Metric spaces

lecture 19: Quasigeodesics

Misha Verbitsky

IMPA, sala 236

February 15, 2022, 17:00

Quasigeodesic metrics on metric graphs

DEFINITION: Let $\Gamma, |\cdot|$ be a finite metric graph. C-quasigeodesic metric on Γ is a metric d which satisfies $C^{-1}|x-y| \leq d(x,y) \leq |x-y|$ on each edge of the graph.

REMARK: A metric d on a finite metric graph $\Gamma, |\cdot|$ is quasigeodesic if and only if the identity map $(\Gamma, d) \longrightarrow (\Gamma, |\cdot|)$ is 1-Lipschitz, and the identity map $(\Gamma, |\cdot|) \longrightarrow (\Gamma, d)$ is C-Lipschitz.

CLAIM: Consider the space of metrics on Γ as a metric space with metric $d(d_1, d_2) := \sup_{(x,y) \in \Gamma^2} |d_1(x,y) - d_2(x,y)|$. Then a limit of C-quasigeodesic metrics is C-quasigeodesic.

Proof: $d(x,y) = \lim_i d_i(x,y) \leqslant |x,y|$, hence a limit of metrics d_i for which the identity map $(\Gamma, |\cdot|) \longrightarrow (\Gamma, d_i)$ and $(\Gamma, d) \longrightarrow (\Gamma, |\cdot|)$ is Lipschitz also satisfies this property.

Quasigeodesic metrics on metric graphs (2)

COROLLARY: The space of C-quasigeodesic metrics on $(\Gamma, |\cdot|)$ is compact with respect to the uniform convergence of $|\cdot|$ considered as a function $\Gamma \times \Gamma \longrightarrow \mathbb{R}^{\geqslant 0}$

Proof: The proof is more or less the same as for the Arzelà-Ascoli theorem. Let $\{d_i\}$ be a sequence of C-quasigeodesic metrics. Find a countable dense subset in $\Gamma_0 \subset \Gamma$ and replace $\{d_i\}$ by a subsequence which converges on Γ_0 . Extend the limit metric from Γ_0 to its completion, using the Lipschitz property, and use the inequalities $C^{-1}|x-y| \leq d(x,y) \leq |x-y|$ to prove that d is C-quasigeodesic. \blacksquare

Quasigeodesics and Morse lemma

DEFINITION: A C-quasigeodesic in a metric space M is a rectifiable path $\gamma: [0,a] \longrightarrow M$ which satisfies $L(\gamma|_{[x,y]}) \leqslant Cd(x,y)$, where $L(\gamma|_{[x,y]})$ denotes the length of the interval of γ .

REMARK: I will tacitly consider that all quasigeodesics are naturally paramerized, that is, $L(\gamma|_{[x,y]}) = |x-y|$.

REMARK: Morse Lemma (in the original version of Morse) is a statement about the geometry of the hyperbolic plane \mathbb{H}^2 : for each C > 1 there is R such that any C-quasigeodesic connecting a to $b \in \mathbb{H}^2$ is contained in an R-neighbourhood of [a,b].

REMARK: This statement is clearly false in \mathbb{R}^2 with the Euclidean metric.

DEFINITION: Let γ be a finite C-quasigeodesic in a geodesic Gromov hyperbolic space, and $R(\gamma)$ be the maximum of the distance from the points on γ to any of the minimal geodesics connecting the ends of γ . Morse lemma claims that $R(\gamma)$ is bounded by a constant, which depends only on M and C, for any C-quasigeodesic $\gamma \subset M$.

Harold Calvin Marston Morse (24 March 1892 - 22 June 1977)

Marston Morse and colleague at the dedication of the Institute for Advanced Study at Princeton, 1938.

Quasigeodesics in δ -hyperbolic spaces

CLAIM: Let (M,d_M) be a metric space, and $\gamma:[0,a] \longrightarrow M$ be a C-quasigeodesic connecting a to $b \in M$; we use the normal parametrization on γ . Then the metric $d(x,y) := \frac{d_M(\gamma(ax),\gamma(ay))}{a}$ is C-quasigeodesic on [0,1]. If, in addition, M is δ -hyperbolic, then the space ([0,1],d) is δ/a -hyperbolic.

