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Complex manifolds in dimension 1: end-term exam

Rules: Every student receives from me a list of 8 exercises (chosen randomly), and has to solve as many of them as you
can by due date (February 26, 2020). Please write down the solution and bring it to exam for me to see. To pass the
exam you are required to explain the solutions, using your notes. Please learn proofs of all results you will be using on
the way (you may put them in your notes). You should come to IMPA February 26, 2020, 14:00 and find me (room 232
or 344).

The final score N is obtained by summing up the points from the exam problems and the class tests, using the

formula N = 10e + t/2, where t is sum of class tests, e the points for exam problems. Marks: C when 20 6 N < 30, B

when 30 6 N < 40, A when 40 6 N < 50, A+ when N > 50.

1 Almost complex structures and holomorphic functions

Exercise 1.1. Let f be a smooth real function on a disk D such that dId(f) is a nowhere
degenerate 2-form of positive orientation. Prove that f cannot have a maximum anywhere on
D.

Definition 1.1. Holomorphic differential on an almost complex manifold is a closed (1, 0)-
form.

Exercise 1.2. Let M be a simply connected almost complex manifold, and η a holomorphic
differential with no zeros. Prove that M admits a holomorphic submersion to C.

Exercise 1.3. Let M be a simply connected almost complex manifold, and η a non-zero
holomorphic differential. Prove that M admits a non-constant holomorphic map to C∗ = C\0.

Exercise 1.4. Let M be an almost complex manifold, and φ : M −→ R a function which
satisfies dId(φ) = 0. Prove that M admits a non-zero holomorphic differential.

Exercise 1.5 (2 points). Let Γ ⊂ Aut(∆) be a discrete, cyclic subgroup in the group of
automorphisms of a disk. Prove that ∆ admits a Γ-invariant holomorphic differential or find
a counterexample.

Exercise 1.6 (2 points). Let M0 be a Riemann surface equipped with a holomorphic action
of a group Γ = Z, generated by an automorphism γ. Consider a nowhere vanishing function
φ on M0 such that γ∗(φ) = const ·φ and dIdφ = 0. Prove that M admits a Γ-invariant
holomorphic differential.

Exercise 1.7. Let M be a Riemannian 2-manifold, and f : M −→M a conformal map
preserving the Riemannian volume. Prove that f is an isometry.

Exercise 1.8 (2 points). Let f be a real-valued smooth function on a complex manifold
which satisfies dId(f) = 0. Prove that f is a real part of a holomorphic function or find a
counterexample.

Exercise 1.9. Let f be a holomorphic function on a disk ∆. Prove that
∫

∆ fω = πf(0),
where ω = dx ∧ dy is the standard volume form.

Exercise 1.10. Let M be a simply connected complex manifold, and θ a non-zero exact
1-form such that d(Iθ) = 0. Prove that M admits a non-constant holomorphic function.
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Exercise 1.11. Let f be a holomorphic function on a Riemann surface such that |f | and df is
nowhere zero. Prove that |f | is smooth. Prove that dId(|f |) is a nowhere degenerate 2-form.

Exercise 1.12. Let f be a non-constant holomorphic function on a disk, continuous on the
boundary. Prove that

√
−1
∫
∂∆ f̄

df
dzdz > 0.

Exercise 1.13. Let f be a holomorphic function on C such that |f |(z) < |P (z)| for some
polynomial P (z). Prove that f is polynomial.

Exercise 1.14. Let fi be a collection of holomorphic functions on a disk such that
∑∞

i=0 |fi(z)|
conferges uniformly on ∆. Prove that

∑∞
i=0 |f ′i(z)| converges uniformly on ∆.

Exercise 1.15. Let f be a bounded holomorphic function on {z ∈ C | Re(z) > 0}. Suppose
that f(n) = 0 for all n ∈ Z>0. Prove that f = 0.

2 Homogeneous spaces

Exercise 2.1. Construct a fibration with total space SU(3), base S5 and fiber S3.

Exercise 2.2. Prove that CPn admits an U(n+ 1)-invariant Riemannian metric. Prove that
this metric is unique up to a constant multiplier.

Exercise 2.3. Consider an U(3)-invariant symmetric 3-form η ∈ Sym3 T ∗CP 2. Prove that
η = 0.

Exercise 2.4. Consider the space AdS(2) := SO+(1, 2)/SO+(1, 1) (so-called “2-dimensional
anti-de Sitter space”). Prove that AdS(2) does not admit an SO+(1, 2)-invariant Riemannian
structure.

Exercise 2.5. Prove that AdS(2) = SO+(1, 2)/SO+(1, 1) is not simply connected.

Exercise 2.6. Let V be an n-dimensional Hermitian complex space. Prove that the space
B ⊂ PCV of all positive complex lines in V is biholomorphic to a ball in Cn−1.

Exercise 2.7. Let V be an odd-dimensional vector space equipped with a positive definite
quadratic form. Prove that the center of SO(V ) is trivial.

Exercise 2.8 (2 points). Let V = Rn be a Euclidean vector space, and Gr(2, V ) = SO(n)
SO(2)×SO(n−2)

the Grassmannian of 2-planes in V . Prove that Gr(2, V ) admits an SO(n)-invariant almost
complex structure.

Exercise 2.9. Let X be the disk ∆ with Poincare metric, and S1X the space of all vectors
of length 1 in T∆. Prove that the action of SO(1, 2) on S1X is free and transitive.

Definition 2.1. Horocycle on a Poincaré plane is an orbit of a parabolic subgroup Pt =(
1 t
0 1

)
∈ PSL(2,R) = SO+(1, 2).

