Metric spaces

lecture 18: Gromov hyperbolicity is equivalent to Rips hyperbolicity

Misha Verbitsky

IMPA, sala 236

February 13, 2022, 17:00

The Gromov product (reminder)

DEFINITION: Let $p \in X$ be a point in a metric space. The Gromov product $(a,b)_p$ is defined $(a,b)_p := 1/2(|ap| + |bp| - |ab|)$. It measures for how long the geodesics from p to a and b stay together.

REMARK: The distance function can be recovered from $(a,b)_p$. Indeed, $(a,a)_p = |ap|$, hence $|ab| = (a,a)_p + (b,b)_p - 2(a,b)_p$.

It is possible to define the distance in terms of the Gromov product.

DEFINITION: Let X be a set, and $p \in X$. We say that the function $(\cdot, \cdot)_p : X \times X \longrightarrow \mathbb{R}^{\geqslant 0}$ satisfies the axiom of Gromov product if the following conditions are satisfied:

[It is symmetric:] $(a,b)_p = (b,a)_p$. [Non-degenerate:] $(a,a)_p = (a,b)_p = (b,b)_p \Leftrightarrow a = b$. [Triangle inequality for Gromov product:] $(a,b)_p + (b,c)_p \leqslant (a,c)_p + (b,b)_p$.

CLAIM: Let $(a,b)_p$ is a function $X \times X \longrightarrow \mathbb{R}^{\geqslant 0}$ which satisfies the axioms of the Gromov product. Then $d(a,b) := (a,a)_p + (b,b)_p - 2(a,b)_p$ is a metric on X. Without the non-degeneracy, this formula defines a pseudometric.

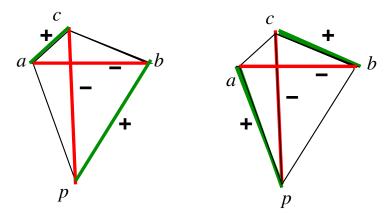
The Gromov inequality (reminder)

DEFINITION: Let (X,p) be a metric space with a marked point, and $a,b,c \in X$. The Gromov inequality, or the δ -Gromov inequality is the inequality between the pairwise Gromov products,

$$(a,b)_p \ge \min [(a,c)_p, (b,c)_p] - \delta.$$

REMARK: The Gromov inequality is equivalent to the condition

$$\max(|bp| + |ac| - |cp| - |ab|, |ap| + |bc| - |cp| - |ab|) \ge -\delta.$$



REMARK 2: The 0-Gromov inequality is $(a,b)_p \ge \min((a,c)_p,(b,c)_p)$; this means that **two smallest numbers in the triple** $(a,b)_p,(a,c)_p,(b,c)_p$ **are equal.**

THEOREM: Suppose that (X,p) satisfies the δ -Gromov inequality. Then for any $t \in X$, the space (X,t) satisfies the 2δ -Gromov inequality.

The approximation tree (reminder)

PROPOSITION: Let (X,p) be a metric space with a marked point. For any set $S = \{x = x_0, x_1, ..., x_n, x_{n+1} = y\} \subset X$, let $L_S(x,y) := \min_i (x_i, x_{i+1})_p$. Define the function $(x,y)_p' := \sup_S L_S(x,y)$, where the supremum is taken over all $x_1, ..., x_n \in X$. Let $d'(x,y) = d(x,p) + d(y,p) - 2(x,y)_p'$. **Then:**

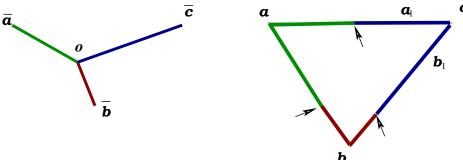
- **(1)** $d(x,y) \ge d'(x,y) \ge 0$
- (2) $(x,y)'_p$ satisfies the 0-Gromov inequality: for any triple a,b,c, two of the numbers $(a,b)'_p,(a,c)'_p,(b,c)'_p$ are equal, and the third is smaller.
- (3) d' is a pseudo-metric.

