y be quasi-isometric metric spaces. If X is Gromov hyperbolic, then Y is also Gromov hyperbolic.

This can be applied to Cayley graphs of a group.

COROLLARY: Assume that the Cayley graph of a finitely generated group is Gromov hyperbolic for one set generators. **Then it is Gromov hyperbolic for any generator set.** ■