Proof. Step 1: Then $C^{-1}|ax-ay| \leqslant d_M(ax,ay) \leqslant |ax-ay|$ because γ is C-quasigeodesic, which implies that $C^{-1}|x-y| \leqslant d(x,y) \leqslant |x-y|$, hence the metric d is C-quasigeodesic on [0,1].

Step 2: The δ -Gromov inequality on $(\text{im }\gamma,d_M)$ implies the δ/a -Gromov inequality in ([0,1],d)

REMARK: The metric d on [0,1] is not intrinsic.

Limits of quasigeodesic metrics

DEFINITION: Let γ_i : $[0, a_i] \longrightarrow M$ be a sequence of C-quasigeodesics, with **A limit metric** is a limit (any of the limits) of the sequence of the C-geodesic metrics $d_i(x,y) := \frac{|\gamma_i(a_ix),\gamma_i(a_iy)|}{a_i}$ on [0,1].

REMARK: The limit of d_i always exists, because the metric d_i is C-quasigeodesic, and the space of C-quasigeodesic metrics on [0,1] is compact.

CLAIM: Let $\gamma_i: [0, a_i] \longrightarrow M$, $\lim_i a_i = \infty$, be a sequence of C-quasigeodesics in a δ -hyperbolic space, and ([0, 1], d) is its limit metric. Then the space ([0, 1], d) is **0-hyperbolic**.

Proof: Let $(x,y)_p^i$ be the Gromov product on [0,1] in d_i . Then $(x,y)_p^i \geqslant (x,z)_p^i \wedge (z,y)_p^i - \frac{\delta}{a_i}$ because d_i is $\frac{\delta}{a_i}$ -hyperbolic. Passing to a limit, we obtain

$$\lim_i (x,y)_p^i \geqslant \lim_i (x,z)_p^i \wedge (z,y)_p^i - \frac{\delta}{a_i} = \lim_i (x,z)_p^i \wedge (z,y)_p^i. \blacksquare$$

Morse lemma: the case of digon

PROPOSITION: Let $\gamma_i:[0,a_i]\longrightarrow M$ be a sequence of C-quasigeodesics in a δ -hyperbolic geodesic space, with $\lim_i a_i = \infty$. Denote by X_i the union of the image of γ_i and a geodesic interval connecting its ends. Consider the

metric d_i on the digon graph \Diamond (two vertices, two edges), $d_i = \frac{d_M|_{X_i}}{a_i}$. Then d_i contains a subsequence which uniformly converges to a 0-hyperbolic pseudo-metric \tilde{d} on \Diamond .

Proof: The space of C-quasigeodesic metrics on \Diamond is compact, hence $\{d_i\}$ has a converging subsequence. The limit is Gromov 0-hyperbolic because $\lim_i \frac{\delta}{a_i} = 0$.

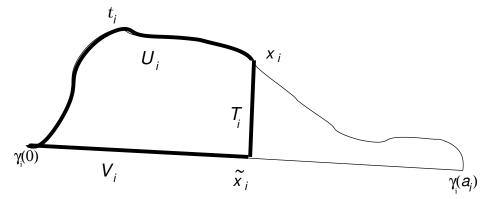
COROLLARY: Let $\{\gamma_i\}$ be a sequence of C-quasigeodesics in a geodesic δ -hyperbolic space, with the ends x_i and y_i . Fix a minimizing geodesic $[x_i, y_i]$. Assume that $\lim_i d(x_i, y_i) = \infty$. Denote by $R(\gamma_i)$ the maximal distance between a point of γ_i and $[x_i, y_i]$. Then $\lim_i \frac{R(\gamma_i)}{a_i} = 0$.

Proof: Consider the pseudometric digon (\lozenge,d) obtained as the limit of digons $[x_i,y_i] \cup \gamma_i$. By construction, the distance between two sides of (\lozenge,d) is equal to $\lim_i \frac{R(\gamma_i)}{a_i}$. However, (\lozenge,d) is a tree, hence **this pseudometric digon is isometric to an interval, and the distance between its sides is 0.**

Morse lemma: the case of a triangle

Let γ_i : $[0,a_i] \longrightarrow M$ be a sequence of quasigeodesics in a hyperbolic space, such that $\lim_i a_i = \infty$ and $\lim_i R(\gamma_i) = \infty$, but $R(\gamma_i) \leqslant \frac{a_i}{2C}$. Denote by $t_i \in [0,a_i]$ the point such that the distance $d(\gamma(t_i),[\gamma(0),\gamma(a_i)])$ reaches maximum in t_i .