DEFINITION: Let X' be the Gromov 0-hyperbolic metric space, obtained from the pseudometric (X,d') gluing all pairs x,y with d'(x,y)=0. Consider a tree X_{tr} with the set of vertices X', obtained as follows. For any $x\in X_{tr}$, we connect x to p by an interval of length $(x,x)'_p$, and glue the intervals [a,p] and [b,p] in a smaller interval of length $(a,b)'_p$ starting at p. It is called **the approximation tree for** X.

PROPOSITION: Let (X,p) be a finite metric space satisfying the δ -gromov inequality which has 2^k+1 points. Then the codiameter of the approximation map $\nu: X \longrightarrow X_{tr}$ satisfies codiam' $nu \leqslant k\delta$.

Approximation tripod and δ -slim triangles (reminder)

DEFINITION: Let $\triangle(abc)$ be a geodesic triangle. Define **a model 0-hyperbolic triangle**, or **a model tripod** as a tree $\triangle(\overline{a}\overline{b}\overline{c})$ with three free ends



and three edges, connected in a fourth vertex o, such that the corresponding distances are equal: $|ab| = |\overline{a}\overline{b}|$, $|ac| = |\overline{a}\overline{c}|$, $|bc| = |\overline{b}\overline{c}|$; this also gives $|o,\overline{a}| = (b,c)_a$, $|o,\overline{b}| = (a,c)_a$, $|o,\overline{c}| = (a,b)_a$.

PROPOSITION: Let $\Psi: \triangle(abc) \longrightarrow \triangle(\overline{a}\overline{b}\overline{c})$ be the comparison map to the model tripod defined above. Then

- (a) If codiam $\Psi \leq \delta$, the triangle $\triangle(abc)$ is δ -slim.
- (b) If $\triangle(abc)$ is δ -slim, then codiam $\Psi \leq 2\delta$.

Multi-Gromov inequality and δ -slim triangles

PROPOSITION 4: Let (X,c) be a metric space with geodesic metric, satisfying the δ -Gromov inequality, and a_1,b_1 points on the sides [ac], [bc] of a geodesic triangle $\Delta(cab)$. Let Y be the 5 point metric space $Y=\{c,a,b,a_1,b_1\}$, and let $\nu: (Y,d) \longrightarrow (Y',d')$ be the approximation map. **Then** codiam $\nu \leqslant 2\delta$.

Proof: Codiameter of the approximation tree map $\nu: X \longrightarrow X_{tr}$ is $k\delta$, if Y is a finite set, $|Y| \leq 2^k + 1$. Therefore, codiam $\nu \leq 2\delta$.

THEOREM: Suppose that a geodesic space (X,p) satisfies the δ -Gromov inequality. Then X is Rips 12δ -hyperbolic, that is, all geodesic triangles in X are 12δ -slim.

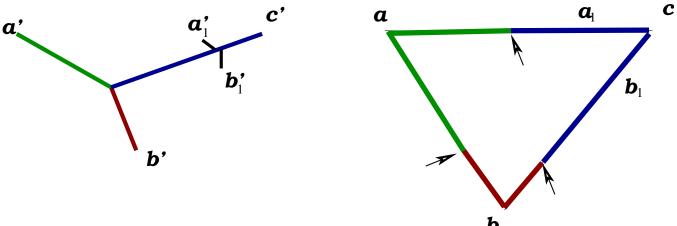
REMARK: It is possible to show that X is Rips 6δ -hyperbolic, instead of 12δ .

REMARK: Its proof goes as follows: consider the map $\mu: \triangle(abc) \longrightarrow T$ to the model tripod, and let a_1,b_1 be two preimages of the same point. It suffices to show to show that $d(a_1,b_1) \leqslant 12\delta$. To prove this, we take the approximation tree Y_{tr} associated with the set $Y:=\{c,a,b,a_1,b_1\}$, and show that the distance between the images of a_1 and b_1 in Y_{tr} is $\leqslant 8\delta$.

