Complex manifolds of dimension 1

lecture 1

Misha Verbitsky

IMPA, sala 232

January 6, 2020

Complex structure on a vector space

DEFINITION: Let V be a vector space over \mathbb{R} , and $I : V \longrightarrow V$ an automorphism which satisfies $I^2 = -\operatorname{Id}_V$. Such an automorphism is called a complex structure operator on V.

We extend the action of I on the tensor spaces $V \otimes V \otimes ... \otimes V \otimes V^* \otimes V^* \otimes ... \otimes V^*$ by multiplicativity: $I(v_1 \otimes ... \otimes w_1 \otimes ... \otimes w_n) = I(v_1) \otimes ... \otimes I(w_1) \otimes ... \otimes I(w_n)$.

Trivial observations:

- 1. The eigenvalues α_i of I are $\pm \sqrt{-1}$. Indeed, $\alpha_i^2 = -1$.
- 2. *V* admits an *I*-invariant, positive definite scalar product ("metric") *g*. Take any metric g_0 , and let $g := g_0 + I(g_0)$.
- 3. *I* is orthogonal for such *g*. Indeed, $g(Ix, Iy) = g_0(x, y) + g_0(Ix, Iy) = g(x, y)$.
- 4. I diagonalizable over \mathbb{C} . Indeed, any orthogonal matrix is diagonalizable.
- 5. There are as many $\sqrt{-1}$ -eigenvalues as there are $-\sqrt{-1}$ -eigenvalues.

Riemann surfaces, lecture 1

M. Verbitsky

Comples structure operator in coordinates

This implies that in an appropriate basis in $V \otimes_{\mathbb{R}} \mathbb{C}$, the complex structure operator is diagonal, as follows:

We also obtain its normal form in a real basis:

Hermitian structures

DEFINITION: Let (V, I) be a space equipped with a complex structure. **The Hodge decomposition** $V \otimes_{\mathbb{R}} \mathbb{C} := V^{1,0} \oplus V^{0,1}$ is defined in such a way that $V^{1,0}$ is a $\sqrt{-1}$ -eigenspace of I, and $V^{0,1}$ a $-\sqrt{-1}$ -eigenspace.

DEFINITION: An *I*-invariant positive definite scalar product on (V, I) is called **an Hermitian metric**, and (V, I, g) – an Hermitian space.

REMARK: Let *I* be a complex structure operator on a real vector space *V*, and *g* – a Hermitian metric. Then **the bilinear form** $\omega(x,y) := g(x,Iy)$ is skew-symmetric. Indeed, $\omega(x,y) = g(x,Iy) = g(Ix,I^2y) = -g(Ix,y) = -\omega(y,x)$.

DEFINITION: A skew-symmetric form $\omega(x, y)$ is called **an Hermitian form** on (V, I).

REMARK: In the triple I, g, ω , each element can recovered from the other two.

Sheaves

DEFINITION: A presheaf of functions on a topological space M is a collection of subrings $\mathcal{F}(U) \subset C(U)$ in the ring C(U) of all functions on U, for each open subset $U \subset M$, such that the restriction of every $\gamma \in \mathcal{F}(U)$ to an open subset $U_1 \subset U$ belongs to $\mathcal{F}(U_1)$.

DEFINITION: A presheaf of functions \mathcal{F} is called a sheaf of functions if these subrings satisfy the following condition. Let $\{U_i\}$ be a cover of an open subset $U \subset M$ (possibly infinite) and $f_i \in \mathcal{F}(U_i)$ a family of functions defined on the open sets of the cover and compatible on the pairwise intersections:

$$f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$$

for every pair of members of the cover. Then there exists $f \in \mathcal{F}(U)$ such that f_i is the restriction of f to U_i for all i.

Sheaves and presheaves: examples

Examples of sheaves:

- * Space of continuous functions
- * Space of smooth functions, any differentiability class
- * Space of real analytic functions

Examples of presheaves which are not sheaves:

- * Space of constant functions (why?)
- * Space of bounded functions (why?)

Ringed spaces

A ringed space (M, \mathcal{F}) is a topological space equipped with a sheaf of functions. A morphism $(M, \mathcal{F}) \xrightarrow{\Psi} (N, \mathcal{F}')$ of ringed spaces is a continuous map $M \xrightarrow{\Psi} N$ such that, for every open subset $U \subset N$ and every function $f \in \mathcal{F}'(U)$, the function $\psi^* f := f \circ \Psi$ belongs to the ring $\mathcal{F}(\Psi^{-1}(U))$. An isomorphism of ringed spaces is a homeomorphism Ψ such that Ψ and Ψ^{-1} are morphisms of ringed spaces.

EXAMPLE: Let M be a manifold of class C^i and let $C^i(U)$ be the space of functions of this class. Then C^i is a sheaf of functions, and (M, C^i) is a ringed space.

REMARK: Let $f: X \longrightarrow Y$ be a smooth map of smooth manifolds. Since a pullback $f^*\mu$ of a smooth function $\mu \in C^{\infty}(M)$ is smooth, a smooth map of smooth manifolds defines a morphism of ringed spaces.

Complex manifolds

DEFINITION: A holomorphic function on \mathbb{C}^n is a smooth function f: $\mathbb{C}^n \longrightarrow \mathbb{C}$ such that its differential df is complex linear.