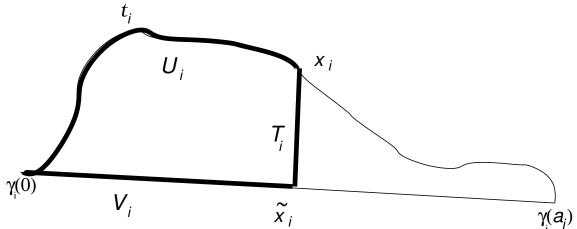
Assume that $d(t_i, \gamma_i(0)) \leq 2CR(\gamma_i)$ for all i, and take $x_i \in \gamma_i([0, a_i])$ such that $d(x_i, \gamma(0)) = 4CR(\gamma_i)$. Let x_i' be the point of $[\gamma(0), \gamma(a_i)]$ which is closest to x_i . Consider the curved triangle $Y_i \subset M$; one of its sides, denoted U_i , is an interval of γ_i from $\gamma_i(0)$ to $\gamma(x_i)$, another, denoted V_i , is a geodesic segment conecting x_i' to $\gamma_i(0)$, and the third side, denoted T_i is a geodesic interval connection x_i' to x_i .



The curved triangle Y_i is naturally identified with the graph \triangle (3 vertices, 3 sides, connected successively). Denote by d_i the metric induced on Y_i by $\frac{d_M}{R(\gamma_i)}$.

Morse lemma: the case of a triangle (2)

The side U_i in (\triangle, d_i) is a C-quasigeodesic, distance between its ends is 4C, the adjacent sides V_i and T_i are geodesics with $|V_i| \le 1$, $|T_i| \le 4C + 1$. Therefore, each d_i is a C-quasigeodesic on a graph Y_i , and a subsequence of $\{d_i\}$ converges uniformly to a pseudometric \tilde{d} on \triangle , and \tilde{d} satisfies the Gromov 0-hyperbolic condition.



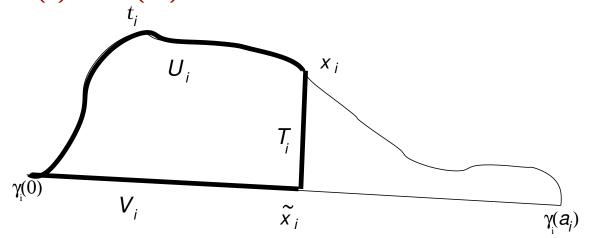
Let U be the limit of the side U_i , and V,T the limits of V_i , T_i . Then |U| = 4C. $|V| \leq 4C + 1$, $|T| \leq 1$.

Let $t \in U$ be the limit of $t_i \in U_i$. Since $d(\gamma(0), t_i) \leq 2CR(\gamma_i)$, the distance from t to the corresponding end of U is $\leq 2C$.

Morse lemma: the case of a triangle (finale)

Denote by \mathbb{T} the metric space associated with the pseudometric d on the triangle $U \cup V \cup T$, and let Ψ be the tautological map.

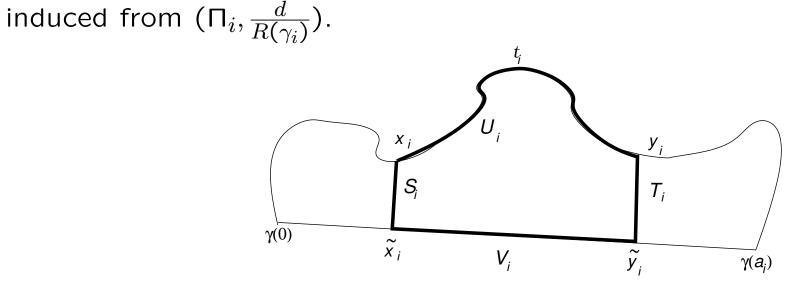
PROPOSITION: Let $\Psi: \triangle \longrightarrow \mathbb{T}$ be a continuous map of a triangle with sides U,V,T to a tree, inducing isometry on V and T. Assume that U is mapped to an interval of length 2C, and T to an interval of length $\leqslant 1$. Let $t \in U$ be a point of U satisfying $d(t,u) \leqslant 2C$, where u is the vertex connecting U and V. Then $\Psi(t) \subset \Psi(V)$.