Multi-Gromov inequality and δ -slim triangles (2)

THEOREM: Suppose that a geodesic space (X,p) satisfies the δ -Gromov inequality. Then X is Rips 12δ -hyperbolic, that is, all geodesic triangles in X are 12δ -slim.

Proof. Step 1: The space (X,c) is 2δ -hyperbolic (Lecture 15, page 7). Consider the space $Y:=\{c,a,b,a_1,b_1\}$, as above, and let Y_{tr} be its approximation tree.



Step 2: Let $\mu: \triangle(abc) \longrightarrow T$ be the map to the model tripod T. Choose the points $a_1 \in [a,c]$ and $b_1 \in [b,c]$ which are mapped to the same point of T; **to prove the theorem, we need to show that** $d(a_1,b_1) \leqslant 12\delta$. To do this, we show that the distance between $a_1' = \nu(a_1)$, $b_1' = \nu(b_1)$ is $\leqslant 8\delta$, and use codiam $\nu \leqslant 4\delta$ (Step 1).

Multi-Gromov inequality and δ -slim triangles (2)

Step 3: Let $a_1 \in [a,c]$. Then $(a_1,a)_c' \ge d(a_1,c)'$ because $L_S(a_1,a)_c = d(a_1,c)$ when $S = \emptyset$, and $(a_1,y)_c \le d(a_1,c)$ by triangle inequality, for all $y \in Y$. We have shown that $(a_1,a)_c' = d(a_1,c)$.

Step 4: Remark 2 implies that in the triple $(a_1,a)'_c$, $(a_1,b_1)'_c$, $(a,b_1)'_c$, two smallest terms are equal. Step 3 gives that $(a_1,a)'_c = d'(a_1,c) = d(a_1,c) = d(b_1,c)$, and $(a,b_1)'_c \leqslant d'(b_1,c) = d(b_1,c) = (a_1,a)'_c$, and also $(a_1,b_1)'_c \leqslant d'(a_1,c) = d(a_1,c) = (a_1,a)'_c$. **This implies** $(a_1,b_1)'_c = (a,b_1)'_c = (b,a_1)'_c$.

Step 5: By construction, $d(a_1,c)=d(b_1,c)\leqslant (a,b)_c$, hence $(a,b)_c\geqslant (a_1,a)_c=d(a_1,c)$; the inequality $(b,a_1)_c\leqslant (a_1,a)_c=d(a_1,c)$ follows from the triangle inequality. Step 3 implies that $d'(c,a_1)=(a,a_1)'_c\geqslant (b,a_1)'_c$. Then Remark 2 implies that either $(a_1,a)'_c=(a_1,b)'_c\leqslant (a,b)'_c$ or $(a_1,a)'_c\geqslant (a_1,b)'_c=(a,b)'_c$. In the latter case, $(a_1,a)'_c-(a_1,b)'_c\leqslant 4\delta$, because $(a_1,a)_c\leqslant (a,b)_c$, and codiam $\nu\leqslant 4\delta$. Combining this with Step 4, we obtain that either $(a_1,a)'_c=(a_1,b)'_c=(a_1,b)'_c=(a_1,b)'_c$

Step 6: $d'(a_1,b_1) = d'(a_1,c) + d'(b_1,c) - 2(a_1,b_1)'_c \le 8\delta$ (Step 5). Then $d(a_1,b_1) \le 12\delta$, because codiam $\nu \le 4\delta$.

Gromov product and the distance to the geodesic (reminder).

PROPOSITION 1: Let $\triangle(abp)$ be a δ -slim triangle. Then $d(p, [ab]) \geqslant (a,b)_p \geqslant d(p, [ab]) - 2\delta$.

Proof. Step 1: Let c be the point of [ab] closest to p. The triangle inequality gives $|ap|-|cp|+|bp|-|cp| \le |ac|+|cb| = |ab|$. This implies $|ap|+|bp|-|ab| \le 2|cp|$, hence $d(p,[ab]) \ge (a,b)_p$.

