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Complex structure on a vector space

DEFINITION: Let V be a vector space over R, and I : V — V an automor-
phism which satisfies 12 = —Idy,. Such an automorphism is called a complex
structure operator on V.

We extend the action of 7 on the tensor spaces VRV X..QVRV*QV*®...Q
V* by multiplicativity: I1(v1®...Qw1®...Qwp) = [(v1) R ... [(w1)X...Q I (wn).

Trivial observations:
1. The eigenvalues «; of I are ++/—1. Indeed, a? = —1.

2. V admits an I-invariant, positive definite scalar product (‘“metric”)
g. Take any metric gg, and let g := go + 1(9g0).

3. I is orthogonal for such g.
Indeed, g(Iz, Iy) = go(x,y) + goUx, Iy) = g(x,y).

4. I diagonalizable over C. Indeed, any orthogonal matrix is diagonalizable.

5. There are as many v/ —1-eigenvalues as there are —\/—1-eigenvalues.
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Comples structure operator in coordinates

This implies that in an appropriate basis in V ®pr C, the complex structure
operator is diagonal, as follows:

_ — }
v—1
_ 0
v—1
—/—1
—v—1
0
L o _1 -
We also obtain its normal form in a real basis:
o 1 )
1 O
0 —1
1 O
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Hermitian structures

DEFINITION: Let (V,I) be a space equipped with a complex structure.
The Hodge decomposition V @i C := V1.0 ¢ V0.1 is defined in such a way
that V1.0 is a /=1 -eigenspace of I, and V%1 a —/—1 -eigenspace.

DEFINITION: An I-invariant positive definite scalar product on (V,I) is
called an Hermitian metric, and (V,1I,g) — an Hermitian space.

REMARK: Let I be a complex structure operator on a real vector space
V, and g — a Hermitian metric. Then the bilinear form w(z,y) := g(x, Iy)
is skew-symmetric. Indeed, w(z,y) = g(z,Iy) = g(Iz, [%y) = —g(Iz,y) =
—w(y, ).

DEFINITION: A skew-symmetric form w(x,vy) is called an Hermitian form
on (V,1I).

REMARK: In the triple I,g,w, each element can recovered from the
other two.
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Sheaves

DEFINITION: A presheaf of functions on a topological space M is a
collection of subrings F(U) C C(U) in the ring C(U) of all functions on U, for
each open subset U C M, such that the restriction of every v € F(U) to an
open subset Uy C U belongs to F(Uq).

DEFINITION: A presheaf of functions F is called a sheaf of functions if
these subrings satisfy the following condition. Let {U;} be a cover of an open
subset U C M (possibly infinite) and f; € F(U;) a family of functions defined
on the open sets of the cover and compatible on the pairwise intersections:

f’ilUiﬂUj — fj|U@ﬂUj
for every pair of members of the cover. Then there exists f ¢ F(U) such
that f; is the restriction of f to U, for all :.



Riemann surfaces, lecture 1

Sheaves and presheaves: examples

Examples of sheaves.

* Space of continuous functions

* Space of smooth functions, any differentiability class
* Space of real analytic functions

Examples of presheaves which are not sheaves:

* Space of constant functions (why?)

* Space of bounded functions (why?)

M. Verbitsky
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Ringed spaces

A ringed space (M, F) is a topological space equipped with a sheaf of func-
tions. A morphism (M, F) v, (N, F") of ringed spaces is a continuous map
M L N such that, for every open subset U C N and every function f € F(U),
the function ¥*f := f o W belongs to the ring ]—“(\U—l(U)). An isomorphism
of ringed spaces is a homeomorphism W such that W and w1 are morphisms
of ringed spaces.

EXAMPLE: Let M be a manifold of class C* and let C*(U) be the space of
functions of this class. Then C" is a sheaf of functions, and (M,C") is a
ringed space.

REMARK: Let f: X — Y be a smooth map of smooth manifolds. Since a
pullback f*u of a smooth function u € C*°(M) is smooth, a smooth map of
smooth manifolds defines a morphism of ringed spaces.
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Complex manifolds

DEFINITION: A holomorphic function on C"™ is a smooth function f :
C" — C such that its differential df is complex linear.