REMARK: Holomorphic functions form a sheaf.

DEFINITION: A map $f : \mathbb{C}^n \longrightarrow \mathbb{C}^m$ is **holomorphic** if all its coordinate components are holomorphic.

DEFINITION: A complex manifold M is a ringed space which is locally isomorphic to an open ball in \mathbb{C}^n ringed with a sheaf of holomorphic functions.

Equivalent definition: A complex manifold is a manifold equipped with an atlas with charts identified with open subsets of \mathbb{C}^n and transition maps holomorphic.

EXERCISE: Prove that these two definitions are equivalent.

Complex manifolds and almost complex manifolds

DEFINITION: An almost complex structure on a smooth manifold is an endomorphism I: $TM \rightarrow TM$ of it tangent bundle which satisfies $I^2 = -\text{Id}_{TM}$.

DEFINITION: Standard almost complex structure is $I(d/dx_i) = d/dy_i$, $I(d/dy_i) = -d/dx_i$ on \mathbb{C}^n with complex coordinates $z_i = x_i + \sqrt{-1} y_i$.

DEFINITION: A map Ψ : $(M, I) \longrightarrow (N, J)$ from an almost complex manifold to an almost complex manifold is called **holomorphic** if its differential commutes with the almost complex structure.

DEFINITION: A complex-valued function $f \in C^{\infty}M$ on an almost complex manifold is **holomorphic** if df belongs to $\Lambda^{1,0}(M)$, where

$$\Lambda^1(M) \otimes_{\mathbb{R}} \mathbb{C} = \Lambda^{1,0}(M) \oplus \Lambda^{0,1}(M)$$

is the Hodge decomposition of the cotangent bundle.

REMARK: For standard almost complex structures, this is the same as the coordinate components of Ψ being holomorphic functions. Indeed, a function $f: (M, I) \longrightarrow (\mathbb{C}, I)$ is holomorphic if and only if its differential df satisfies $df(Iv) = \sqrt{-1} df(v)$.

Integrability of almost complex structures

DEFINITION: An almost complex structure I on a manifold is called **integrable** if any point of M has a neighbourhood U diffeomorphic to an open subset of \mathbb{C}^n , in such a way that the almost complex structure I is induced by the standard one on $U \subset \mathbb{C}^n$.

CLAIM: Complex structure on a manifold *M* uniquely determines an integrable almost complex structure, and is determined by it.

Proof: Complex structure on a manifold M is determined by the sheaf of holomorphic functions \mathcal{O}_M , and \mathcal{O}_M is determined by I as explained above.

Conversely, to determine an almost complex structure on M it suffices to define the Hodge decomposition $\Lambda^1(M) \otimes_{\mathbb{R}} \mathbb{C} = \Lambda^{1,0}(M) \oplus \Lambda^{0,1}(M)$, but $\Lambda^{1,0}(M)$ is generated by differentials of holomorphic functions, and $\Lambda^{0,1}(M)$ is its complex conjugate.

Frobenius form

CLAIM: Let $B \subset TM$ be a sub-bundle of a tangent bundle of a smooth manifold. Given vector fiels $X, Y \in B$, consider their commutator [X, Y], and lets $\Psi(X, Y) \in TM/B$ be the projection of [X, Y] to TM/B. Then $\Psi(X, Y)$ is $C^{\infty}(M)$ -linear in X, Y:

$$\Psi(fX,Y) = \Psi(X,fY) = f\Psi(X,Y).$$

Proof: Leibnitz identity gives [X, fY] = f[X, Y] + X(f)Y, and the second term belongs to B, hence does not influence the projection to TM/B.

DEFINITION: This form is called **the Frobenius form** of the sub-bundle $B \subset TM$. This bundle is called **involutive**, or **integrable**, or **holonomic** if $\Psi = 0$.

EXERCISE: Give an example of a non-integrable sub-bundle.

Formal integrability

DEFINITION: Let $I: TM \longrightarrow TM$ be an almost complex structure on M, and $TM \otimes_{\mathbb{R}} \mathbb{C} = T^{1,0}M \oplus T^{0,1}$ the Hodge decomposition. An almost complex structure I on (M, I) is called **formally integrable** if $[T^{1,0}M, T^{1,0}] \subset T^{1,0}$, that is, if $T^{1,0}M$ is involutive.

DEFINITION: The Frobenius form $\Psi \in \Lambda^{2,0} M \otimes TM$ is called **the Nijenhuis tensor**.

CLAIM: An integrable almost complex structure is always formally integrable.

Proof: Locally, the bundle $T^{1,0}(M)$ is generated by d/dz_i , where z_i are complex coordinates. These vector fields commute, hence satisfy $[d/dz_i, d/dz_j] \in T^{1,0}(M)$. This means that the Frobenius form vanishes.

THEOREM: (Newlander-Nirenberg) A complex structure I on M is integrable if and only if it is formally integrable.

Proof: (real analytic case) next lecture.

REMARK: In dimension 1, formal integrability is automatic. Indeed, $T^{1,0}M$ is 1-dimensional, hence all skew-symmetric 2-forms on $T^{1,0}M$ vanish.