Step 2: Since $\triangle(abp)$ is δ -slim, there exists a point c' on [ap] or [bp] such that $d(c,c') \leq \delta$. Assume that $c' \in [pa]$. Using |cp| = d(p,[ab]), we obtain

$$2(c,a)_p = |ap| + |cp| - |ac| \le 2\delta + |ap| + |c'p| - |ac'| =$$

$$= 2\delta + 2|c'p| \le 4\delta + 2|cp| = 4\delta + 2d(p, [ab]).$$

Step 3:

$$(a,b)_p = (a,c)_p + (b,c)_p - |pc| = (a,c)_p + \frac{1}{2}(|pb| - |pc| - |bc|) \le (a,c)_p$$

(the last inequality follows from the triangle inequality). Applying the inequality from Step 2, obtain $(a,b)_p \geqslant d(p,[ab]) - 2\delta$.

Gromov inequality for δ -slim triangles

LEMMA: Let $\triangle(abc)$ be a δ -slim triangle in a geodesic metric space, and p' a point on the side [a,b] closest to p. Assume that p' belongs to a δ -neighbourhood of [ac]. Then $(a,b)_p \geqslant (b,c)_p - 3\delta$.

Proof. Step 1: Since $d(p', [ac]) \leq \delta$, we have $d(p, [a, b]) - d(p, [a, c]) \geq -\delta$ by triangle inequality.

Step 2: Proposition 1 implies that $(a,b)_p \leq d(p,[ab]) \leq (a,b)_p + 2\delta$. Then Step 1 implies $(a,b)_p - (b,c)_p \geq -3\delta$.

COROLLARY: Let X be a Rips δ -hyperbolic geodesic space. Then X satisfies the 3δ -Gromov inequality.

Proof: By the previous lemma, we have $(a,b)_p - (b,c)_p \geqslant -3\delta$ if $p' \in [ac](\delta)$ or $(a,b)_p - (a,c)_p \geqslant -3\delta$ if $p' \in [bc](\delta)$, Comparing these inequalities, we obtain that $(a,b)_p \geqslant \min((b,c)_p,(a,c)_p) - 3\delta$.

COROLLARY: A Rips δ -hyperbolic space is Gromov 3δ -hyperbolic. A Gromov δ -hyperbolic space is Rips 12δ -hyperbolic.

Strong and weak topology on the space of maps

DEFINITION: Let X, Y be metric spaces, and $\operatorname{Map}(X,Y)$ the set of all maps. Given a point $x \in X$ and am open set $W \subset Y$, consider the set $U_{x,W} = \{f \in \operatorname{Map}(X,Y) \mid f(x) \subset W\}$. Topology of pointwise convergence, or weak topology, or Tychonoff topology on $\operatorname{Map}(X,Y)$ is defined by a subbase of open sets $U_{x,W}, x \in X, W \subset Y$. Topology of uniform convergence, or strong topology, or C^0 -topology is defined by the sub-base of sets $U_{f,\delta}$, where $f \in \operatorname{Map}(X,Y), \delta > 0$, and

$$U_{f,\delta} := \{g \in \mathsf{Map}(X,Y), \forall x \in X, d(f(x),g(x)) < \delta\}.$$

CLAIM: A sequence $\{f_i\} \subset \mathsf{Map}(X,Y)$ converges to f in C^0 if and only if $\lim_i \sup_{x \in X} d(f_i(x), f(x)) = 0$, and converges to f in Tychonoff \Leftrightarrow for each $x \in X$ we have $\lim_i f_i(x) = f(x)$.

CLAIM: In C^0 , a limit of a sequence of continuous maps is continuous, a limit of C-Lipschitz maps is C-Lipschitz.

REMARK: In Tychonoff topology, a limit of a sequence of continuous maps is not necessarily continuous. However, a pointwise limit of C-Lipschitz maps is C-Lipschitz.

Tychonoff theorem

PROPOSITION: Let X be countable, and Y compact and metrizable. Then the space Map(X,Y) is sequentially compact in Tychonoff topology.

