Metric spaces

lecture 22: Word problem in hyperbolic groups

Misha Verbitsky

IMPA, sala 236

March 3, 2022, 17:00

Groups with relators of length at most 3

DEFINITION: Let Γ be a group presented by the set $S = \{s_1, s_1^{-1}, ..., s_n, s_n^{-1}\}$, with relation set $R = \{W_1, W_2, ..., W_n\}$ given by reduced words in elements of S. The words W_i are called **the relators** of Γ . In this case we write $\Gamma = \langle S|R\rangle$.

REMARK: $\Gamma = \mathbb{F}_n/\Gamma_R$, where $\Gamma_{\mathbb{R}} \subset \mathbb{F}_n$ is a subgroup generated by xW_ix^{-1} for all $x \in \mathbb{F}_n$.

DEFINITION: We are interested in groups with relators of length 3, that is, with all relators having form $W_i = u_i u_j u_k$, where $u_i, u_j, u_k \in S$. In this situation, we will always add $W_i^{-1} = u_k^{-1} u_j^{-1} u_i^{-1}$ to the set of relators.

REMARK: Loops in the Cayley graph of Γ are relations of form $x_{i_1}x_{i_2}...x_{i_N}=1$. If every relation in Γ has form xW_ix^{-1} , with $|W_i|=3$, this means that every loop can be cut onto triangles with side 1,1,1.

Area of a contractible loop

DEFINITION: Let $\Gamma = \langle S|R\rangle$ be a group with relators of length at most 3. **Area** of a loop in the Cayley graph of Γ is the minimal number of triangles, obtained if we cut this loop on triangles.

REMARK: A loop of length n starting in x in the Cayley graph is a relation of form $xt_1x^{-1}xt_2x^{-1}...xt_rx^{-1}$, where $t_i \in S$. Then the area of this loop is the smallest number of length 3 relators $W_1,...,W_k$ such that $xt_1x^{-1}xt_2x^{-1}...xt_rx^{-1} = a_1W_1a_1^{-1}...a_kW_ka_k^{-1}$ in the free group generated by S.

THEOREM: Let $\Gamma = \langle S|R\rangle$ be a group with relators of length at most 3, and Ψ a computable function such that every loop of length n has area $\leqslant \Psi(n)$. Then the word problem is solvable in Γ .

Word solvable groups

THEOREM: Let $\Gamma = \langle S|R\rangle$ be a group with relators of length at most 3, and Ψ a computable function such that every loop of length n has area $\leqslant \Psi(n)$. Then the word problem is solvable in Γ .

Proof. Step 1: Let the loop $\gamma:=x_{i_1}x_{i_2}...x_{i_n}$, be cut onto triangles $w_{a_1b_1c_1}$, ..., with each triange $w_{a_ib_ic_i}$ having sides $a_i,b_i,c_i\in S$ starting at the vertex $\psi(i)$ in the Cayley graph; in other words, $x_{i_1}x_{i_2}...x_{i_n}=\prod_i w_{a_ib_ic_i}^{\psi(i)}$. Denote $\psi_i\psi_{i-1}^{-1}$ by h_i ; this is the element connecting a triangle to the next one. Either the loop γ goes ahead from one triangle and back by the track in opposite direction, or the triangles are adjacent and h_i has length \leqslant 2. Let now $L_k:=\prod_{i=1}^k h_k$ be a path connecting 1 and ψ_k . Using induction, we denote by g_k a loop $g_{k-1}L_kw_{a_kb_kc_k}L_k^{-1}$. This is a loop in the Cayley graph of Γ obtained by gluing the triangles from the 1-st up to k-th.

Step 2: The loop $x_{i_1}x_{i_2}...x_{i_N}$ can be obtained by going aroung the triangles $w_{a_ib_ic_i}^{\psi(i)}$ successively. This gives relation $x_{i_1}x_{i_2}...x_{i_n}=g_N$ in \mathbb{F}_S .

Word solvable groups (2)

Step 3: To prove that the word problem is solvable, we need to be able to write an algorithm able to represent any word $x_{i_1}x_{i_2}...x_{i_n}$ which is equal to 1 in Γ as a product of relators, $x_{i_1}x_{i_2}...x_{i_n} = \prod_i w_{a_ib_ic_i}^{\psi(i)}$. Consider all sequences of form $g_1 = L_1w_{a_1b_1c_1}L_1^{-1}$, $g_2 = g_1L_2w_{a_2b_2c_2}L_2^{-1}$, ..., $g_N = g_{N-1}L_Nw_{a_Nb_Nc_N}L_N^{-1}$, where $N \leqslant \Psi(n)$. There are finitely many such sequences, because on each step we take finitely many choices: choose a triangle $w_{a_ib_ic_i}$ and the word $h_i = \psi_i\psi_{i-1}^{-1}$ of length \leqslant 2. Therefore, to recover all possible relations $x_{i_1}x_{i_2}...x_{i_n} = \prod_i w_{a_ib_ic_i}^{\psi(i)}$, we need to take only $(2d+d')^{\Psi(N)}$ comparisons, where d=|S| and d'=|W|.

Word problem in hyperbolic groups

THEOREM: Let Γ be a Gromov hyperbolic group. Then the word problem in Γ is solvable.

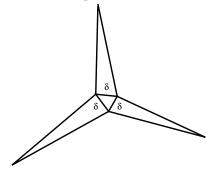
Proof. Step 1: Choose a presentation $\Gamma = \langle S|R\rangle$ with all relators of length 3. Suppose that the Cayley graph of Γ is Rips δ -hyperbolic. It would suffice to show that the area of a path with perimeter P obtained from N geodesic segments is bounded by constNP + const'N. In this case the word problem is solvable (Porposition 1). The inequality bounding the area of a loop by a polynomial on its perimeter is called the isomerimetric inequality.

Step 2: Let C be the maximal area of a geodesic triangle with all sides $\leq \delta$. The number of such triangles is finite, hence C is finite.

Step 3: Let \triangle be a geodesic triangle in the Cayley graph of Γ with perimeter P. We say that \triangle is δ -degenerate if it belongs to a δ -neighbourhood of one of its sides. the area of a degenerate triangle is bounded by $C\lceil \delta^{-1}P \rceil$. Indeed, \triangle can be cut onto $\lceil \delta^{-1}P \rceil$ triangles with side $\leq \delta$.

Word problem in hyperbolic groups: the isoperimetric inequality

Step 4: δ -hyperbolicity implies that any geodesic triangle can be cut onto 2 δ -degenerate triangles and one triangle with 3 sides $\leq \delta$.



Therefore, the area of a triangle is $\leq C\lceil \delta^{-1}P\rceil + C \leq C\delta^{-1}P + 2C$, where P is its perimeter.

Step 5: Let γ be a path of length P in the Cayley graph obtained from N geodesic segments, and γ' the path with $\lceil \frac{N}{2} \rceil$ geodesic segments, obtained from γ by replacing every successive union of odd and even segments by a geodesic. Then

Area
$$(\gamma)$$
 – Area $(\gamma') \leqslant C\lceil \delta^{-1}[\operatorname{Per}(\gamma) - \operatorname{Per}(\gamma')]\rceil + 2C\lceil \delta^{-1}\operatorname{Per}(\gamma')\rceil \leqslant$
 $\leqslant 2C\left\lceil \frac{N}{2}\right\rceil + C\delta^{-1}\operatorname{Per}(\gamma)$

which implies Area $(\gamma) \leq 2C\delta^{-1}N \operatorname{Per}(\gamma) + 2CN$.