REMARK: Holomorphic functions form a sheaf.

DEFINITION: A map f . C"*" — C™ is holomorphic if all its coordinate
components are holomorphic.

DEFINITION: A complex manifold M is a ringed space which is locally
isomorphic to an open ball in C" ringed with a sheaf of holomorphic functions.

Equivalent definition: A complex manifold is a manifold equipped with
an atlas with charts identified with open subsets of C" and transition maps
holomorphic.

EXERCISE: Prove that these two definitions are equivalent.
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Complex manifolds and almost complex manifolds

DEFINITION: An almost complex structure on a smooth manifold is an
endomorphism I : TM — TM of it tangent bundle which satisfies I? =

—Idpyy.

DEFINITION: Standard almost complex structure is I(d/dx;) = d/dy;,
I(d/dy;) = —d/dx; on C™ with complex coordinates z;, = z; +v—1 y;.

DEFINITION: A map WV : (M,I) — (N,J) from an almost complex man-
ifold to an almost complex manifold is called holomorphic if its differential
commutes with the almost complex structure.

DEFINITION: A complex-valued function f € C°°M on an almost complex
manifold is holomorphic if df belongs to ALO(M), where

AL (M) @ C = ALYO(M) @ AL (M)
is the Hodge decomposition of the cotangent bundle.

REMARK: For standard almost complex structures, this is the same as
the coordinate components of W being holomorphic functions. Indeed,
a function f: (M,I) — (C,I) is holomorphic if and only if its differential
df satisfies df(Iv) = +/—1df(v).
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Integrability of almost complex structures

DEFINITION: An almost complex structure I on a manifold is called inte-
grable if any point of M has a neighbourhood U diffeomorphic to an open
subset of C", in such a way that the almost complex structure I is induced
by the standard one on U C C".

CLAIM: Complex structure on a manifold M uniquely determines an
integrable almost complex structure, and is determined by it.

Proof: Complex structure on a manifold M is determined by the sheaf of
holomorphic functions Oy, and O, is determined by [ as explained above.

Conversely, to determine an almost complex structure on M it suffices to de-
fine the Hodge decomposition AN(M) @rC = ALO(M) e A% (M), but ALO(M)
is generated by differentials of holomorphic functions, and A%1(M) is its
complex conjugate. m
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Frobenius form

CLAIM: Let B C T M be a sub-bundle of a tangent bundle of a smooth
manifold. Given vector fiels X,Y € B, consider their commutator [X,Y], and
lets W(X,Y) € TM/B be the projection of [X,Y] to TM/B. Then V(X,Y)
iIs C*°(M)-linear in X, Y:

V(fX,Y)=W(X, fY) = fy(X,Y).

Proof: Leibnitz identity gives [X, fY] = f[X,Y] + X(f)Y, and the second
term belongs to B, hence does not influence the projection to TM/B. =

DEFINITION: This form is called the Frobenius form of the sub-bundle
B C T'M. This bundle is called involutive, or integrable, or holonomic if
W = 0.

EXERCISE: Give an example of a non-integrable sub-bundle.
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Formal integrability

DEFINITION: Let I : TM — TM be an almost complex structure on M,
and TM @ C = THOM ¢ 791 the Hodge decomposition. An almost complex
structure I on (M,I) is called formally integrable if [T10M, 7101 ¢ 710
that is, if 71:9M is involutive.

DEFINITION: The Frobenius form W € A29)M @ T M is called the Nijenhuis
tensor.

CLAIM: An integrable almost complex structure is always formally inte-
grable.

Proof: Locally, the bundle T19(M) is generated by d/dz;, where z; are com-
plex coordinates. These vector fields commute, hence satisfy [d/dz;,d/dz;] €
T71.9(M). This means that the Frobenius form vanishes. m

THEOREM: (Newlander-Nirenberg) A complex structure I on M is
integrable if and only if it is formally integrable.

Proof: (real analytic case) next lecture.

REMARK: In dimension 1, formal integrability is automatic. Indeed,
71,907 is 1-dimensional, hence all skew-symmetric 2-forms on T1:9Mf vanish.
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