Proof: We identify X and the set \mathbb{N} of natural numbers. Then the elements $\operatorname{Map}(X,Y)$ are sequences of elements of Y. Consider a sequence of sequences $\{y_i(n)\}$; we need to find a subsequence which converges to $\{y(n)\}$. We take a subsequence for which $\lim_n y_1(n)$ converges, take its first element for y(1). Then we choose a subsequence of this subsequence such that $\lim_n y_2(n)$ converges, and take its second element for y(2), and so on. \blacksquare

REMARK: Tychonoff theorem is true without these assumptions, but it's proof is less constructive.

DEFINITION: A metric d on M is called **bounded** if (M, d) has finite diameter, and **separable** if it contains a dense, countable subset.

REMARK: The space $\operatorname{Map}(X,Y)$ with Tychonoff topology is metrizable, if X is countable. To see that, consider a metric d on Y; if d is non-bounded, replace it by a bounded metric which defines the same topology, such as $d_1(x,y) := \min(d(x,y),1)$. Then the metric $d(\{x(n)\},\{y(n)\}) := \sum \frac{d(x(i),y(i))}{2^n}$ defines the Tychonoff topology on the set of sequences.

Arzelà-Ascoli theorem

LEMMA: Let $X_0 \subset X$ be a dense, countable subset, X and Y compact, and $\{f_i \in \mathsf{Map}(X,Y)\}$ a sequence of C-Lipschitz maps. Assume that $\{f_i|_{X_0}\}$ converges in Tychonoff topology (that is, pointwise). Then $\{f_i\}$ converges in C^0 -topology, and the limit $f := \lim_i f_i$ is also C-Lipschitz.

Proof. Step 1: Choose $a,b \in X_0$. Clearly, $\lim d(f_i(a),f(a))=0$ and $\lim d(f_i(b),f(b))=0$, hence $d(f(a),f(b))=\lim_i d(f_i(a),f_i(b))\leqslant Cd(a,b)$. Therefore, f is C-Lipschitz, hence we can extend it to the completion of X_0 , and $\{f_i\}$ converges in Tychonoff to a limit f, which is also C-Lipschitz.

Step 2: Then f can be extended to a completion X (this is clear, because Lipschitz maps take Cauchy sequences to Cauchy sequences), and, moreover, f is a pointwise limit of f_i (left as an exercise).

Step 3: It remains to show that $\{f_i\}$ converges to f in C^0 . Otherwise $\sup_{x\in X}d(f_i(x),f(x))>A$ for infinitely many i; passing to a subsequence, we can assume that $\sup_{x\in X}d(f_i(x),f(x))>A$ for all i. Let $\{x_i\}$ be a sequence of points such that $d(f_i(x_i),f(x_i))>A$ for all i, and x its limit. Then

$$A < d(f_i(x_i), d(f(x_i))) \le d(f_i(x_i), d(f_i(x))) + d(f_i(x), f(x)) + d(f(x), f(x_i)) \le Cd(x_i, x) + d(f_i(x), f(x)) + Cd(x, x_i),$$

which is impossible, because $\lim_i d(x_i, x) = 0$ and $\lim_i d(f_i(x), f(x)) = 0$.

Arzelà-Ascoli theorem (2)

LEMMA: Let $X_0 \subset X$ be a dense, countable subset, X and Y compact, and $\{f_i \in \mathsf{Map}(X,Y)\}$ a sequence of C-Lipschitz maps. Assume that $\{f_i\big|_{X_0}\}$ converges in Tychonoff topology (that is, pointwise). Then $\{f_i\}$ converges in C^0 -topology, and the limit $f := \lim_i f_i$ is also C-Lipschitz.

COROLLARY: (Arzelà-Ascoli theorem for Lipschitz maps)

Let X be a separable, compact metric space, Y compact, and $L_C(X,Y) \subset \operatorname{Map}(X,Y)$ the space of C-Lipschitz maps. Then $L_C(X,Y)$ is compact in uniform topology.

Proof: Immediately follows from the above lemma and the Tychonoff theorem. ■

Rudolf Lipschitz

R. Lipschile.

Rudolf Otto Sigismund Lipschitz (1832 – 1903)