Exercise 2.10. Prove that the group of isometries Iso(H2) = SO+(1, 2) acts transitively on
the set of all horocycles.
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Exercise 2.11. Let V = R3 be a vector space with quadratic form q of signature (1,2),
p1, p2 ∈ V two vectors with positive square, and p̃1, p̃2 the points in PV + = H2 corresponding

to p1, p2. Define tance of p1, p2 as ta(p1, p2) := q(p1,p2)2

q(p1,p1)q(p2,p2) . Prove that the distance between

points p̃1, p̃2 in hyperbolic metric can be expressed through ta(p1, p2).

3 Poincaré metric and the automorphism groups

Exercise 3.1. Let M be a compact metric space, and Iso(M) the group of its isometries. We
equip Iso(M) with topology of uniform convergence. Prove that Iso(M) is compact.

Exercise 3.2. Let M be a compact, Kobayashi-hyperbolic complex manifold. Prove that M
does not admit non-zero holomorphic vector fields.

Exercise 3.3 (2 points). Let M = ∆/Γ be a compact Riemann surface, uniformized by a
disk ∆. Prove that Γ has no fixed points on the absolute.

Exercise 3.4. Let Γ be an infinite cyclic subgroup of SO+(1, 2), and δ ∈ SO+(1, 2) an
element commuting with Γ. Let S be the set of fixed point of the action of Γ on the absolute.

Prove that δ
∣∣∣
S

= Id.

Definition 3.1. Let l be a geodesic on a Poincaré plane. A symmetry with an axis l is
an isometry changing orientation and acting trivially on l.

Exercise 3.5. Let l1, l2 be two geodesics in H2, and s1, s2 the corresponding symmetries.
Prove that s1s2 is parabolic if l1, l2 have a common end in the absolute. Prove that s1s2 is
hyperbolic if l1, l2 do not intersect in H̄2.

Exercise 3.6. Let u ∈ SO+(1, 2) be an isometry of H2 such that u(x) 6= x, but u(u(x)) = x.
Prove that u(u(y)) = y for all y ∈ H2.

Exercise 3.7. Let T be an absolute triangle, l1, l2, l2 its edges, and s1, s2, s3 the corresponding
symmetries. Prove that T ∩ s1s2s3(T ) = ∅.

Exercise 3.8 (3 points). Let ∆ be a disk in C and M a compact complex manifold which
is Kobayashi hyperbolic. Prove that any holomorphic map Ψ : ∆\0−→M can be holomor-
phically extended to ∆.

Definition 3.2. A circle with center x and radius r on a Poincaré plane H2 is the set
{y ∈ H2 | d(x, y) = r}

Exercise 3.9. Let S be a circle on a disk ∆ ⊂ C with Poincaré metric. Prove that S is a
circle in Euclidean geometry on ∆ ⊂ C.

Exercise 3.10. Let r be a maximal radius of a circle in Poincaré plane which can be inscribed
in a triangle. Prove that r <∞.

Exercise 3.11. Let γ1, γ2 be two geodesics in Poincaré plane with the same end in the abso-
lute. Prove that for each ε > 0 there exists x ∈ γ1, y ∈ γ2 such that d(x, y) < ε.
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Exercise 3.12. Let a, b, c ∈ Abs be three distinct points on the absolute, and A ∈ SO+(1, 2)
an isometry of Poincaré plane which fixes a, b, c. Prove that A = Id.

Exercise 3.13 (2 points). Let T be a triangle on a Poincare plane with vertices (a, b, c)
and angle ∠abc = π

2 . Prove that there exists a number C independent from a, b, c such that
|ac|+ C > |ab|+ |bc|

Exercise 3.14 (2 points). Let I1, I2 ∈ SL(2,R) be two operators satisfying I2
1 = I2

2 = − Id.
Prove that |Tr I1I2| > 2, with equality if and only if I1 = ±I2.

4 Coverings, fundamental group, topology

Exercise 4.1. Let V = R3 be a vector space with quadratic form of signature (1,2), and
PV − ⊂ PV = RP 3 the space of negative lines. Prove that PV − is homeomorphic to a Möbius
strip.

Exercise 4.2. Let M be a Riemann surface with infinite fundamental group. Prove that any
continuous map S2 −→M is homotopic to a trivial map (map to a point).

Exercise 4.3. Let M be a manifold with infinite fundamental group, M̃ its universal covering,
and M̃ ×M M̃ the fibered product. Prove that M̃ ×M M̃ has infinitely many connected
components.

Exercise 4.4. Let M̃ −→M be a connected covering, and G = AutM (M̃) a group of auto-
morphisms of the covering. Prove that the action of G on M̃ is free, and the quotient space
M̃/G is also a covering of M .

Definition 4.1. Free group is a fundamental group of a bouquet of circles (a collection of
circles glued in one point).

Exercise 4.5. Let M1 = S1 × S1 be a torus and M be M1 without a point. Prove that its
fundamental group is free.

Exercise 4.6. Let M be a simply connected manifold. Prove that any real rank 1 bundle on
M is trivial.

Exercise 4.7. Prove that all real vector bundles on R are trivial. Construct a non-trivial
vector bundle on S1 or prove it does not exist.

Exercise 4.8. Let TS2 ⊕ R be a direct sum of a tangent bundle TS2 and a trivial 1-
dimensional bundle. Is the bundle TS2 ⊕ R trivial?

Exercise 4.9. Let B ⊂ TM be a 2-dimensional sub-bundle, and

Φ : Λ2B −→ TM/B

its Frobenius form. Find B ⊂ TR3 such that Φ nowhere vanishes.

Exercise 4.10. Find a rank 1 sub-bundle B ⊂ TS3 such that the corresponding foliation has
non-compact leaves.
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