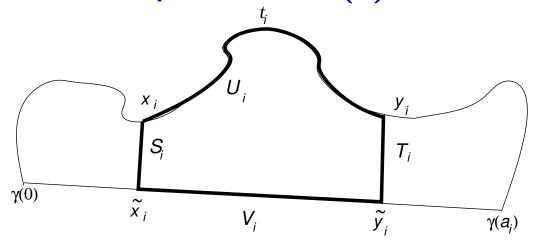
This implies d(t,V)=0. However, by construction, $d_i(t_i,V_i)=1$, which leads to a contradiction. This implies that $\lim_i \frac{R(\gamma_i)}{a_i}=0$ together with $R(\gamma_i)<\frac{a_i}{2C}$ implies $\lim_i R(\gamma_i)< R<\infty$.

Morse lemma: the curved quadrilateral

Let $\gamma_i: [0,a_i] \longrightarrow M$ be a sequence of C-quasigeodesics in a hyperbolic space, such that $\lim_i a_i = \infty$ and $\lim_i R(\gamma_i) = \infty$, but $R(\gamma_i) < \frac{a_i}{2C}$. Let $t_i \in [0,a_i]$ be the point where the distance between $\gamma(t_i) and[\gamma(0),\gamma(a_i)]$ reaches its maximum. Take points x_i,y_i on $\gamma_i([0,a_i])$ such that $d(x_i,y_i) = 4CR(\gamma_i)$, and t_i lies in the middle of the interval of γ_i connecting x_i and y_i . Let Π_i be a curved quadrilateral, with one curved side, identified with the interval of γ_i from x_i to y_i , and other three sides geodesic intervals $[x_i,\tilde{x}_i]$, $[\tilde{x}_i,\tilde{y}_i]$, $[\tilde{y}_i,y_i]$, where \tilde{x}_i,\tilde{y}_i are points of the minimizing geodesic $[\gamma_i(0),\gamma_i(a_i)]$ closest to x_i,y_i . The quadrilateral Π_i is naturally identified with the cyclic graph \square , with 4 edges and 4 vertices connected successively. Denote by d_i the metric on \square



Morse lemma: the curved quadrilateral (2)



One of the sides of (\Box, d_i) is a C-quasigeodesic, and distance between its ends is 4C, the adjacent sides have length $\leqslant 1$, and its opposite side is a geodesic, no longer than 4C+2. Therefore, $\{d_i\}$ has a subsequence which converges uniformly to a pseudometric d on \Box , and satisfies the O-Gromov inequality.

Let $U \subset (\Box, d)$ be the limit of the curved side U_i , V the limit of the opposite side, and S, T the other two sides. Then |U| = 4C, $|V| \leq 4C + 2$, $|S|, |T| \leq 1$, and the metric space associated with (\Box, d) is a tree.

Let $t \in U$ be the limit of $t_i \in U_i$. Since $Cd(\gamma(x_i), t_i) \ge |x_i - t_i| = 2CR(\gamma_i)$, the distance between t and the ends of U is ≥ 2 .

Morse lemma: the curved quadrilateral (finale)



PROPOSITION: Let $\Psi: \Box \longrightarrow \mathbb{T}$ be a map from a quadrilateral to a tree with U mapped to an interval of length 4C, and adjacent edges to intervals of length $\leqslant 1$. Consider a point $t \in U$ such that the distance between t and the ends of U is > 1. Then $\Psi(t) \in \Psi(V)$.

We obtained d(t,V)=0, but, by construction, $d_i(t_i,V_i)=1$, which leads to contradiction. Therefore, $\lim_i \frac{R(\gamma_i)}{a_i}=0$ implies $\lim_i R(\gamma_i)< R<\infty$.

Morse lemma: the end of the proof.

COROLLARY: Let $\gamma_i: [0, a_i \longrightarrow M \text{ be a sequence of } C\text{-quasigeodesics}$ in a δ -hyperbolic space. Then $\lim R_i(\gamma_i) < \infty$.

Proof: $\lim_i \frac{R(\gamma_i)}{a_i} = 0$, as follows with the argument with the digon. Then $\lim_i R_i(\gamma_i) < \infty$, as follows from the case of triangle and quadrilateral.

REMARK: Gromov and [BBI] give more constructible proofs, where the estimate on R is obtained as a function of C and δ .

REMARK: We have shown that a C-quasigeodesic belongs to an R-neighbourhood of a geodesic, connecting its ends: $S \subset T(R)$. The same argument shows that $T \subset S(R)$.